ON EVANS’ SOLUTION OF THE EQUATION 4u=Pu
ON RIEMANN SURFACES

By Mrtsuru NAKAI

Introduction.

Let R be an open Riemann surface. By a density P(z) on R we mean a non-
negative continuously differentiable function of local parameters z=x++ —1y such
that the expression P(z)dxdy is invariant under the change of local parameters z.
Then we can consider the elliptic partial differential equation

0? 0?
(E) 4u(z)= P(2)u(z), A:W—*—a—y?’

which is invariantly defined on R. Throughout this paper, we always assume
P(2)dxdy=0

on R. By a solution # of (£) on an open subset D of R we mean that # is twice
continuously differentiable function satisfying (E) on D.® An Ewvans' solution e(z)
of (E) on R is a solution of (E) on R satisfying

lim e(z)=o0,

R34,
where A. is the Alexandroff’s ideal boundary point of R. The purpose of this
paper is to give a sufficient condition for the existence of Evans’ solution of (E)
on R.

Let (Rn)7-0 be a normal exhaustion of R and £,. (#>0) be the continuous
function on R,—R, such that ©,, is a solution of (E) on R,—R, with 2, ,=1 on
0R, and 2y,=0 on dR,. Then there exis_ts a continuous function 2, on R—R,
such that £, is a solution of (E) on R—R, with £y,=1 on 0R, and

2u(2)=1im 2 .(2)>0

on R—R,. Clearly £24(z) does not depend on the special choice of exhaustions
(Rn)cr?=1o
We consider the condition

@ o= inf 2u(2)>0.

2€R—Ro
It is easy to see that the condition (£) does not depend on the special choice of
" Received September 10, 1962.
1) For fundamental properties of solutions of (E), refer to the list in pp. 152-153 in [4].
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R,. Hence the condition (2) depends only on the pair (R, P). The main result of
this paper is the following

THEOREM 1. Suppose that the condition (2) is satisfied. Then the equation
(E) possesses an Evans' solution of (E) on R.

For the proof of this theorem, first we construct the extension G(p, q) of the
Green function on R with respect to (£) to the Cech compactification R* of R (§1).
Using this extended Green kernel G(p,q), we define for each subset K of R* a
“transfinite diameter” D(K) and a modified ““ Tchebycheff’s constant” E(K) of K
and then we prove E(K)=D(K) (Proposition 2, §2). Usually in the potential theory,
Fekete’s relation E(K)=D(K) is proved for compact sets K by using symmetricity
and continuity of the kernel function. But our kernel G(p,q) not necessarily
satisfies symmetricity and continuity. In spite of this, we can prove the half of
Fekete’s relation: E(K)=D(K). This fact may have the independent interest.
Next we prove D(I")=co, where I is the Cech boundary R*— R of R (Proposition 3,
§3). After these preparations, we conclude the proof of Theorem 1 (§4).

Only in the proof of D(I")=co, we use the assumption (£2). The converse of
this is true. Namely, the following Theorem 2 holds which is proved in §5. This
shows that without (£2) the standard method due to Evans to construct Evans’
solution based on the transfinite diameter with respect to the Green kernel cannot
be applied.

TuroreM 2. The following conditions ave mutually equivalent:

(a) 2

(b) in}f G(z, w)>0 for each w in R,
z€

© D(I")y=o00,

Finally we give an application of Theorem 1 to the function theory. An
Evans-Selberg’s potential on R is a harmonic function 4(z) on R with one negative
logarithmic singularity in R such that lim,,, , h(z)=co. Applying Theorem 1,

we prove the following in §6:

TureoreM 3 (Evans-Selberg-Kuramochi®). There exists an FEvans-Selberg’s
potential on R if and only if R is of null boundary.

§1. Green kernel on Cech compactification.

y LeMmMmA 1.1. There exists a unique compact Hausdorff space R*, called the
Cech compactification of R, such that
(C. 1) R is an open subspace of R*, or equivalently, '=R*—R, which is called

2) See Kuramochi [2].
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the Cech boundary of R, is compact in R*;

(C. 2) R is dense in R*;

(C. 3) any bounded continuous function® on R is uniquely extended to R* so
as to be continuous on R*.

In fact, since R is completely regular., by a theorem of Cech,” there exists a
unique compact Hausdorff space R* satisfying (C. 2) and (C. 3). As R is locally
compact, so (C. 1) is satisfied for this R*.®

LeMMA 1.2. Any continuous function f on R is uniquely extended to R* so as
to be continuous on R*.

In fact, let g(z2)=max(f(2),0) and h(z)=g¢(z)—f(z) on R. Then (1+4¢(z))~* and
(1+h(2))~t are bounded continuous functions on R and so continuously extended to
R*. Then the same is true for g¢g(z) and 4(z) and since R is dense in R*, these
extensions are unique. We denote these extensions by the same notations. If
g(p)=co at some point p in R*, then there exists a neighborhood V of p such that
g(p)>0 on V. Hence ¢(z)=f(z2) on VNR and so #(z)=0 on VNR. As VNR is
dense in V, so h(p)=0. Similarly, A(p)=oo implies g(p)=0. Hence the expression
g(p)—h(p) has a definite meaning and gives a continuous extension of f(2)=g(2)
—h(2). Again, since R is dense in R*, the extension is unique. Q.E.D.

Let ¢(z, w) be the Green function on R with respect to (£) with its pole w in
R. It is positive, symmetric ¢(z, w)=g¢(w, z) and continuous on Rx R.® If we fix
z in R, then g¢g(z, w) is continuous on R with respect to w and so continuously
extended to R* in a unique way. We set

9(z, p)= ]?lggpg(z, w) (peR*).

Lemma 1.3. For any point p in I'=R*—R, 9(z, p) is a solution of (E) on R
and so extended continuously to R* in a unique way.

In fact, let z, be an arbitrary point in R and ¢ be an arbitrary positive number.
We can find a neighborhood U of 2z, with compact closure in R and a positive
constant M sgch that ¢(zo, w)<M if w¢U. We can also find a neighborhood V of
2o such that Vc U and ¢ 'g(zo, w)=9(z, w)=cg(z,, w) for any zin V and w in R—U,
where ¢=1+4¢/M. Hence |g(z, w)—g(z0, w)|<e¢ for any z in V and w in R—U.
Letting w—p, we get

l9(2, p)—0(20, P)| <e
for any z in V. This shows that g(z, p) is continuous on R with respect to z.

3) Functions or continuous functions considered in this paper are all assumed to be
[—o0, c0]-valued Bounded functions are functions whose ranges are compact in (—oo, oo).

4) See Cech [1].

5) See p. 163 in [5].

6) See pp. 154-157 in [4].
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Next take a countable dense subset (zm)n-1 of R. By induction, we can find
sequences (Um,»)5-1 (m=1,2,---) of neighborhoods of p such that

UnndUnnit, Unitn N RNUi)=¢
and
liin Lup [g(zm, w)—g(zm, p)|=0.
This is possible, since ¢(zm, w)—g(zm, p) as w—p for each m=1,2,---. Set V,

=U..NR and fix a point w, in V,. Then
lim g(z, wa)=9(z, p)

for z=z, (m=1,2,---). On the other hand, by Harnack type inequality, (9(z, wn))5-1
is a bounded sequence of solutions on each compact subdomain except a finite
number of terms. Hence by choosing a suitable subsequence, we may assume
(9(z, wn))2—1 converges to a solution u(z) of (E) on R. Thus u(z)=q(z, p) on the
dense subset (z.)5-1 of R. Since g¢(z, p) is continuous on R, we conclude that
9(z, p)=u(2) on R, which shows that ¢(z, p) is a solution of (E) on R. Q.E.D.

DEFINITION. The Green kernel G(p,q) on R* is defined by

G(p, q)=lim ( lim g(z, w)) (p, qe R*).
R3z—p R3w—q

ProposiTION 1. The Green kernel G(p,q) on R*x R* possesses the following
properties:

(G. 1) G(z,w)=g(z,w) for z and w in R;

(G. 2) G(z,p)=G(p,2) if z is in R;

(G. 3) G(z,p) is a solution of (E) on R except p;

(G. 4) G(p,q) is continuous in peR* for fixed q in R*.

This is a simple consequence of hitherto considerations. Notice that we do not
claim the symmetricity G(p,q)=G(q,p) for p and ¢ in I' and the continuity of
G(p, q) with respect to q at I" for fixed p in 7.

From Proposition 1 and Harnack type inequality, it is easily seen that G(z, p)
is finitely continuous on Rx I  and hence continuous on R X R*.

§2. Quantities D(K) and E(K).

For each subset K of R*, we set
n . 1,,n
(5)DuE)=_inf 5" Glpy ps).
P15 Pp€K 1<j

It is easy to see that (D.(K));-: is non-decreasing and so we can define
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D(K)=lim D,(K).
Similarly, we set

nE(K)= sup inf f} G(p, ps).
P1,,Pp€K pEK 1=1
Since the sequence (E.(K))j-: satisfies
n+m)Ep oK) ZnEW(K)+mEn(K) (n,m=1,2,--),
we can define
E(K)=Ilim E.(K).

n—c0

ProposiTIiON 2. EK)=D(K).

Proof. Let n be an arbitrary positive integer. We set »=1/(r—1) and choose
n points pn, Pa-1,+-, D2, p1 in K satisfying
(2'1) Z G(p"—l, p])éinf Z G(p) pj)+r (]:19 2’”') n_]-)-
J=n—1+1 PEK j=n—i+1

We choose these #n points inductively. Let p, be an arbitrary point in K. Assume
that pu, Pu-1,"+*, Pu—rr1 G=n—1) have been already chosen. Consider

Mp)= 3 G(p by
J=n—1+1

Since infpex #(p)=0, we can find a point p,—, in K such that A(p.-.)=h(p)+r on
K. This is nothing but (2.1).”
By the definition of E;(K), we can easily see that

inf 31 G(p, p)SiEK).
PEK j=n—1+1
Hence by (2.1), we get
3 G(pus, b)) SiEE)+7 (i=1,2,-, n—1).

J=n—1i1+1

Summing up these n—1 inequalities, we get by the definition of D,(K)
n n—1
(5 )DuE)= T iEK)+(n—1)r
or

2.2) Dn(K)g(ﬂZ—IIiEt(m)/(g)“/(g)

1=1

7) Since A{p) is continuous on R*, we can choose a point p,—, in K satisfying A(pn—:)
<h(p) on K. Hence r in (2.1) 1s superfluous in this case. We want to emphasize here that
the above proof to show the relation E(K)=D(K) is valid for any kernel bounded from

below.
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Since lim, E.(K)=E(K), it is easy to see that

lim( B0 /() =B,

=1

Hence by making » " co in (2.2), we get D(K)<E(K).

§3. Evaluation of D(/").

In this section, we assume the condition (£):
o= inf £y(2)>0.
R—Ro3z
Under this assumption, we shall show that D(/")=co, Where_ ['=R*—R.
Let (R,)z_, be a normal exhaustion of R. Set I',=R,—R,. We denotc by

M(I',) the totality of unit positive Borel measures on I',. For each measure # in
M(I",), we put

()= SG(z, w)dp()dpu).

Set

wEM(I'y)

Then we have®

LemMA 3.1, There exists a unique measure pm in M(['y) such that
and the function U.(2) on R defined by

U= {6 wdmw
is the solution of (E) on R—1I",, and U.(2)=W, on R and U (2)=W, on I',.

Let w.(2) be the continuous function on R such that w, is a solution of (£)
in R, and w,=1 on R—R,. We set

A= S wn(2)P(z)dxdy.
R

LEMMA 3.2. lim A,=0.

n—oc0

Proof. The condition ¢>0 implies that R is of null boundary.” Hence (E)
does not possess bounded solution except the constant zero.!” By the maximum

8) See pp. 157-165 in [4].
9) See Theorem 1 in Ozawa [8].
10) See Ozawa [6] or Theorem 1 in Royden [Y].
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principle, (w.) is a monotone decreasing sequence converging to a bounded solution
of (E) on R which must reduce to the constant zero. Hence P(2)=w.(2)P(2)\,0.

On the other hand, ¢>0 implies
S P(z)dxdy <ocoV
R

Hence by Lebesgue’s convergence theorem

lim A, = SR lim w,(2) P(z)dxdy=0.

n—oco

Lemma 3.3. lim W, =oco.

n—oo

Proof. Let G.(z, w) be the Green function on R, with respect to (E).

Gu(z,w) /" G(z,w) on RXR. By Green’s formula
2ewi)=| *d.6ua 0=~ dd.G.euw)+on.
Since d,(*d.Gx(z, w))=4,Gn(z, w)=P(2)Gn(z, w), we get
S . Gz, w)P(2)dxdy =271 —w(2)).
Hence by making »n oo, we get
SRG(Z, w)P(z)dxdy=27.1»
From this, by Fubini's theorem

SRUn(z)P(z)dxdyz SF( SRG(Z,,w)P(z)dxdy dpenw) = 2.

Thus
(3.1) S U.(2)P(z)dzdy=2x.
R

By the maximum principle, U,(z)= W,w.(z) on R. From this
S U (2)P(2)dxdy = W"S w(2)P(2)dxdy.
R R

Hence by (3.1), we get 2z=W.,A, and so

liminf W,=lim 27/A,=co.

N—00 N—>00

LrMMA 34. DIMNzo*Wn  (m=1,2,--).
11) See Corollary 1 in Ozawa [8].
12) This relation is due to L. Myrberg [3] and Ozawa [7].

Then
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Proof. Let £mu(z) (k>m) be a continuous function on R,—R. such that
is the solution of (E) in Ri—Rm with 2,,=1 on I'n and 2,,=0 on [ Clearly
(Pm)5-m+1 is an increasing sequence and so there exists a continuous function 2.,
on R—R, which is a solution of (E) on R—R, with 2,=1 on /", and

lim 2 1(2) =2m(2)
k—oco
on R—R,. Since 2n ;=2 on Ry—R, by the maximum principle, we have

Qm(Z)on(Z)
on R—R,. Hence in particular
inf 2.(2)=0.

zeR—Rm

Let # be an arbitrary positive integer larger than 4 and pi, ps,+-, pn be in I.
We choose # points ¢, gs,'+*, ¢» in ' inductively as follows. Let

@)= 3 Gz p)

and ¢ be in /", such that
hi(qy) ZD;I}WI‘I hi(2).

Since 7.(z)=0 on Ry—Rn., we have by the maximum principle, %.(2)=%1(q1)2m 1(2)
for z in Rx—Rn. Hence on R*—Rp

ha(p) = haq) L D).
Hence in particular si(p1)=h1(q)2n(p1)Z0hi(gr) and so

n 2,0, 1,50
(3.2) a EZ Glgs, po)+ EJ G(pu pp)= g G(pi pj)=a.
Next we choose gz, @s,"++, @n—2 in ['n satisfying

1,k k n k+1,-,m
(33) ot 3 Glgugp+o 2, X G, pp+ X G(p,pr=a (k=23 n=2).
1<j =1 g=k+1 1<y

First let
ha(2)= 513 Gz, pj)+aG(qs, 2)
P

and ¢: be in [, such that
hz(Qz)ZII;IIi'n h(2).

Similarly as above, we have hs(p)=hs(g)¥n(p) on R*¥*—Ryn and so

3

SG(PZ, b)+oGlq, 1’2)20]2]3 G(gz, pj)+0G(qs, q2).

7



EVANS’ SOLUTION OF du= Py 87

From this with (3.2), we get
2 7 3,
UZG(ql) 42)4’01;]; G(Qi, p])+ 1% G(Pz, pj)§a~

This is nothing but (3.3) for £#=2. Next assume that g,,---, ¢« (k=n—3) have been
chosen in I, satisfying (3.3). Let

n k
hina(= % G(z,p)+0 2 Glgs, 2)
J=k+2 =1
and g1 be in I, such that
hk+1(¢]k+1)=min hk+1(2).
z€ly,
Similarly as before, we have Zi1(p)=hir1(qes1)2n(p) on R*—Ry, and so

n k
3 Gt p)+0 5 GG pi)

n k
z0 X GG+, pi)+0* 2 G(qi, Grir)
J=k+2 =1

From this with (3.3), we have

1,0, k+1

k+1 n k+2,m
¢ 3 Glg,q)+eo X 2 G, pp)+ X G(pi, p)=a.
1<j 1=1=k+2 1<y
This is (3.3) for £+1. Thus we have constructed the system gs,:-, go-s. Next let
n—2
hn-1(2)=G(z, pn)‘*"’lé G(q,, 2)
and ¢,_; be in I, such that
Rn-1(qn—1)=min A,_,(2).
2€ly,
Similarly as before, we have hp_1(p)=hn-1(qn-1)2n(p) on R*—R, and so
n—2 n—2
G(pn-1, l>n)-|-tfl§1 G(qi, prn-1)Z0G(gn-1, pr)+0* El G(q, qn-).

From this with (3.3) for k=n—2, we have

1, ,n—1 n—1
34 @ L Glgna)to L Glgn p=a.

j 2

Finally let
n—1
(=03 G(gu2)

and ¢, be in I, such that
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hn(qn):min hn(z).
2€l’ ),
Similarly as before, we have hn(p)%hn(qn)gm(p) on R*—R, and so
n—1 n—1
o élG(CIi,Pn)EGZ EIG(% qn)-
From this with (3.4), we get
1,,n 1, ,m
o* 2 Glgign=a= X G(pupj)-
1<y 1<y
From this inequality, we get by the definition of D,(I ")
n i 1,,n
o(5)Dur="E 6h, 1.
Since py,-+, pr are arbitrary in I”, we get
of N ' n y + ; .
(5 )P =(1y )Dull) or D) Z*DilI'n).

Hence by making n oo, we get
3.5) D(MY=e* D).
Now let ¢{™,--, ¢4 be in [", with

n , 1,,n
(36) ()Pl +1= S G, g5

and let p, be in M(I"w) with p.(¢™)=1/n (G=1,-,n). Since M({I'») is vaguely
compact,*® there exists a subsequence (u») of (#x) and a measure g in M(/'») with
p=liMy .t (vaguely). Let ¢ be an arbitrary positive number. From (3.6)

n o 1,-n/ . ’
(2)DuT-+127% minGe G, 45"

’

nc
5

’2

2

mince, G, w)dpn (s 10)—
Hence

D) +1 / (@ > Smin(c, Gz, ))dpta (2)dpta () — _;_

As o X par converges to pXx p vaguely and min(e, G(z, w)) is continuous on ' X ['p,
so by making »n’ oo,

D)= Smin(c, G(z, w))dp(z)dm(w).

13) See Selection theorem, p. 162 in [4].
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Making ¢ oo, we have D(I'n)=I()zinf ey, I(v), i.e.

D' )= W
From this with (3.5), we finally get
D(=o* W
ProrosiTiON 3. D"y =o0.

This follows from Lemmas 3.3 and 3.4.

§4. Proof of Theorem 1.

Assume that the condition (£) is satisfied:
il’lf Qo(z)>0.

zER—Ro

We have to prove the existence of an Evans’ solution of (E) on R.!®
By Propositions 2 and 3, we have E(/")=oco. Since E([")=lim, E.(I"), we can
find an increasing sequence (#:)5-: of positive integers such that

E.([)>2 (k=1,2,--).

By the definition of E,(I"), we can find n; points pi,. (¢==1,2,---,m) in /" such that
"'IC -
inf Z G(p, pk,L)>2k7lk.
peEr 1=1
Then the function
g
e(p)=2"ni* 3 G(p, pu.)

is continuous on R* and a solution of (£) on R and e(p)>1/2 on I". Thus we
can find a compact set K; in R such that

ex( p)>—;— on R*—K; and a fortiori on R— K.

Let z, be a point in R and V, be a neighborhood of z, with V, compact in R.
Then there exists a constant ¢, such that G(zo, w)<c, (weR—V,). Hence G(z, p)=c,
for any p in [I'. From this, ewz))=co/2¥*!. Thus the sequence (3 ?_,ex(2))5-1 is a
monotone increasing sequence of solutions of (E) on R such that 3% ie(ze)=co.
Hence

e(2)= 721 ex(2)

14) The following method of construction is the standard one originally due to Evans.
The following proof is contained only for the sake of completeness.
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is a solution of (E) on R and e(z)=n/2 on R—\J;_1Ki. Since \U?_,K; is compact
in R, the above inequality shows that limgs, ., e(z)=co. Thus the function e(z) is

a required Evans’ solution of (E) on R.

ReMmaArk. The Evans’ solution e(z) of (E) on R constructed above satisfies the
following condition:

* S e(2)P(2)dxdy < co.
R

In fact, by the footnote!®
S G(z, w)P(2)dxdy=2n
R

for any w in R. Hence by Fatou’s lemma

S G(z, p)P(z)dxdy <lim inf S G(z, w)P(z)dxdy=2n.
R R3w—p R
Thus
S e(2)P()dazdy =21 }:kg Gz, pe.)P(@)dzdy =2-+12x
R =1 JRr

and so

S o2 P()dzdy— ig D) P(2)dzdy =2r.
R k=1JR

It is the writer’s conjecture that the condition (£) is equivalent to the existence
of Evans’ solution satisfying the condition (*).

§5. Proof of Theorem 2.

To see the equivalence of (a) and (b), we have only to show that (a) is equi-
valent to

inf G(z, w)>0
2€ER

for a fixed w in R,. Let ¢>1 and satisfy ¢>G(z, w)>c™* for any z in o0R, and
G.(z, w) be Green’s function of (E) on R,. Then for sufficiently large #, ¢>Gn(z, w)
>c~! for z in dR,. Hence by the maximum principle

CQO,7L(Z)>G1I(Z, W)>C—1~QO,7L(Z)
on R,—R, From this we get
c£26(2)> G2, w) > 20(2).

This shows that the equivalence of (a) and (b).
The implication (a)—(c) is nothing but Proposition 3
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Finally we show that the implication (c)—(b). Contrary to the assertion, assume
that

inf G(z, w)=0
ZER

for a point w in R. Then there exists a point p in I" such that G(w, p)=G(p, w)=0
for a point w in R and so for every point w in R. Thus for any ¢ in I", G(gq, p)=0.
Hence by putting ¢:=¢.=---=¢.=p, we get

1,,m

, 1,,m
0= inf ¥ G(pup)= 1}5 G(qi, q)=0

pL, e pr€l 1<j
or
D, (I")=0.

Thus D(I")=lim,D.(I")=0, which is a contradiction. Q.E.D.
From the above proof, we also get

THEOREM 2'. The following conditions arve mutually equwalent:

@) inf Q0(2)=0;
2€ER—Ro
(b) inf G(z, w)=0 for every w in R;
2ER
© D(I"=0.

RemARrk. The condition (2) is a sufficient but not necessary condition for the
existence of Evans’ solution of (E) on R. As an example,'® let

R=(z |z|<1)
and
A1+z2%)
P&= 0 epr

Then (E) possesses an Evans’ solution
1
O

of (E) on R. To show that the condition (2) is not satisfied, let (R,)3-0 be the
exhaustion of R such that R,=(z; |z2|<1—1/(n+2)) and w.(z) be the harmonic
function on R,—R, (n=1) with boundary value w,=1 on dR, and w,=0 on 9R.,.
Then by the maximum principle

20,2(2) Swa(2).

Clearly w, converges to the harmonic function w on R—F, with boundary value
w=1 on dR, and w=0 on dR=(z; |z|=1). Hence

15) This example is due to Royden [9], p. 10.
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0<2(2)=w(2)

and so

0= inf 2¢(2)= iInf w(2)=0.
R—Ry3z R—Ro3z

It is the Prof. Ozawa’s conjecture that the non-existence of non-zero bounded
solution of (E) on R is equivalent to the existence of Evans’ solution of (£) on R.'®

§6. Proof of Theorem 3.

The “only if ” part of Theorem 3 is easily seen and well known. So we have
only to show the “if” part. Take a density P(z2) with P(2)dzdy=0 on R and
P(z)dxdy=0 outside a fixed compact set in R. Let (R.)5-o be a normal exhaustion
of R. We assume that P(z)drdy=0 on R—R, Then the function 2, .(z) (n=1)
is harmonic in R,—R, with boundary value 2,,=1 on 9R, and 2,,=0 on 9R..
Hence £, is the positive harmonic function on R—R, with boundary value 2,=1 on
oR,. Since R is of null boundary, by well known Mori’s theorem,

o= inf £42)>0,

2€R—Ro

i.e. the condition (2) is satisfied. Hence by Theorem 1, there exists an Evans’
solution e(z) of (E) on R. As
de(z)=P(z)e(z)=0

on R—Ri, so e(2) is harmonic on R—R,. Let a>sup.er,e(z) and U=(z€R; e(2)>a).
We can find a positive number & such that

bg *de(z)=2r.
au

Let the singularity function s(z) on R—aU be defined as follows:
I be(z)—ab on U,

s(2)= _

l —k(z, w) on R—-U,

where k(z, w) is the harmonic Green’s function on R—U with its pole w in R—U.
Let L be a normal operator of Sario.!” Consider the equation

Lh—s)=h—s.
By the definition of s(z),

S *ds(z)=0
aU+(R-TU)

and so the above equation has a solution %(z) harmonic on R which is a desired
Evans-Selberg’s potential on R with one negative logarithmic pole at w.!?

16) Compare this with the conjecture in the remark of §4.
17) See Sario [10].
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