
ON RIEMANN-LIOUVILLE INTEGRAL OF
ULTRA-HYPERBOLIC TYPE

BY YASUO NOZAKI

1. Introduction.

Riesz has persuited the many types, elliptic and hyperbolic types, of Riemann-
Liouville integral since 1933. Now let rPQ be the distance between two points P
and Q, then we call the following integral the Riemann-Liouville integral

Here the range of integration is taken suitably according to the above mentioned
types. Further Hm(a) corresponds to the gamma function in the old theory of
Riemann-Liouville integral and it depends on the dimension m of the space and on
the constant a. About this there hold the fundamental formulas

Ia(Iβf(P))=Ia+βf(P), Λ/α+2/(P)-±/α/(P) and 7°(P)=/(P).

Using the Riemann-Liouville integral, Riesz [6] established the general potential
theory in m-dimensional Euclidean space. Further Frostman [3] proved elegantly
the fundamental theorem on the equilibrium potential in his α-dimensional potential
theory. In his proof a lemma played its essential part. This lemma can be obtained
from the theory of the Riemann-Liouville integral and it is

'PM 'MQ

In addition, this equality has many applications to other branches of analysis; cf.
Nozaki [5].

Next let the distance rPQ of two points P(α?) and Q(f) be

Then Riesz called the space with this distance rPQ (hyperbolic distance) the Lorentzian
space. In this space he constructed the theory of Riemann-Liouville integral. Using
this integral he solved Cauchy problem which is one of the branches of the theory
of the hyperbolic partial differential equations. Riesz's theories were given in his
splended paper [7].

Now in the present paper, the author will intend to extend Riesz's results more
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generally. Let the distance rPQ of two points P(x) and Q(£) be

We call the space with this distance (ultra-hyperbolic distance) " an ultra-hyperbolic
space " or " a generalized Lorentzian space ". In this space we shall introduce the
Riemann-Liouville integral and shall derive its fundamental properties.

Our theory is much indebted to the Riesz's one. Introducing the vector suitably
in our space, the geometrical properties of our space — surface area and volume of
the solid body etc. — can be obtained by the modified methods of Riesz. Therefore
we can obtain the analytic continuation of Jaf(P) as similar as that of Riesz, but
then the complicated calculations must be necessary.

Also taking Hm((χ) suitably in every space, we may obtain the distribution
r+a~m/Hm(ά)=Φa Then the composition theorem

Φa*Φβ = Φa+β

holds. This is one of the characterizations of Riemann-Liouville integral.
The author is much indebted to Professor Y. Komatu and Professor M. Ozawa

who gave him many useful advices.

2. Generalized Lorentzian space and Jaf(P).

Let the distance rPQ between two points P(x) and Q(<?) be

rPq

2 = rqΊ,* = (X1-ξ

(1)
— (Xμ+

Also let the Laplacian operator be

In the sequel we use the same terminologies and the same notations as those in the
Lorentzian space; cf. Riesz [7] Chap. III.

Let the point P be fixed and the point Q be variable. We denote by Dp the
inverse cone with the vertex at P which is defined by the inequalities

Φ- 2\rι v £ \Π
/ P Q ^ W, vί/l Sl^^^'

Also we denote by D™ the common region which is bounded by the inverse and
direct cones, that is

Γ 2 \ Π τ» £ \ Π *zγ\f\ v 2\Λ /,. £ /Ή
PQ s>"y Xl — ClP"^? dnU A Q M ^^ί yl — S l \ v

where the point M(y) is an inner point of Dp.
Next we define the scalar product of two vectors X and Y by

(2) (X, Y^X^+XzYz+. .+X.Y.-X^Y^ Xμ+vYμ+
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where X's and Y's are components of the vectors X and F respectively. If we
take ε's satisfying

(3) ει = ε2 = = ε/1 = l, εμ+1 = =εμ+v= — 1,

then we can write the scalar product (2) in the form

(20 (X, Y)=Σe*X*Y*
k=l

Using those notations, we can represent the distance between two points briefly by

r^=(X-E, X-Ξ\ rOP*=(X, X).

We say that two vectors X and Y are orthogonal when their product vanishes.
We can also take ε's more generally in the place of those in (3) such that

βί>0 (ι=l, 2, •••, μ), ε,<0 (j=μ+l, - , m) and |eιε2 εm |=l.

Using those ε's, the formula (20 remains in the same form.
Now we consider the linear homogeneous transformation which remains (X, X)

invariant. Since (X, Γ)=(1/4){(JT+ F, X+ Y)-(X- F, X- F)} holds, by such trans-
formations (X, F) also remains invariant. Moreover a set of these transformations
constitutes a transformation group. We call it a transformation of Lorentz in a
wider sense.

As regard to the derivations of a function φ(x), there holds evidently the relations

m / d(£> \ 2

(4 ) (grad φ, grad 0= £ ε*-1 -£- ,
fc=l \ </J7fc /

and

( 5 )

/ m d2

\ f c = l dX2

k

Here the formulas (4) and (5) are also invariant by generalized Lorentzian trans-
formation. By the above method we can proceed our vector analysis completely
analogous to that of Lorentzian space.

We call m dimensional vector space with the distance (1), "a generalized
Lorentzian space " or " an ultra-hyperbolic space ". Let D be any given region which
is enclosed by some surface T (m— 1 dimensional varieties). We suppose that the
the surface T is sufficiently smooth. Then the volume element dQ at any point
Q of D can be represented, like that of Euclidean space, as

Also when the surface T is represented by means of parameters Λ, Λ2, •••, Λm-ι by

£ί=f<0*ι, ^2, •••, Λm-ι) (ί=l, 2, — , m),

then we put

A Tand /=
*=ι
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Then the surface element dS at points Q of T becomes

Similarity we can express an element dσ of the curves σ (^-dimensional varieties) by

dσ=\(dξ,d&\.

When n denotes the unit normal vector at point Q of the surface, as to the direc-
tional derivatives of the function in generalized Lorentzian space, we have as similar
as the derivatives in the usual Euclidean space

dF(ζ) ™ dF

Also let 1 denotes a unit vector at any point of the surface, then we have

Now let r2=rPQ

2 and consider the integral

(6)

If we use the distribution

where r+ is equal to r when r>0 and to 0 when r<0. Then (6) becomes

We call /α/(P) the Riemann-Liouville integral of the ultra-hyperbolic type. Hereafter
we investigate the properties of this integral.

3. J«/tP).

In the following sections, we are now to prove the fundamental theorems on
our Riemann-Liouville integral.

THEOREM 1. Let /(P) be continuous and vanish rapidly at infinity in Dp.
Then we have

= -^Vr ί
Ara(α) J i>P

where

K ω -^-^ Γ((2+a-m)/2)Γ((l-a)/2)Γ(a)
mW Γ((2+a-μ)l2 )Γ((μ-ά)β )

and
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nfF a. — Til v a.— Til

LEMMA (Extension of Boole's theorem). We have

( 2 )

Λ Γ (1-2/2)
_ rm-l _ ^ _ ' /

We can easily verify the validity of (2); Edwards [2] pp. 162-163.

Proof of the theorem. Putting f(P)=exl we shall determine Km(a) so that the
equality J«exι=exι holds. By a linear transformation which leads P to the origin
O, let Q be translated to another point which we write Q(f ) again. Then we can
write (1) in the form

*' f ^^(ff
W JZ>°

(3) /«*»=

If we put ί?+£H \-ξm=p2 and integrate with respect to ζμ+ι, •••, ζm in the region
0, then (3) becomes

Using the above lemma, we have

(4) Λ
( J J

-
~ Km(a) Γ((2+a-μ)/Z)

In the last integral, since Q is a variable point of Z)° with fι<0 and since p varies
from 0 to oo, we may put fι = — sin#, ί'H ----- \-ξz

μ=p2cos2θ. Then the integral of
(4) become

- _
Γ((μ — ϊ)/2)

Putting psin^=/ again, we have

Λ»/2( oo

V I
Jo Jo

-^sin^

(5)

- /f^ Γsin ̂ ~i
y ((μ—l)/2) Jo

(4) and (5) we have
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(6) J«ex>=-f—π^-»<
(«) Γ((2+a-μ)/2)Γ((μ-a)β ) '

Since J«e

x'=exι must hold, we obtain finally from (6)

-
m - Γ«2+a-μ)β)Γ((μ-a)/2 ) '

REMARK 1. If we put r2=rpq

2 and denote the convolution of /(Q) with the
distribution Φ«(P; Q)=r+a-m/Km(a) by (/*$«)(?), we may write the Riemann-Liouville
integral in the form

REMARK 2. If we put μ=l in (7) we can show that Km(ά) can be reduced to
that of hyperbolic type by using the relation, Γ(«)/Γ((α+l)/2)-2α-1ττ-1/2Γ(α/2),

Concerning the compositions of the distributions Φ« and Φβ, we have the fol-
lowing theorem.

THEOREM 2. Under the same conditions on /(P) and the same notations as in
Theorem 1, we have

( 8 )

Proof. The first term of (8) may be written explicitly as

z>Q

(9)

Now consider the integral

(* v _ « — m v_ β—m

τ-dQ.

By a linear transformation which leads P to the origin O, M to (1,0, •••,0) and Q
to a point T with roτ=Ί respectively, we obtain from (9)

(10) \ rPq

a-mrq^-mdQ=rP^
+β-m( foτ«~mrτlP-™dΎ=rPχ«+P-mBm(a, β),

J #PM J Z)01

where ^TO(α, β) indicates the integral of the second member. Then (9) becomes
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If we put f(P)=e£1

t then by Theorem 1, we have (eXl^Φa)^Φβ=eXl ana eXl*Φα+β

~exί. Therefore from (10) and (11), we obtain

Π9Ϊ R (a ff\- Km(
(12) Bm(α'β)-~

Hence from (10) and (11), we obtain finally (/*Φα)*<^ ==/*$«+£. Similarly we can
show that the relation (f*Φβ)*Φa~f*Φa+β holds, so that the theorem is proved.

From (10) and (12) we obtain the following corollary.

Corollary.

rFu«+β-m=βm(a, β)( rpq

a-mr<wβ~mdQ

and

D f m Km(a)Km(β)

""^'"- Kn(«+β) *

This corollary is an extension of Frostman's Lemma stated in the introduction.

4. Hm(a) and Hm(β).

There are many kinds of extensions of beta and gamma functions and we can
refer to them Whittaker-Watson's book [8], Chap. XII. The results of Riesz and
the present work are the extensions of their functions in another way, namely
Bm(a, β) and Hm(ά) or Km(ά) are extensions of them to the Lorentzian space or to
the generalized Lorentzian space respectively. And our present results are the
extensions of them in m -dimensional generalized Lorentzian space, and they are as
follows:

r0τ
a-mr^~m dT, Km(ά)= ( eξlroq

a~m dQ,

γ a-mr β-m^Γ\— Ώ (fY Ω\r a+β-m onH β („ Ω\—'PQ 'QMP a^i— nm(a, P ΓPM p , ana £>m((x, p)—
£>pQ

From this point of view the corollary of Theorem 2 is interesting and useful in
analysis. In this section we use the notations for a while, Hm, Hm and Km in the
place of the functions corresponding to the gamma functions, in m-dimensional
Euclidean, Lorentzian or generalized Lorentzian space respectively. Now let us
investigate the relations among Hm, Hm and Km. Since

(1) Hm(a} *m/22° Γ((m-α)/2)

and
_ ΓY^/ON

Γ((α+2-m)/2) '
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between (1) and (2) there exists the relation (Riesz)

.
Hm(ά) 2

We have seen that Hm(ά) is a special case of Km(ά).
To indicate the behaviour of Km(ά) precisely we use the notation in this section

K%\ά) for Km(ά). Then we have

( 3 ) K<-(g}-^-^ (α) sin {(μ-a)π/2}(3) Km(a)-π
/2) cos(«τr/2)

Let p be a positive integer, then (3) becomes

#«(<*)=•
2 « - m 2

/*-

2 ~

Let 3ϊ(2+α-w)>0, then Γ((2+α-w)/2)Γ(α)/Γ((l+α)/2) is an analytic function of α.
In addition if α is real and positive, this factor takes the positive value. But by
the cause of the factor tan (απ/2), K%p)(a) has other singularities other than those
of the previous factor. For example

s/2 2 «, Γ(«/2)Γ(α)
"< w-" «_2 """ 2 Γ((l+α)/2) '

has poles of order 1 at points α=l, 3, 5, ••• other than the singularities of Γ(ά)Γ(a/2)

In the following sections we consider that the functions Km(ά) and Bm(a, β) are
analytic functions of α or of α and β.

5. Properties of Jaf(P).

We shall prove the following theorem.

THEOREM 3. Under the same assumptions on /(P) as in Theorem 1, it holds

(1)

Proof. Since there hold

«-w and
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if we put

we have

(2) ΔΦa+2=Φa.

By differentiating under the integral sign and by using (2), we have

Q«+2- dQ

Therefore we have (1).

Iterating (1) we obtain the more general form of (1):

(*=1,2, ).

= f(Q)Φa

REMARK. We shall investigate in the following sections the conditions on a
in order to differentiate under the integral sign.

6. Further properties of Jaf(P).

Here we write as such

Now let us consider

( 1 ) Km(a)J«f(P)=

Let Dp be the direct cone with vertex at P. To consider the integral over Dp also
we make an even extension of /with respect to ξι—Xι and denote the resulting
function by u. Then from (1) we have

( 2 ) Kn(a)J f(P)= -U
A J

Then using the polar coordinates

and Σ (
3=1

(2) becomes
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(3) 2Km(ά)

where dΩμ and dΩv denote the surface elements of the μ- and ^-dimensional Euclidean
unit spheres respectively and D denotes the region which is constituted by O^s^r
ana r^O. Putting

I f f
( 4 ) w(x, y\ r, s)= - \ \ u(x+rξ, y+sη) dΩμdΩv,o}μωv jΩμ JΩ V

then (3) becsmes

( 5 ) /«/(?)= ̂ r^τ ( w(x, V, r, s)rr-1s»-ί(r*-s*y-»>'* drds,

where ωμ and ωv denote the surface areas of μ- and ^-dimensional Euclidean unit
spheres respectively.

Now let Q tend to P or Q tend to any surface point of Dp from within Z)p, i.e.,
let s-*t, then rpq

2=r2— s2— »0. Hence when m^2 and when u, that is /, is continuous
in Dp and vanishes rapidly at infinity in Z)p, it can be easily verified that the
integral (5) converges under the condition α>m— 2. We have thus the following
theorem.

THEOREM 4. ///(P) be continuous and vanish rapidly at infinity within Dp,
then /α/(P) converges when a>m~2 for m^2.

Next we are now to prove the relation /°/(P)=ΛP). For that purpose we can
take 0 for P without loss of generality in (5). Then it becomes

( 6 ) /β/(0)= -oiFTV (̂°> °; r> s)(r2- s2)<«-->'V-1s»-1 dsdr
Z/iwW Jo Jo

and

«,(0, 0; r, s) - ~^— ( ( u(rξ, sy) dΩμdΩv.ωμωv jΩμ JΩ V

Under the condition that u is differentiate 2^-j-l times, we can easily verify that
w(Q, 0; r, s) can be expressed by

w(0, 0; r, 5)- Σ Cp,β^s2β+O(rί'52n+1-^),
p,q=0

where Cp, q is a constant independent of r, 5 and />, q are both non-negative integers.
Moreover we have

0, 0; 0, 0)=/(0).

Putting s=tr, then tz=T in (6), we have
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Γ((2+α-/ι)/2)Γ(Oι-α)/2) 1
2τrc™-υ/2Γ((2+α-m)/2)Γ((l-α)/2) Γ(a)

o[p.e=o
v^Zn^^n+l-&/2v/*-\l-Tγa-^ dT.

Now we can suppose without loss of generality that /(P) vanishes when
(R being a sufficiently large number). Hence

_ _
Γ(α) J 0

Hence we have /°/(0)=/(0).
Using the relation 4/α+2V(0) =/«/(()), and letting α->2*, we have /-2/fc/(0)

= Jfc/(0). As to the analytic continuation of /α/(P), we use the following lemma.

LEMMA. Let f(x) be continuous and let

I*f(x) = ~ Γ
^ W Jα

If α>0, ^/zβ^ Iaf(x) represents an analytic function of a. And if f(x] is differ entiable
n times, then Iaf(x) can be continued as for as a>—n (n being a non-negative
integer) and we have

Pf(x}=f(x) and /-fc/(^)-/c/k)(^) (ft=0, 1, 2, •••, n-l).

This is the principle of analytic continuation by Hadamard (cf . Riesz [7] Chap. I).
Considering (6), by the lemma, /α/(P) can be continued as far as α>— 2k— 1,

/(P) must have continuous derivatives of order [(m+l)/2]+2k (k=Q, 1, 2, •-•). Thus
we have the following theorem.

THEOREM 5. Let /(P) be continuous and vanish rapidly at infinity within Z)p,
and /(P) be continuously differentiable [(m+ϊ)/2]+2k times (k=0, 1, 2, •••)- Then we
can continue /α/(P) as far as a>—2,k—l and it represents the analytic function of
a. And we have

( 7 ) /-2fc/(P) = Λ*/(P) and /°/(P) =/(P) =/*Φ0.

REMARK 1. The relation (7) shows that Φ0 is the Dirac's distribution 5(P), i.e.,
Φ0=3(P).

REMARK 2. If we put μ=v=m in 2m -dimensional space, then (4) becomes
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w(x, y\ r, 5)= —τ-\ \ u(x+rξ, y+srf)dΩμdΩv.
(*>m J Ω m j Ω m

The last integral is the mean value over the unit spheres with respect to ξ and y
respectively. If we put

σ(x, y; r) = w(x, y; r, 0) and τ(x, y\ r)=w(x, y\ 0, r),

then both functions σ and τ satisfy the partial differential equation Δxσ—Δyτ with
initial conditions σ(x, y; Q)=u(x, y) and τ(x, y; 0)=0. Further σ and τ may be found
to be the continuous solution of Darboux's equation

m—1
<7r—<7rr=0;

Cf. [1] pp. 411-412.

7. Jiop, J"Jp and Green's formula.
/s

Let the surface S be S(ξι, ξz, •••, ίm)=0, and suppose that it can be differentiable
any times for a while. Let D$ denote the region bounded by the surface of Dp

which contains the vertex P and the surface S, and let 5P be the part of S which
is cut by S and which lies within Dp. Moreover let Cp denote the part of the
surface Dp which is cut by S and which contains P. Then if u and v are con-
tinuously differentiable twice, we can apply the Green's theorem upon Dl and it
follows

(uΔυ-υΔu) dQ= - - -
dn dn

where n denote the inner normal direction.
Now let v=rFq

a+2~m. Since rPQ=0 on Cp and ΔΦa+2=Φaί (1) becomes

(2)

We put

/&p/(P)= —^

and
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Suppose that /(Q) vanishes outside Z>|, then we easily see that the following
relations hold:

( 3 ) (f*Φa)*Φβ==(f*Φa)*Φβ=f*Φa+β==f*Φa+β,

and

(4) Λ(f*Φa + ύ = 4(f*Φa + 2) = (f*Φj=f*Φa.

Also we use the expressions by Riesz in order to write (2) simply,

I P / dr a~

Then (2) can be written

From (3) and (4) we have at once

/£(/&) =/*+ί and Λ/*+2=/*.

8. «/J.

In this section we shall use the same notations as in §7, and we shall now
investigate the behaviour of /*. Now let us consider the " hyperboloid "

H: (Z,Z) = 1 (

Putting

and

trl+t , ' O O \

'"' μ

and

the hyperboloid /ί may be represented by the parameter t. Let the surface S be

S(α)=S(αι, Λ2, •••, «m)=0.

We project the point a of S upon the surface 0— jc)2=l, by the segment which
connects P and Q. Also we put a— x=raz i.e. a—x—rz for simplicity. Now we
shall represent /Jp/(P)by the integral upon (z—x)z=l. In fact, since

(1) dQ=r%
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where dH denote the surface element of the surface H, and further since ξ — jc
= σ(a— x) (O^tf^l) i.e, ξ=(l— σ)x+σa, (1) becomes dQ=rmdHσm~1dσ. Hence we
have

(2)

where

F(a,ά)r dH

F(a, a) = \ f(a, σ)σa~1dσ.
Jo

Next putting z\+z\-\ \-z$= cosh2#, z2

μ+1 H \-z2

m= sinh2#, it becomes

( 3) dH=smm~v-i0 cos/'-1^ dΩm.μdΩμdθ.

Now we can proceed by the way of Riesz as follows. Putting T=e~2θ, we have
from (3)

«-m>'*dΩm-μdΩμdT,

where

Then (2) becomes

( 4 ) 7M/(P)=
6

where

Next since

and — = ~
ΐ ΐ

v«F(a,a)dΩμdΩv

where

M= (grad 5, α-jc), N= (grad 5, grad S)1/2 and
dra

dn
dS=dH,

we have similar formulas for /JO, g, 0(P) and /JO, 0, A(P) as that of /£/, 0, 0(P)
respectively. Thus we have

( 5 )

with

and

, (/, 0(P) =
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(6) /iO, 0, h(P)=-j

with

K(T, ά)=(a-m)k(T)( ( va-2h(ά)dΩμdΩv.

Therefore we may write (4), (5) and (6) in the form

( ? ) Ja= rr ,_

where β is equal respectively to (α-f-2—m)/2, (α+2—m)/2 and (a—m)/2. These
formulas (4), (5) and (6) are the same as those of Riesz [7], p. 58.

9. Analytic continuation of Ja.

Now we can easily show that the existence of the continuous derivatives with
respect to T and X3 of ak and v of the last section, depends on the continuous
differentiability of the surface S. Also the existence of the continuous derivatives
of K(T, a) depends on those of the functions /, g, h and the surface S.

As already stated, the formula (7) in §8 is the same form as that of Riesz, so
that (4) in §8 can be written

/β= _ /^±2+0 _ r
J π^^'^m{(μ-ά)l2}Γ((l-ά)l2)Γ(ά)Γ(β)}0

 vr' ;

where β=a+2— m.
Using the principle of continuation, we can conclude that /(P) and S(ά) have

both continuous derivatives of order [(m+l)/2], and J* can be continued as far as
a>— 1. Further if / and 5 have both the continuous derivatives of order [(m+ΐ)]
+3p, then Ja can be continued as fai as α>— 2p— 1 (/>=!, 2, •••). As to (5) and (6)
in §8, we can conclude in the same way as above and we have the following
theorem.

THEOREM 6. 1°. // the function f and S be both continuously differentiable
[(m-}-l)/2]-f-3/> times, then Ja can be continued as far as a>—2p—l and we have

* Γ(V-m+2j)/Z)
Γ((m-μ)l2)Γ((2-m)/2) j Γ((2+m-2μ+2j)/2)

2°. If g and She continuously differentiable [(m+ΐ)/2]+p and [(m+3)/2]+p
times respectively, then J" can be continued as far as α>— 2p— 1 and we have

J-**=h-**>, g, 0(P)=0 (ρ=o, i, 2,..-).

3°. If the function h and S be continuously differentiable [(m+3)/2]+/> and
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[(m-fl)/2]-h/> times respectively, then Ja can be continued as far as a>—2p—l and
we have

ί-**=j*-2*ΰ^Γh(F)=Q (£=0, i, 2, .-.).

REMARK 1. If we put μ=l, then (1) becomes J%f9 0, 0(P)=/(P), but otherwise

we cannot show the relation /°*/, 0, 0(P)=/(P).
REMARK 2. In our present case, we take the range of integration DF or D%

and further we treat the values of function on the surface S, so that our theory of
Riemann-Liouville integral is somewhat different from the work of Gelfand and
Shilov [4].

10. Applications

Abelian integral equations. In this section, using the Riemann-Liouville integral,
we shall investigate the integral equation of Abelian type.

Now we consider the Abelian integral equation

(1) ( f(Q)rPq«-™dQ=φ(P) m>a>m-2,
JΩ

where Ω denote the m-dimensional Euclidean space and φ(P) is a given continuous
function. We are now to obtain the continuous solution /(P), Next 5* denote the
closed unit sphere of Ω. We put

(Π) ( /(Q)rPQ«-^Q=<^(P).
Js*

First, to reduce (II) to (I), we use the Poisson kernel with respect to S* (cf. Riesz
[6]):

where we mean rP=rOP etc. We can extend the function φ(P) continuously in the
whole space as follows. We put

(1)
Js*

Then if PeS*, we know that ψ(P)=φ(P) by the property of ΛP(Q). Therefore

r ψ(P) PeS*,
= ^1 φ(P) PφS*.

Then Ψ(P) becomes the continuous extension of ^(P) in the whole space. But in
order to verify the convergence of the integral (1), let v(P) be potential of the positive
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mass distribution on S* and let c be any positive constant. It is sufficient to sup-
pose that \φ(P)\^v(P)+c. Thus we can reduce the equation (II) to (I), that is, we
have only to solve the equation of the type

The following method of our argument may apply not only in Ω but also in
the generalized Lorentzian space. In the last case it is sufficient to replace DF for
Ω and

for J/«

Now let us consider the equation (I) which can be written

or

where $„(?, Q)=rPQ«-TO/ί/m(α). Hence it becomes

By operating the Laplacian operator, we have

( 2 )

Since f*Φ0=f, by letting β-*2— α, we have

(3)

where 77m(α) = πm/*2aΓ(a/2)/Γ((m - α)/2).
In general, when ^(P) can be differentiable 2/> (/>=0, 1, 2, •••) times Ia can be

continued to I~2p. Then the integral of the right hand member of (2) or (3) con-
verges absolutely, and therefore the function /(M) may represent the solution of
(F), and then the integral of (3) converges.

11. Potential in ultra-hyperbolic space.

We put

EΛ«>(F)= -j^r

We call the function ί/Cα)(P), α-dimensional potential in the ultra-hyperbolic space.
Concerning this potential, we have as a usual potential,
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that is, in this case the composition theorem and Poisson's relation are valid.
Further if we put

then we have

m(a)

(1)
m(p) J Z)Q

Therefore we have

( 2 ) f rPQ«^-w

J Z)R

From (2) we obtain

(3) f
.)

that is the reciprocal formula is valid here also.
The formulas (1) and (3) are useful for a variation method. Further if we put

a—β=a/2, μ—v in (1), then we have

( 4 ) I(μ, μ)= ( rPQ«~m dμ(P) dμ(Q) = Km(a) ( [U<*™(Ύ)]* dΎ (α
J Z)B J D*

(4) corresponds to the energy integral in the usual potential theory.
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