
CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, IV
(ENTROPY AND INFORMATION)

BY HISAHARU UMEGAKI

1. Introduction.

The theory of information, created by Shannon [23], is developed by Fein-
stein, Kullback, MacMillan, Wiener and other American statisticians (e. g., cf.
[10]), and also advanced into the ergodic theory by Gelfand, Khinchin, Kolmo-
gorov, Yaglom and other Russian probabilists (e. g., cf. [8]). Through recent
years, the theory is regarded as a new chapter in the theory of probability.

Recently, Segal [22] gave a mathematical formulation of the entropy of
state of a von Neumann algebra, which contains both the cases for the theory
of information and the theory of quantum statistics. Segal's theorem was re-
formulated in operator algebraic form by Nakamura and Umegaki [16] and
independently by Davis [3].

Since the summer in 1954, Nakamura and Umegaki have investigated the
concept of the conditional expectation in von Neumann algebra as a non-
commutative extension of probability theory (cf. for example [13~18] and [25
~28]), and in the most recent paper [18] it was applied to the theory of mea-
surements of quantum statistics which is regarded as a non-commutative case
of the theory of entropy and information. Furthermore, it may be very inter-
sesting to develope the theory of information under functional-analysistic and
operator-theoretic methods. From these points of views, we shall discuss the
measure of information of integrable operators or of normal states of a von
Neumann algebra. Davis [3] has independently studied on the almost same
theme with Nakamura-Umegaki [16] and [18], in which he developed the theory
of entropy and he simplified the proof of the theorem relative to the operator-
entropy.

Now, we shall give the basic notations and describe the fundamental concepts
in a von Neumann algebra which will be used throughout the present paper.

Let A be a von Neumann algebra, that is, A is a weakly closed self-adjoint
algebra of bounded operators acting over a complex Hubert space H, which
contains the identity operator 7. A linear functional p of A is said to be positive
if p(aa*) ^ 0 for every a ε A. Such p is said to be state if p(I) = 1, to be normal
in the terminology of Dixmier [4] if p(aa)tp(a) for aa^a, and to be trace if p(ab)
= p(ba) for every pair α, b ε A. The normality of state is equivalent to the
complete additivity: Σ p(pa) = p(Σ Pa) for any disjoint family of projections
{pa}aA (cf. Dixmier [4]).

Received December 1, 1961.

59



60 HISAHARU UMEGAKI

Throughout this paper, as far as we give no exposition on each part, it
will be assumed that A have a faithful normal trace τ. It is known, that A
has such τ if and only if A is of finite class and sigma-finite, and in general
that a von Neumann algebra has sufficiently many normal traces if and only if
it is of finite class (cf. Dixmier [4]).

Denote LP(A, τ) or simply LP(A) (p ̂  1) the space of all measurable operators
x with finite integral (τ(\x\p))1/p (=\\x\\p, say ZΛnoπn) in the sense of Segal
[21]. Then LP(A) is a Banach space. If p is a normal state of A, then there
is so-called Radon-Nikodym derivative dp/dτ in the sense of Dye [6] and Segal
[21] such that p(a) = τ((dρ/dτ)a) for every a ε A. Then dp/dτ is a self-adjoint
non-negative operator (dp/dτ ^0, say) belonging to Ll(A) and has norm one.

Denote s(a) the support-projection of a self-adjoint operator α. For a pair
of such operators α, 6, if s(a) ^ s(δ), then denote a •<< b. When both a -< b and
b ^a hold, denote a~ b. For a pair of normal states σ, p of A, if σ is abso-
lutely continuous with respect /?, then denote <?•</?. When both 0 -< p and p -< σ
hold, denote σ ~ p. If a and b are Radon-Nikodym derivatives dσ/dτ and dp/dτ,
respectively, then a -< 6 or α ~ 6 are equivalent to <r -< ^o or <r ~ p, respectively.

For any family F of bounded operators, denote Ff the von Neumann algebra
consists of all bounded operators commuting with the operators in F. For any

self-adjoint α = I λde^ denote R(d) the von Neumann algebra generated by α,

i.e., Λ(α) = {*,}/'.

In the present paper, §§2 and 3 contain the basic notions and the prelimi-
naries for §4 ~§9. In §2, the back-grand and the fundamental properties of
the conditional expectation in A will be described and as preliminary lemma the
domain of it will be extended to a family of measurable operators which are
not necessarily bounded or integrable. In § 3, it will be stated on the operator-
functions log a and a log a ίor a ε A, a ̂  0, which will become the basic notations
to discuss the measures of entropy and information, and it will be also stated
on the two basic theorems of the operator-entropy which were proved previously
by Nakamura-Umegaki [16] and Davis [3].

In §§4 and 5, the notions of the measures of information I( , ) and of
divergence J( , ) between two probability measures, in the sense of Kullback-
Leibler [11], are introduced for the von Neumann algebra A and the main
theorems relative to the measure of information are extended, from which a
minimal property of entropy follows. For the proof of these theorems, the
properties of the conditional expectation in non-commutative case and the theorems
relative to entropy in §3 are essentially used. In §6, using the method of
direct (= tensor) product von Neumann algebra, Shannon-Wiener theorem relative
to the additivity of the measure of information over independent events will be
extended to the von Neumann algebra A. In §7 ~§9, the results obtained in
the preceding sections will be applied to various cases. In § 7, it will be proved
that the measure of information between certain restricted operators is not in-
creasing under operating a conditional expectation. In §8, a characterization
of sufficient subalgebra is given as a generalization of Kullback-Leibler's theorem.



CONDITIONAL EXPECTATION IN OPERATOR ALGEBRA 61

In § 9, it will be discussed the information 7( : B) with respect to a von Neumann
subalgebra B, which was introduced by Nakamura-Umegaki[16], and will be studied
the relation between I( :B) and /(•,•)• The faithfulness of I( :B) is not plain,
and in order to make up for this point, a new notion of divergence J( ,B) will
be introduced. By these mathematical formulation combined with the operator
theoretic characterization of measurements due to Nakamura-Umegaki [18], our
method of informations in operator algebra may be applicable to the von Neu-
mann theory of measurement in quantum statistics.

In the present paper, for the sake of notational convinience and in order to
develope the direct extension of one chapter of probability theory in which the
based space is a measure space with total mass 1, we assume that the von
Neumann algebra A is of finite class and sigma-finite, having a (fixed) faithful
normal trace τ. However, this assumption is not necessarily essential. Indeed,
for the case A being of semi-finite and not necessarily finite, and for τ being
a semi-trace, all theorems and propositions in this paper can be shown by a
little or simply modified proofs. For such semi-finite A, the von Neumann
subalgebras discussed there (for example, R(a), R(b), B, •••) should be taken
such that the property τ to be semi-trace is preserving on each subalgebra. The
abstract of this paper was published in [28],

The author is indebted to Professor M. Nakamura who suggested the possi-
bility of the non-commutative development of the Kullback-Leibler's information
and gave valuable discussions to him.

2. Conditional expectation.

Let B be a von Neumann subalgebra of A. An operation e from A onto B
(aεA-+aeεB) is said to be an expectation onto B (cf. Nakamura-Turumaru
[13]), if for any operators a, aίt a2ε A and complex numbers aίf a2

( i ) (linearity) (ai &ι + a2 α2)
e = a± a{ + az a2,

(ii) (Reynolds' identity) («ι αl)e = αf α| = (a{ α2)%

(iii) (non-negative preserving) a€ ̂  0 for a ̂  0,

(iv) (identity preserving) P = I.

An expectation e is said to be normal, if

(v) a£
a t a

€ for a^a.

Let TB be the set of all normal states p such that

(2.1) p(ab) = p(ba) for every a ε A and b ε B,

and it is called the B-tracelet space (cf. Umegaki [27]).J) Then for every p ε SB,
there exists uniquely a normal expectation e = cp = e(p) within the support of p

1) In the preceding paper [27], the 5-tracelet space was denoted by SB
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such that

(2.2) p(a£b)=p(ab) for every as A and bεB.

Such an expectation is called by B-expectation [27]. Among such expectations,
the conditional expectation (cf. Umegaki [25], [26])

(2.3) El

of an operator as A conditioned by B is most important where ae is defined by

(2.2)' τ(aeb)=τ(ab) for every as A and bsB,

that is, e = e(r). The domain of the conditional expectation ae is uniquely ex-
tended to LP(A), pl^l, which is projection of norm one from LP(A) onto LP(B),
where LP(B) is the metric hull of B with respect to the ZAnorm.

The concept of the conditional expectation on A is recognized as a non-
commutative extension of that in probability space. Indeed, let (Ω, 9ϊ, μ) be
a probability space and A(Ω) be the space of all bounded measurable functions.
Then A(Ω) is a multiplication algebra over the Hubert space L2(Ω,μ) and A(Ω)
can be considered as a commutative von Neumann algebra with a faithful normal
trace τ defined by

(2.4) r(α( ) )=f a(co)dμ(ω).
JΩ

Conversely, if A is a commutative von Neumann algebra with a faithful normal
trace τ, then there corresponds essentially uniquely a probability space (Ω, 2ί, μ)
such that A is unitarily equivalent to the multiplication algebra A(Ω), and de-
noting α— >α( ) the correspondence between A and A(Ω), then r(α) coincides with
r(α( )) defined by (2.4). For a von Neumann subalgebra B of A there exists
uniquely a Borel subfield 33 of 2ί such that J5 is unitarily equivalent to the
multiplication algebra B(Ω) of all bounded measurable functions with respect to
23 over Ω. The conditional expectation E\_ - \ #] conditioned by B in the sence
of (2.3) coincides with the conditional expectation E( \B) conditioned by 95 in
the sense of usual probability theory (cf. Doob [5]):

(2.5) E[a 1 5](ω) = #(α( )|5)M a. e. ω s Ω

for every as A.

In case the algebra A is a function algebra, the expectation has been called
the averaging operator, and it is one of the the most important operator among
the Reynolds operators which have been studied by Birkhoίf , Dubreil-Jacotin,
Kampe de Feriet, Kelley, Rota and others (cf. [1], [9] and [20]). While in case
A being finite dimensional, the study of such operators has been carried by
Davis [2], who has introduced the pinching operations and proved a uniqueness
condition of such operation. On the other hand, from more general point of
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view, the uniqueness of expectation onto a subalgebra was independently proved
for A being of finite class von Neumann algebra by Umegaki [27] which is a
non-commutative extension of the concept of sufficient statistics in probability
space. The expectation onto the subalgebra B is characterized as a projection
onto B of norm one, this is due to Tomiyama [24].

The typical examples of the conditional expectations of non-commutative and
infinite dimensional case are given by

a\p = pap + (1 - p)a(l - p),

in the notation of von Neumann, where p, q, r, are projections in A com-
muting each other. If the underlying Hubert space H is separable, B is maximal
abelian subalgebra of A and p, q, , r, a sequence of projections in B which
generates B, then alp[q-\r (as A) converges strongly to E[a\B'j which denotes

(2.7) αW

and was called von Neumann's operation (cf. Nakamura-Umegaki [14]).
When A is a semi-finite von Neumann algebra, the notion of the conditional

expectation conditioned by B is quite analogously introduced for B being the
von Neumann subalgebra on which the restriction of τ is also semi-trace (cf .
Umegaki [27]). All propositions stated or proved in this section hold for the
case A being semi-finite. For such A, a typical example of the conditional
expectation is given by a measurement, cf. Nakamura-Umegaki [18], that is, it
is the case A being /oo-factor and whence a measurement of operator corre-
sponding to a physical quantity is just characterized by the conditional expecta-
tion of that operator conditioned by the von Neumann subalgebra which is
generated by the operator corresponding to the measurement.

Finally, as a preliminary lemma we shall extend the domain of the condi-
tional expectation to certain class of measurable operators.

Let <3tt be the family of all measurable operators with respect to the von
Neumann algebra A. Then Jtt is self-adjoint algebra (cf . Segal [21]). Let JU,(B)
be the algebra of all measurable operators affiliated with the von Neumann sub-
algebra B, and put e = E[a\B]. Then we prove:

LEMMA 2.1. Let JLB be the family of all operators xε^Jtt for which there
exists a sequence of projections {pn} dependent on x and belonging to B such
that

(2.8) pn]I and xpnεL\A) (rc=l,2, )

Then JIB is a self-adjoint linear subspace of JH, containing Ll(A) and <3ft(B)
as subspaceSy and also for every xεJlB and y ε <3tt(B) the operators xy and yx
belong to JLB. Furthermore there exists a linear mapping e from JLB onto

such that, for every x, xnεJLB (n=l,2, )>
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(2.2") τ(x*b) = τ(xb) for every b ε B,2)

(i) x* = xe ifxεL^A),

( ii ) (xl cc2)
e = xί xί = (xi xί)e,

(iii) tfe~^0 /or α ^O,

(iv) x e n ] x e for xn\x a.e.

Proof. It can be proved that, JLB is a self-adjoint linear subspace of JM,
containing Ll(A) and JM(B) as subspaces and xy, yx belong to JIB for each
xεJLB and # ε 3M(B), and since the proof is elementary we omit it. Taking x, y
ε JIB with the sequences of projections {pn} and {qn} satisfying (2.8) respective-
ly, and putting rn = pn Λ qn, then rn sB, rί = pϊ V gΐ and

r(rί) - τ(pn V tfί) g τ(p:) + rteί)->0,8)

where 2>" = 1 — p. These facts imply that rn\I,

w + ^gwrw) ε LX(A), n=l, 2,

and a? + ?/ β Jb. For a? ε ^Jjs, putting α7n = xpn, xl is defined and xβ

npm = a;̂  for all
n^m. By this, we can define an operator τ/x such as

y'ς = tfnξ, for every f ε ^(αj) n p« fi, %=1,2, ,

then 2/x is well-defined and a linear operator on the dense domain U «=ι (^(»ί) Π iJn-H'),

and it has a unique extension ^/ ε <3tt(B) satisfying ypn = xe

n (n=l, 2, •). Put xe—y.

Then by the construction of xe

(2.2'") τ(xpnb) = τ(α?e"pn6), for every 6 ε E, n=l, 2, .

By (2.2X//), it is obvious that (2.2") holds for every xεJlB and xe is uniquely
determined by x and independent of the choice of the sequence of projections

{pn} within B. It is also obvious that, the operation x— >xe from JIB onto JM(B) is
well-defined, linear and satisfies (i). The property (ii) follows from that: Since

xl X2 ^ JIB and Xi xl ε JLB9 there exists a sequence of projections {pn} c B simul-

taneously satisfying (2.8) for xl9 x2, x\x^ and x\x\ and also satisfying

nY = 3%Pn, i=l,2 and n=l,2, ,

whence for every bsB

τ(x{ X2 pn b) = τ(xϊ xl pn b) = T(XI xlpnb), n = l,2,-

and this implies (ii). (iii) is obvious by (2.2//x) Finally (iv) is proved such as:

2) The equality (2.2") is meant by that the left-side exists if and only if the right-
side exists and they are equal each other.

3) This is a method of Segal [21] which is applicable to the case that A is of semi-
finite and r is semi-trace, by taking the dimension function d( ) of him.
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By (iii), Xn^xen+i^xe (n = 1, 2, •)> and restricting xe onto a strongly dense do-

main on which xe is bounded, then we can find an operator y ε JM(B) such that

xen ΐ y ̂  xe (a. e.)

Taking a sequence of projection {pk} c B satisfying (2.8) for x, xn and y, then

0 ̂  r(j9A(ίc
e" - y)pk) = lim r^O^-o^)

n— »oo

= lim r(pfc(# - &n)Z>*)=0

and ί>*(αj5-y)pΛ==0 (fc=l,2, ) Since p*U, #e~ = 2/. Q. E. D.
The following Corollary immediately follows from Lemma 2.1:

COROLLARY 2.1. For every a ε Ll(A) and y ε 3H(B), the equality (ay)e = aey
holds.

When B = {p, q, , r}' Γ) A. for a finite number of projections 0>, #, , r}
c A which are commuting each others, the space JLB coincides with the space
of all measurable operators 3A. However, in general, the equality JLE — <3tt not
necessarily holds (for example, when B consists of only the scalar multiples of
identity /, then JIB = Ll(Af).

In order to simplify the notation, we denote xe = E\_x \ B~\ — xe and call it the
conditional expectation of x conditioned by B as for the case x belonging to A
or L\A).

3. Entropy.

Let a be a self-adjoint operator with the spectral resolution

(3.1) a= λdeλ,

where I is a finite or infinite interval, and let f(X) be a continuous function over
I, then the operator-function f ( a ) , for operators a with spectra c I, is defined by

(3.2)

Now, we discuss two operator-functions logα and αlogα. Denote

, Q Q N i : ίloS<* (0<^1), ,(3.3) log-^{ 0 tf>1) and

If an operator

foe

λdeλ-rJo

has not 0 as its spectrum, then, it will be denoted by a > 0. For a > 0, the
operators
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J oo

o

ί
oo

log-
0

poo

log* a = 1 log*
Jo

are self -adjoint and satisfy

log a = log" a + log+ α,

log" α ̂  0, log+ a ̂  0 and (log" α) (log+ α) = ,

Furthermore denote

and

put Zoflf" αί = log" (αί + αr/) and Zo^+ αi7 = log+ (α4; + αx), then

,«7. ί 0 ̂  ZoβΓ αi I log- α,
^ ; I 0^%+α^Tlog+α.

When a ̂  0 but not necessarily a > 0, the operators log α, log" a and log+ α are
defined over the subspace s(α) H and these are denoted by s(ά) log α, s(α) log" a
and β(α) log+ α, and can be regarded as self -adjoint operators over H, where β(α)
is the support-projection of a.

Let /fc(Λ) be a function defined by

0 for^O,

then fty) is continuous for λ ̂  0. Whence the operator function h(a), denote — α log α,
is defined for α^O and it will be called operator-entropy of a. The operator
function a log a (= — A(α)) is expressed by

αlogα = α s(α)logα for αj>0

and αlogα for α>0, here is the notation of product of operators. This
operator function satisfies the following fundamental theorems:

THEOREM A. The operator-entropy h(a), Q^aεA, is an operator-concave
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function, that is,

(3.9) h(aa + 0V) ̂  ah(a) + βh(b)

for every a,bεA, a, b ̂  0 cwd a, β ̂  0 m'£& or + /9 = 1.

THEOREM B. Lef B be a fixed von Neumann subalgebra, then the operator
function h(a) satisfies

(3.10) h(Ela \ £]) ̂  E\h(a) \ B~\

for every aεA, α^O. (This may be simply written by

(3.11) αelogαe^(αlogα)e

where e = El \Bl.)

These theorems, for the case A being semi-finite, are proved by Nakamura-
Umegaki [16] and also independently by Davis [3], which are generalizations of
theorems of Segal [22] on the numerical entropy. In order to apply to another
occasion, Theorem B, for B being commutative, is extended for operators not
necessarily bounded, and in fact we get Theorem B' which will become neces-
sary to discuss the parts below in this paper:

THEOREM B'. Let B be commutative von Neumann subalgebra and JLB be
the space of measurable operators determined by B (cf. Lemma 2.1). Then
the inequality (3.10) holds for every α^O, αlogαε^, hence it holds also
for every α^O, α log α ε L^A).

Proof. For the given operator a with
foo

0 ̂  a = λ deχ ε JL3lJo

putting

i n
λde*,

o

then ansR(a) and

(3.12) 0 ̂  an ΐ α, an log an | a log α.

By this and Lemma 2.1,

(3.13) 0 ̂  αί T α% («n log an)
e | (α log a)e.

Since B is commutative,

(3.14) αίk>gα£-»αelogαe a.e.

By Theorem B and boundedness of an,
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αj log ae

n ̂  (an log αn)
e, n = 1, 2, .

Therefore by (3.13) and (3.14), the required inequalities (3.11), i. e. (3.10) are
obtained.

Define the entropy of an operator a s L^A), a ̂  0, by

(3.15) H(a) = - τ(a log α)(= r(Λ(α))),

cf. Nakamura-Umegaki [16] and Davis [3], and the entropy of a normal state
p of A by

It is obvious that the entropies ίΓ(α) and H(p) are well-defined as finite values
or —oo. From the Theorem A, it follows immediately that the function H(ά),
0 ̂  a 8 L\A), is concave, that is,

(3.16) H(aa + βb) ̂  α#(α) + βH(V)

for every α, 6 ε Ll(A), a, b ̂  0 and scalars or, β ̂  0 with a + β=l. Using this
fact, it holds also that H(p) is concave over the set of all normal states 5, that
is,

(3.160 H(aσ + βp) ^ aH(σ) + ^fl(/>)

for every σ, p ε S and the scalars a, 0.

REMARK 3.1.4) (i) // the operator a is bounded, then the operator-entropy
h(a) of a is necessarily bounded, (ii) // aεLp(A) for some p>l, then h(a)
belongs to Ll(A). Indeed, (i) is obvious, and (ii) follows from that, there exists
a projection q ε R(a) such that

0 ̂  qa log a <£ qap and (/ — q)(a log α) ̂  a(I — q)

for some scalor #2>0.

Denote e = £(A) the set of all operators a ε Ll(A), a ̂  0, with the finite
entropy I H(a) \ < oo and with τ(α) — 1.

4. Information between operators.

Now we define a measure of Kullback-Leibler's information in the von
Neumann algebra A.

DEFINITION 1. Let a and b be a pair of operators in L\A), α, b ̂  0, with

4) For τ being semi-trace, the statement (ii) in this Remark is not necessarily satisfied,
because Lp(A) (p>l) is not contained in Ll(A).
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a •< b and r(α) = r(δ) = 1. Then

(4.1) /(α, 6) — r(α log α — α log δ)

is said to be the information^ between a and δ. Let σ and ^ be a pair of
normal states with σ -< ^σ, take the Radon-Nikodym derivatives cta/dr and dp/dτ,
and put

/ Λ - ι/\(4.10

then it is said to be the information between a and p. In (4.1), the operator
αlogδ is defined by (cf. §3)

α log b = αs(δ) log b ε 3tt

and in general, the operator α log a — a log 6 will be simply denoted by

(4.2) α (log α- log 6).

As preparation, we shall prove the following two propositions.

PROPOSITION 4.1. For any pair of operators α, b in Definition 1, the in-
formation /(α, δ) is uniquely determined as finite or +00, if they satisfy

( i ) ab = ba,

or

(ii) the entropy H(a) is finite and b is bounded.

The proposition, for the pair α, 6 being a ~ δ, has been proved in the pre-
vious paper [28]. Here, for the sake of completeness, we recall its proof.

Proof. The case (i): Put p = I — s(b), s(b) being the support-projection of
δ. Then the operators (b + p)'1 and a(b + p)~l are defined as measurable and
^0, and hence

α log α — a log δ = α(δ + p)~l (log α(δ -f p)'1) δ

is a measurable operator. Furthermore

α (δ + p)-1 log (α (δ + p)-1) ̂  - 1

and τ(δ) = 1 imply that

I(α, δ) = τ(α(δ + ̂ [log (α(δ + p)

is uniquely determined as finite or -f °°.
The case (ii) : This condition implies that a log a ε Ll(A) and τ(a log δ) ̂  || δ ||«

(|| HCO being operator bound) and hence

5) When A is of semi-finite and τ is a semi-trace and not trace, /( , ) can be defined
for 0 ̂  a ε Ll(A) and 0 ̂  b ε A with a^b, where b does not necessarily belong to Ll(A).
Hence, at any rate, the entropy H(d) of Q^aεLl(A) is given by H(ά) = — /(α, /).
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7(α, b) = τ(a log α) — τ(a log b)

is uniquely determined as finite or +°°.

It is obvious that the information /(α, b) for the pair of operators α, δ, de-
pends on the choice of the normal trace τ. However, for the information be-
tween normal states, the following holds:

PROPOSITION 4.2. The information I(σ,p) between 0 and p, σ^(pt is
independent of the choice of the trace τ.

Proof.^ Let τ' be another faithful normal trace. Then the Radon-Nikodym
derivatives satisfy

dτr dσ dσ dτf dσ
dτ dτr dτr dτ dτ

because dτ'/dτ is affiliated with the center An A1 and similarly

dp dτ' _ dp
dτr dτ ~ dτ *

Therefore

dσ . d

/( faΓ dσ . dτf , dp dτf~\\
— M -J~\ lo^ ~j -- lo^ "3 -- 1°£ ~T~ + lo^ ~J~\ dτ L dτ dτ dτ dτ J/

This implies that, in these equalities, the left-side exists if and only if the right-
side exists and they are equal, that is, I(σ, p) is independent of the choice of τ.

The following theorem is fundamental for Kullback-Leibler's theory of in-
formation :

THEOREM 1. For any pair of operators a,bε€, i. e. non-negative, self-
adjoint operators with finite entropies H(a), H(b) satisfying τ(a) = τ(b) = 1 and
a •< 6, the information /(α, 6) is uniquely determined. Unless /(α, b) is infinite,
it is a non-negative real number.

Proof. At first, assume the operator b being bounded. Whence, by Pro-

6) When A is semi-finite and τ, τ' are semi-trace, the Radon-Nikodym derivative dτ'/dτ
exists by Segal [21].
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position 4.1, 7(α, 6) is uniquely determined as finite or +00. Let R(b) be the
von Neumann algebra generated by 6, and denote β = JS7[ |Λ(δ)] the conditional
expectation conditioned by R(b). Then by Theorem B',

(4.4) a€ log ae ̂  (α log ά)e.

Since α ~< b implies ae -< b (this fact holds for more general case, cf. Lemma 7.1
below), the operator α elogδ is defined by aes(b)logb and, by Corollary 2.1,

(4.5) (α log b)e = (as(b) log b)e = aes(b) log b = ae log 6 (by αX 6),

where s(b) is the support-projection s(b) of b. By Lemma 2.1, (4.4) and (4.5)
imply the inequality

(4.6) a6 log ac - ae log b ̂  (a log α)e - (α log b)e = (a log α - α log 6)e.

Therefore, in order to show 7(α, δ) ̂  0 (for b s A), it is sufficient to prove

(4.7) τ(ae log ae - ae log 6) ̂  0.

Since τ(ae) = τ(α) = 1 and ae ̂  0, the left-side of (4.7) equals to I(ae, b). Further-
more, since aeb = bae, it is sufficient to see that 7(α, 6) ̂  0 for the case a and 6
being permutable. This is the case of Kullback-Leibler [11]. For the sake of
completeness, we shall describe it in some details.

Using the second order mean value theorem, the function — h(λ) for λ ̂  0
defined by (3.8) is expressed by

(4.8) - Atf) = (Λ -1) + |(Λ -1)2 Θ(X),

where θ(λ) is a bounded continuous and positive valued function of λ ̂  0.
Since ab = ba,

a log a —a log b

= a(b + s^b^llog (a(b + s^δ))-1)]^

= [α(6 + β/(δ))-1

^

by (4.8),

= (α - δ) + |(α - δ)2(?(α(6+s/(δ))-1)(δ+s/(δ))-1,

where s'(b) = I— s(b) (=s(6)"). Therefore, by τ(α) = r(δ) = l, we obtain

(4.9) 7(α, δ) = τrr([(α — b)2θ(a(b + β'ίδJJ'^ίδ + s'(δ))-1]) ̂  0 (admitting -f-oo).
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Thus the assertion of Theorem 1 are proved for the operators a and bounded b.
In general case, suppose 7(α, 6) is not uniquely determined for some pair

a,bε£ with a -< b. Then, taking a projection p in ^(6) such as

0 ̂  6 < 1 over pίΓ and 1^6 over (1 — p)H,

there exist two sequences y'n and y'n' ε R(b) with τ(^) = τ(y'n') — 1 and yί, y'n' ;> 0
such that each y'n and #£' have bounded inverses and satisfy

py'n i pb, py" I pb

and

(1 - P)yί ΐ (1 - P)b, (1 - Ptoί' ΐ (1 - P)b,

and furthermore

7(α, itf)->0', 7(α, !#)-*£", /?' ^F /9".

Of course, /(α, #£) and /(α, 2/iO are finite. Since

αe(=£r[α|JR(δ)]) <δ and aeb = bae,

by Proposition 4.1 /(αe, 6) is uniquely determined and therefore

Km /(αe, yΰ = Km 7(αe, ̂ ) = 7(αe, 6)(= /9, say),
n— >oo 7i-^oo

hence

/5r = lim (r(α log α) — τ(a log 2/0)
n— *oo

= lim (τ(α log α) - τ(αe log yί))
W-^oo

= τ(α log α) - r(αe log αe) + r(αe log ae) - lim r(αe log y'n)

and similarly

and hence β' = $" . This is a contradiction. Therefore 7(α, 6) is uniquely deter-
mined for each pair a,~bε£ with α ~< b. Moreover this fact and (4.9) imply that

0^7(α,yi)-*7(α,6) (admitting +00)

and 7(α, 6) ;> 0 is satisfied. This completes the proof. Q.E.D.

By the proof of Theorem 1, we have

COROLLARY 4.1. For any pair α, b satisfying the hypothesis of Theorem
1, the informations between a and 6, and ae and b are defined and satisfy
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/(α, 6) ̂ I(a
e
, 6) ̂  0,

From Theorem 1, it follows immediately

THEOREM V. For any pair σ, p of normal states with σ^(p and with
finite entropy, I(σ,ρ) is uniquely determined. Unless I(σ,p) is infinite, it is
a non-negative real number.

Moreover we get the following as a further corollary:

COROLLARY 4.2. For any operator aε£, and for any normal state σ of
A with finite entropy, the following equalities with respect to entropy hold :

(4.10) H(a) = Min { - τ(α log 6) | α ~< 6, II ft H i = 1}

and

(4.11) H(σ) = Min - τ log

where S is the set of all normal states.

5. Divergence between operators.

We introduce into the von Neumann algebra A the concept of the divergence
in the Kullback-Leibler's information.

DEFINITION 2. For every pair of operators a,beβ with α ~ 6, let us define
the divergence between α and b by

(5.1) J(α,δ) = /(α,δ) + /(δ,α).

Similarily, for every pair of normal states σ, p with σ — p, let us define the
divergence between σ and p by

(5.10 J(σ,p) = I(σ,p) + I(p,σ).

Then, by Theorem 1, it is obvious that /(α, 6) and J(σ, p) are well-defined
over the each pair of the operators or the normal states with finite entropy and
satisfy

(5.2) J(α, 6) - J(b, a) ̂  0,

(5.20 J(<r,p) = J(p,σ)^Q

Whence we prove the following:
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THEOREM 2. For every pair a,b ε £, the following conditions are equi-
valent each others

(i) J(α,δ)=0,
( ii ) ab = ba and I(a, δ) = 0,

and

(iiϊ) a=b.

Proof. Since it is obvious that (iii) implies (i) and (ii), we shall prove here
that, (ii) implies (iii), and (i) implies (iii).

(ii) implies (iii) : This is essentially the case of Kullback-Leibler (cf . Lemma
1 of [11]). Now prove this, (ii) implies

τ(a log δ) = - H(d) ( \ H(a) \ < oo),

and by ab = δα, it is obvious a -< b. Let M be a von Neumann algebra gener-
ated by R(ά) and R(b). Then by the self-adjointness of a and δ, and by ab
= ba, M is commutative. Hence there exist two sequences of (boundedly inverti-
ble) operators {an} and {bn} in M, an, bn > 0, such that

τ(an) = τ(bn) = 1, an->a and bn -» δ

in the both senses of a. e. and ZΛmean, and further

Since anbn=bnan, by (4.9)

/(On, W = r((α* - δn)
2 ̂ (αn δ,"1) δή1) - 0.

Since

(Oft-ftO^ίαnfc^fc^O,

we can take a suitable subsequence {nk} of <{>}, such as

(dnk - bnk)
2 0(ank bn*) b^ -+ 0 a. e. as k -> oo ,

while this converges to

(α - δ)2^(α(δ + β'ίfc))-1)-^ + β'ίδ))-1*® a. e.,

where s'(δ) = 1 - s(δ). Since β(α) ̂  β(δ) and

θ(a(b + s'(δ))-1) - (δ + s'(δ))-1 > 0 over β(b)H9

we obtain a = δ (a. e.).
(i) implies (iii): J(α, δ)=0 implies

J(α,6)=/(δ,α) = 0.
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Hence alogbε Ll(A), and by Corollary 2.1

E\_a I Λ(6)] log b = E[a log b \ Jβ(δ)] β L^A)

and

hold (in this relation, a^(E[a\R(b)~\ is a special case of Lemma 7.1, below).
Similarily δ <α is obtained and hence α~ 6 holds. Therefore by Corollary 4.1,

and
], α) ̂  /(δ, α) = 0,

where denote El I α] = El I B(a)1 and #[ | δ] = #[ | JR(δ)] . Since

^δEΐα 6] and #[α|δχδ,

the pair J5[α|δ], b satisfies (ii) and hence (iii), that is, ϋ£[α|δ] = δ holds and
similarily E[b | α] = α. Therefore

(5.3) E\_Ela\b~\\a] = E[b\ά]=a and ElE[b \ a] \ δ] = b

hold. Consequently, for every x e A, taking a sequence {xn} c A such as

then {#π} converges strongly (and hence L2 and Z^-means) to an operator xf ε A.
The operation #— »#' is the conditional expectation conditioned by R(ά) Π R(V),
that is, xf = E\_x \ R(a) n Λ(δ)].

For the given operator a ε Ll(A) and for any fixed ε > 0, taking an operator
xεA such as \\a — x\\1<ε/2, then

(5.5) a — xf — lim (α — a?)2n-ι, 6 — #' = lim (δ — α)2n,
n-^oo W-^oo

where ( )2n and ( )2n-ι are the notations given in (5.4) and the limits in (5.5) are
ZΛmeans. Therefore we obtain that

= lim || (α - x)2n^ IK + lim || (b - x)2n |U

and α = δ. Q.E.D.

Applying Theorem 2 for normal states σ, p of A, we have immediately

THEOREM 2r. For any pair of normal states σ, p of A with finite entropy,
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J(<*> p) = 0 if and only if σ — p.

REMARK 5.1. If ^and^are probability measures, <r <Λ over a measurable
space (Ω, $), then the information I(σ, p) is denned by

/tr Ω\ Ύf \ Λ .(5.6) I(β, p) = _ tag _ _ _ log

τ=(<τ+j0)/2, and the divergence J by

Then it is proved that

TV \ Ί i
J(<T' '> = log ~ log

/or ever?/ probability measure μ satisfying σ -< μ and p^μ. Indeed, let § be
the support set of the measure τ ( = (σ + p)/2) and put μ'(ά) = μ(a Γ)
Then ^x is a probability measure over (£, 5ί) with τ~μ',

dpK dσ Λ dσ dσ , dp \ f / d<y cίίr rf^r .
^7 log ^7 - ψΓ log ̂ j^ = J V-^Γ log ̂ Z - W log

and by Proposition 4.2, this equals to the right side of (5.6). Under theses no-
tations, the conditions

( i ) J(σ, p) = Q, ( ϋ ) I(σ, ρ) = Q and (iii) <? = p

are equivalent each others. This is the Kullback-Leibler's Theorem, cf. [11],
and reduces to a special case of Theorems 2 and 2', because putting a = dσ/dτ
and b = dp/dτ (τ = (σ + p)/2), then αδ = ba holds.

6. Information of direct product operators.

Let Aτ be a von Neumann algebras of finite class with faithful normal traces
τz (i = l,2), respectively. Let A = Aι®A2 be the direct product von Neumann
algebra (cf. Dixmier [4], Misonou [12]) and let τ=τι®τ2 be the direct product
trace. Then A is of finite class and τ is a faithful normal trace. Under these
notations we prove the following:

THEOREM 3. For every pair of operators al,bie<£ί (=e(At)) if al^bί (i
— 1, 2), then a1®a2-<b1® 62 which are belonging to β (= €(A)), and the following
equality holds:

(6.1) I(αι ® 029 &ι ® 62) = I(0ι, 61) + /(α2, 62)

and if aτ~bt (ΐ = l,2), then αι®α 2^&ι®&2 and the following holds:

(6.2) J(αι ® α2, 61 ® 62) = «7(αι, &ι) + J(α2, 62)
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Proof. If aτ -< δ* (i = 1, 2), then «ι ® α2 ~< δi Θ δ2 is obvious and the both sides
belong to £, and hence the left-sides of the equalities (6.1) and (6.2) are well-
defined under the respective conditions. Therefore, under the contract (4.2) in
Definition 1, the following computation can be carried out:

= τ((αι ® α2) [log (α! (x) α2) - log (61 ® δ2)] )

= r((αι® α2)[{log (αi® 1) + log (1® α2)} - {(log (61® 1) + log (1® δ2)}])

= τ((αι ® 02) [{log (αi 01)- log (h ® 1)} + {log (1 ® α2) - log (1 ® δ2)}])

= τ({αι [log αi — log δj } ® α2) + τ(αx ® {α2 [log α2 — log δ2] })

= r(αι[log αi - log δι])r(α2) + r(αι)r(α2[log α2 - log δ2])

and (6.1) is obtained, similarily (6.2) holds. Q.E.D.

This theorem is an operator generalization of Kullback-Leibler's form of
Shannon- Wiener Theorem, which is fundamental for information theory and is
described as following: If fi and /2, and also g± and g2, respectively, are in-
dependent random events defined over a probability space (Ω, 5ί, μ), then

(6.3) /(Λ/2, g l f f 2 ) = /(Λ, flrO + 1(/2, g2).

Indeed, the events /ι/2 and c/ι(/2 are considered as functions in Ll(ΩxΩ)
= L\A(Ω)®A(Ω)), and represented by (/ι/2)( ) = (/ι®/2)( ) and to1flr2)( )=(flrι®p2)( ),
and therefore the equality (6.3) reduces to (6.1), where A(Ω) is the multiplica-
tion algebra (cf. §2).

In general, H(ά) = — J(α, I) for every aεβ holds, consequently as a corollary
of Theorem 3.

COROLLARY 3.1. For every alεL1(Aί), α^O, i=l,2,

(6.4) jy(a! ® a2) =

Theorem 3 and Corollary 3.1 are also described for normal states στ, pt of
Aτ (ί = l,2) and for the direct product states σι®σ2f pι®p2,

7. Information on subalgebra.

Let σ and p be a pair of probability measures over a measurable space
(Ω, 21), and let 59 be a Borel subfield of 51. Denote I®(σ,p) the information be-
tween σ and p over (Ω, 35). Then

In this section, we shall generalize this for von Neumann algebras. Let
B be an arbitary but fixed von Neumann subalgebra of A and let e = E[ \ B~\
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be the conditional expectation conditioned by B. We shall begin with the
following :

LEMMA 7.1. For α, b 8 Ll(A), α, b ̂  0, it holds that

a^ae and b -< be.

If a -< b or a~b, then

ae^be or ae~be,

respectively.

Proof. Put p = s(α), p' = s(ae), q = s(b) and g' = s(be) for their support-
projections. Then, by qf ε R(be),

τ((l - q') b(l - (?')) = τ(be(l - <?')) - r(6) - r(δ) = 0

and

[(1 - ςr ') 61/2] [(1 - <?') 61/2] * - (1 - gO 6(1 - <?') - 0.

Hence

(7.1) (1-flOδ = 6(1 - «0 = 0, g ̂  g' and

Similarily p^p r and α-<αe.
Suppose α-<6, then (7.1) implies

0 ̂  (1 - 00 r(l - q') ^ (1 - g') g(l - ?') - 0

for every projection r ε A, r ^ g, and hence

= 0

and (1 - gx) αe = 0 or αe= qf ae. Therefore

(2.2) P^J>', Q^q'9 P^Q and pf^qf,

or ae ̂ be. Using this fact it is obvious that a ~ b implies ae ~ be.

By this lemma, I(ae, be) for a -< b or J(ae, be) for a~b (a,bεβ) are well-
defined.

LEMMA 7.2. For a,bε L1(Bf n A), a, b ̂  0, the triples of the operators ae

f

be and a, or ae, be and b commute each others, respectively.

Proof. The equalities aex = xae and bex — xbe are obvious for x = a,b. To
see ae be = beae, it can be assumed a and b being bounded without loss of
generality. Then for any cεA

τ(aebec) = τ(aebece) = τ(ceaeb) = τ(cebae) = τ(beaec)
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and hence aebe = beae.

By these lemmas, we can prove the following

THEOREM 4. Let a and b be operators in β affiliated with Bf. Then the
following inequalities hold

(7.3) I(a\ be) ̂  I(a, b) if a -< 6,

and

(7.4) J(ae, be) ̂  J(a, b) if a~ b.

Proof. Firstly, we prove (7.3) when I(a, b) and I(ae, be) are finite. Let p,
p', q and qf be the projections defined in the proof of Lemma 7.1. Then

I(α,δ)-J(α',δ«)

= τ(a\_p log α - q log ft]) - τ(aelpf log ae — q' log δe])

= τ(a[p log a—q log ft]) —τ(a[p f log ae—q' log όe]) (by Corollary 2.1)

(7.5) = τ(alp log a - (q log b + p' log ae - q' log δe)l)

= τ(α[p log α - p'q q' log {6αe(6e + (7 - g'))'1}]) (by Lemma 7.2)

= r(α log a - a log {6αe(6e + (/- g'))"1}) (by (7.1))

because a -< bae(be + (I — q'))'1 ^ 0 and

and hence the last side of (7.5) is defined as non-negative, by Theorem 1.
If J(α, b) = + oo, it is trivial.
If I(ae, be)= +00, then since τ(ae log ae) is finite,

τ(ae log be) = τ(a log be) = — oo.

By this fact and by the expression

ae log be = ae log- be + ae log+ be,

we obtain that

r(α log- be) = τ(αe log- δe) = - oo and τ(ae log+ fte) = finite ̂  0.

For the operator 6, taking the operator b" and the sequence of operators bί as
the (3.5) and (3.6) in §3 (take ft in the place of α), and putting ftn = (fti- ' Ί'"
/τ(bί + b"), since

(7.6) (bί + ft") I ft, (δ: + b"Y I be (a. e.)

and aebn=bnde by Lemma 7.2, it holds that

ae log bi = ae log (6ί + b'Ύ - ae log τ(bn + ft") -> αe log δe (a. e.7
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These facts and (7.6) imply

τ(ae log bn)—>τ(ae log be) = — oo.

The finiteness of I(ae, be

n) implies by the first part of this proof

I(a,bn)^I(a«,ben)-* + co.

While by (7.6)

I(a, bn) = τ(a log α) - r(α log δn)

= τ(α log α) - r(α1/2(log δn)α172) ̂ r(α log α) - τ(α log δ)

Therefore J(α, 6) = + oo and the inequality (7.3) is obtained. The rest part of
Theorem 4 follows immediately from the above part. Q.E.D.

This theorem can be applied to proving the inequality for the measure of
the informations between normal states.

Let <r, p be a pair of normal states of A and let an, PB be the restrictions
of 0, p onto B. Then OB, pB are also normal states of B and the information
and the divergence between them are defined, which are denoted by IB(σ, p) and
Jsfap). The assersion is following

THEOREM 4'. // the states σ, p with finite entropy belong to the tracelet
spaces TB, i.e. satisfy the equality (2.1), then the following inequalities hold:

(7.8) IB(σ, p) ̂  I(σ, p) if σ< p,

and

(7.9) JB(σ>p)^J(<r,p} if σ ~ p.

Proof. The relation <r *ζp is equivalent to (dσ/dτ) ~< (dp/dτ) and this implies
(dσ/dτ)e -< (dp/dτ}e by Lemma 7.1, where e = E[ \B~]. Hence the information
I((dσ/dτ)e, (dp/dτ)e) is uniquely determined and by Theorem 4

-
d τ ' \ d τ

While τ((dσ/dτ)eb) = σB(b) for every beB and (dσ/dτ)e ε L\B) and similarily
(dp/dτ)e ε L\B). Consequently, these operators (dσ/dτ)e and (dp/dτ)e can be
identified with the derivatives dσB/dτB and dpB/dτB respectively. Therefore

and (7.8) is obtained, and similarily (7.9).
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8. Characterization of sufficient subalgebra.

The investigation of sufficiency in abstract form was initiated by Halmos
and Savage [7] and they established a measure theoretic characterization of the
sufficient statistics. While, under the notion of the information, another charac-
terization was given by Kullback and Leibler [11], In the previous paper [27],
the author gave a non-commutative extension of this concept by introducing the
notion of the sufficiency of subalgebra which is corresponding to the sufficiency
of subfield, and he extended the Halmos-Savage's Theorem to the von Neumann
algebra A. In the present section, it will be extended the Kullback-Leibler's
Theorem to the algebra A.

Let S be a set of faithful normal states of A, and let M be a set of all
operators 6 ε A such that

(8.1) ρ(ab) — p(ba) for every aεA and pεS.

Then M is a von Neumann subalgebra of A, and S is contained in the tracelet
space TM (cf. §2). Let B be a fixed von Neumann subalgebra of M, then

S C 2V C TB.

Hence for a states p ε S there corresponds uniquely a ^-expectation e = e(ρ) satis-
fying (2.2). Whence, if

(8.2) e(σ) = t(ρ) for every pair of states σ,pεS

then B is called to be sufficient for S or sufficient subalgebra for S (cf. [27]).
Suppose, that the set S consists of faithful normal states <τ, p, with

finite entropy such that I(σ, p) are finite for each pair σ, p ε S and the set of
the derivatives {dσ/dτ; <r ε S} is a commutative system, and that M and B
be a von Neumann subalgebras, BdM, described above. Then we prove

THEOREM 5. Let e=E[ B] be the conditional expectation. Then the
following conditions are equivalent each others:

( i ) B is sufficient for S,

(ii) IB(<τ,p) = I(σ,p) for every pair <r,ρεS

and

(iii) JB(0, p) = J(σ, p) for every pair σ,pεS.

Proof. Put d(σ) — dσ/dτ for every normal state σ. It was proved (in the
proof of Theorem 5 in the previous paper [27]) that B is sufficient for S if and
only if

(8.3) d(σ) d(pYl = d(σ)e d(pY~" for every pair σ, p ε S.7)

7) Even if A is semi-finite and τ is a semi-trace, this characteristic condition (8.3) for
sufficiency is satisfied (cf. the proof of Theorem 5 in the preceding paper [27]).
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Since d(<r), d(ρ) ε L\B' Π A), by Lemma 7.2, d(<r), d(/o), d(σ)e and d(jθ)e are com-
muting each others. Therefore

I(σ, p) - IB(<τ, p) = I(d(σ\ d(p)}-I(d(«Y, d(pY)

(8.4) = τ(d(<r)[log d(σ) - l

Since d(p) d(σY d(ρY~l commutes d(<r), by Theorem 2, (ii) is equivalent to d(σ)
= d(p)d(σYd(pY~ί and so is to (8.3). Hence (ii) is equivalent to (i).

While, by (8.4)

J(d(σ),d(p))-J(d(σY,d(pY)

\ d(p)) - I(d(σYt d(pY) + I(d(p), d(σ)) - I(d(pY, d(σ)*)

\ d(p) d(σY d(pY~1} + I(d(p\ d(σ) d(pY d(σY~l).

Therefore (iii) is equivalent to

(8.5) d(σ) = d(p)d(σYd(pY" and

Since both equalities in (8.5) are obviously equivalent each other, (ii) and (iii)
are equivalent each other.

9. Information with respect to a von Neumann subalgebra.

In the paper of Nakamura-Umegaki [16], it was defined a measure of in-
formation I(a:B) of a with respect to a von Neumann subalgebra B such that

(9.1) I(a : B) = H(E[a \ £]) - H(a).

Then it is immediately proved that

THEOREM 6. I(a : B) = /(α, E[a \ £]) for every asβ.

Proof. Putting ae = E[_a \ B~\ , then

I(a:B) = H(ae)-H(a)

= — τ(ae log ae) + τ(a log α),

by α-<αe (cf. Lemma 7.1) and by Corollary 2.1

= τ(α(log a — log a6))

= /(α,αe).

If the operator a ε € is affiliated with B, then it holds always

(9.2) I(α:B) = 0.

But the converse is not plain. However, if we introduce J( :B), say the diver-
gence with respect to B, such that
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(9.3) J(a : B) = J(a, E\_a \ £]) for every a ε <?, a > 0,

where, since £?[α|J5]>0, the right-side of (9.3) is well-defined, then we obtain
that

THEOREM 7. For every ae£, α>0,

(9.4) J(a:B) = 0

if and only of a is affiliated with B.

Proof. If a is affiliated with B, then a = E\_a \ B~\ and (9.4) is obvious.
Conversely, if J(a :B) = Q, then

Hence, by Theorem 3, a = E[a \ J5] and a is affiliated with B.

The measure of the informations can be applied to a characterization of the
maximality of commutative von Neumann subalgebra:

THEOREM 8. For a von Neumann subalgebra B, the following conditions
are equivalent each others:

( i ) B is a maximally alelian,

(ii) B is sufficient for TB,

(iii) For every a,bε€, α <6, affiliated with Br,

and

(iv) I(a:B) = Q for every aε£ affiliated with Br.

Proof. The equivalence between (i) and (ii) was proved in the previous
paper (cf. Theorem 5 in [27]).

(i) implies (iii): (i) implies that Bf n Ac.B and ab = ba for the operators
α, b in (iii). Hence, putting <r( ) = r(α ) and p( ) = τ(b ), the normal states σ,
p belong to TB and therefore by Theorem 5

I(E[_a I JB], E[b \ 5]) = IB(σ, p) = K*, p) = /(α, 6).

(iii) implies (iv): This is clear by putting 6 = 7 in (iii).

(iv) implies (i): For any aε€ΠB'9 α^O

by Theorem 6 and

hold. Hence by Theorem 2,

a = E[_a I B~\
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which belongs to B, and (i) is obtained.

When A is commutative, (9.4) is equivalent to (9.2) for α > 0 by Theorem 2.
This fact is applicable, in ordinary sample space, to finding the measurability
of a random event with respect to a subfield as the following : The information
/(α( ):33) of a random event α( ) with respect to a Borel subfied 23 is defined by

J(α( ) : 23) - H(E(a( ) \ 23)) -

then

(9.20

is equivalent to α( ) being measurable with respect to 35.

In quantum mechanical system, von Neumann [19] proved that a statistical
operator U is changed to another statistical operator U' by a measurement, and
each measurement increases the entropy:

(9.5) H(U)^H(Uf).

The equality of this formula holds when and only when U is simultaneously
observable with physical quantity corresponding to the measurement. This
physical theory is described by the present mathematical formulation for the von
Neumann algebra A being total ring of bounded operators over a Hilber space.
In the paper of Nakamura-Umegaki [18], it was proved that the statistical
development

(9.6) U -> U'

by the measurements (with the operator S) is nothing but the conditional ex-
pectation E[U\R(S)] and the inequality (9.5) is formulated by

(9.50 H(U) rg H(EIU\R(S)J)

and the equality in (9.50 holds when and only when U belongs to JZ(S), where
R(S) is the von Neumann algebra generated by S. Under the notion of the
pinching operation, the inequality (9.50 was generalized by Davis [3] for
arbitary concave real function in the place of the function h(λ) (= — Λlog/ί), in
which he also gave the exact form in case of equality for arbitrary operator-
concave functions.
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