
A NOTE ON THE EXISTENCE OF SOLUTIONS OF
DIFFERENCE-DIFFERENTIAL EQUATIONS

BY SHOHEI SUGIYAMA

Introduction. In [2] and [3], the author has discussed the existence of
bounded and periodic solutions of a difference-differential equation such that

(0.1) - = ax(t + 1) + bx(t) +f(x(t + 1), x(t), ί),
at

where a and b are constant, corresponding respectively to the cases where
/(O, 0, t) is bounded and periodic in t. His discussion proceeded there was
essentially based on the assumption that every root of the characteristic equa-
tion es(s— a) — b = 0 lies to the left of the straight line $ts = — δ, where δ is a
positive constant.

The purpose of this note is to discuss the existence of solutions, not neces-
sary to be bounded, of (0.1) under the condition for the roots of the charac-
teristic equation weaker than that stated above, that is, the condition that
some roots of es(s — a) — b = Q lie to the right of the imaginary axis. How-
ever, the assumptions upon f(x, y, t) may be made strong.

1. Kernel functions. In (0.1), we suppose that every real part of all the
roots of the characteristic equation es(s — a) — b = 0 is less than d (>0). Apply-
ing for (0.1) a transformation e2δty(t + 1) = x(t + 1), (0.1) is transformed into an
equation

(1.1) y = (α - 2S)y(t + 1) + be~2§y(t) + e-™f(#*y(t + 1), e2δa^y(t)t t).

Then, we find that every real part of all the roots of the characteristic equation

(1.2) es(s - a + 23) - be'28 = 0

corresponding to the linear equation

(1.3)
at

is less than —δ.
Now, we shall define a kernel function for (1.3). Let Ky(t) be a solution

of (1.3) for 0^ί<oo under the initial conditions lζ,(ί) = 0 (— l^ί<0) and
Ky(ty = 1. Then, we call Ky(t) the kernel function of (1.3) and it is useful to
summarize the results concerning Ky(t) which will be used later:
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( i ) Ky(t) is a continuous function of t for 0 ̂  t < oo and is determined
uniquely,

( ii ) Ky(t) is differentiate for 0 < t < 1 and 1< t < oo;
(άii) |lζ,(£)| ^cβ~δί /or 0^£<oo, where c is a constant;
(iv) Jζ,'(ί + 1) = (a-2d)Ky(t+l)+be-2δKy(t) for 0 < t <oo;
( v ) £/(*) = (α - 2δ)lζ,(Q /or 0 < t < 1.

If we put Kx(t) = eZδ«-»Ky(t), e2δKx(t) is the unique solution of the linear
equation

(1.4)

under the initial conditions e28Kx(t)=0 (- l^ί <0) and e2δKx(ΰ) = l. Then, we
call e2δKx(t) the kernel function of (1.4).

Corresponding to (i), (ii), (iii), (iv) and (v), it is observed that the following
results are obtained respectively:

( i )' Kx(t) is a continuous function oft for 0^ί<oo and is uniquely
determined;

(ii)x Kx(t) is differentiate for 0 < t < 1 and 1< t <oo;
(iii)' \Kx(t) |^ ceδa~2> for 0 rg ί <oo;
(ivy Kx'(t + 1) = aKx(t + 1) + bKx(t) for 0<ί<oo;
( v )' Kx'(t) = aKx(t) for 0 < t < 1.

2. Existence of solutions. We shall consider the existence of solutions of
the equation

(2.1) dt = ax(t + l)

for 1 1 \< oo under the following conditions:
(i) f(x, y, t) is continuous in x, y, t for |α?|<oo, \y\<<χ>, | ί |<oo;
(ii) |/(0, 0, t)\^Me2δt for | ί |<oo, where M is a constant',
(iii) f(x, y, t) satisfies Lipschitz condition , that is, there exists a con-

stant k such that

i/i, Q -/G»2, 2/2, ί) I ̂  k(\ xi - x2 1 + 1 yi - yz I)

for |^KOO, \yt\<oo (i = l, 2) αraZ |ί |<oo;
(iv) et erί/ reαί pαrί o/ αίί ί/^e roots of the characteristic equation

es(s - a) - b = 0

δ, lί /^ere d is a positive constant.
In order to establish the existence of a solution of the equation (2.1), it is

sufficient to prove that a solution of an integral equation

(2.2) y(t + 1) = Γ e~2Ssf(e2Ssy(s + 1), e?*<-»y(8), s)Ky(t - s) ds
J -oo

is also that of the difference-differential equation
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(2.3) =(a- 2d)y(t + 1) + be~2δy(t) + e-2δtf(e2Sty(t + 1), e2^~Dy(t)f t).

Then, it is observed that x(t + 1) = e2δty(t + 1) is to be a solution of (2.1). To
this end, it is useful to apply for (2.2) the successive approximation method,
so that we define a sequence {yn(t + l)}n=o for 1 1 \< oo as follows:

(2.4) yn+1(t + 1) = _jί-2»f(eP*yn(8 + 1),

(n = 0,l,2, ••-)•

Then, it follows from (2.4), (iii), and (iii)' in the preceding section that

llfo
ct

(25) - J -
-f(e2δsyn^(s + 1), e"«-»yn-ι(8), β) |

In particular, for n = Q, we obtain that

I Vι(t + 1) - v*(t + 1) I ̂  Γ e~2Ss |/(0, 0, β) I \Ky(t - s} \ ds.
J -oo

From (ii), it follows that

Mr
(2.6)

Successively applying (2.5) and (2.6), we inductively obtain the inequalities

M ί 2ck \n+ι
(2.7) yn+1(t + 1) - yn(t + 1) I ̂  - — - (n=^ 1» 2, •)

for | ί l < o o . Then, the inequality (2.7) shows us that the sequence {yn(t + l)}n=o
uniformly converges to a function 2/(£4-l) for |£ |<oo, provided that 2ck/δ is
less than one. The uniform convergence yields that y(t + 1) is a solution of
(2.2) for | ί |<oo. Furthermore, we obtain an upper bound of \y(t + l)\ for
|ί |<oo, that is, it follows from (2.7) that

V M ί %ck \n+1_ Me
= £ί0~Zk \ΊΓ) ~ d-2ck'

which implies the boundedness of y(t + 1) for \t |< °°.

Next, it is proved that the solutions of (2.2) are uniquely determined. In
fact, if there exist two solutions y(t + 1) and z(t + 1) of (2.2), we have from
(2.2) and (iii) that
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^ Γ e~2δs \f(e2δsy(s + 1), e2δ<s~Ώy(s), s) -f(e2δsz(s + 1), e2δ^Dz(s\ s) \ \Ky(t -s)\ds
J — oo

^ ck Γ (I y(s + 1) - z(s + 1) 1 + 1 y(s) - φ) \)e-δa~^ds.
J -oo

Let A(t) be the supremum of 1 y(s + 1) - z(s + 1) | over — oo < s ̂  t. Then, it
follows that

i t

which is a contradiction, unless A(t) vanishes identically, since 2ck/d is less
than one. This proves the uniquness of solutions of (2.2).

Finally, we shall prove that the solution of (2.2) is also that of (2.3) for
| ί |<oo. To this end, differentiating both sides of (2.2), we obtain that

—-~^-=e-2δtf(e2Sty(t + ϊ), eP«-»y(t), t)

+ (T~1+ Γ }e-2δsf(e2δsy(s + l), e^s^y(s\ s)Ky'(t-s)ds,
\J-oo Jt-lJ

since Ky(0) = 1. It follows, from (iv) and (v) in the preceding section, that

t)

1), e^s~»y(s), β)((α - 2S)Ky(t - s)

+ be-2δKy(t-l-s))ds

+ Γ e~2δsf(e2δsy(s + 1), e2δ<s~Όy(s), s)(a - 2d)Ky(t - s) ds
Jt-ι

= e~2δtf(e2δty(t + ϊ), e2δa-»y(t), t)

+ (a- 23) P e~2δsf(e2δsy(s + 1), e2<5(s-D2/(s), s)Ky(t - s) ds
J —oo

+ be~2δ (t~le-2δsf(e2dsy(s + 1), e^s~Όy(s), s)Ky(t -l-s)ds
J-oo

= (α - 2d)y(t + 1) + be-2δy(t)+e-2δtf(e2δty(t +1), *'«-»y(f), t),

which is the desired result.
Returning to the original equation (2.1) by the transformation x(t + ϊ)

— e2δty(t + 1) for 1 1< oo, we obtain the following

THEOREM 1. Under the conditions (i), (ii), (iii) and (iv), there exists a
solution of (2.1) for [ ί |<oo, and the inequality

Me

remains valid for \t\< oo, provided that 2ck/d is less than one.
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REMARK. If we are simply concerned with the existence of solutions of
an integral equation

(2.8) x(t +1) = e2δ P f(x(s +1), χ(s), s)Kx(t - s) ds,
J -oo

which is equivalent to (2.2), we can proceed the same discussions as above. It
seems, however, to be difficult to prove the uniqueness of solutions of (2.8).
Hence, although the descriptions were not simple, we used the equation (2.2)
instead of (2.8).

If the uniqueness of solutions of (2.1) is guaranteed under certain initial
conditions (cf. [1]), Theorem 1 asserts that the equation (2.1) is equivalent
to (2.8).

3. Equations with a parameter. As to an equation whose perturbed term
has a parameter μ such that

(3Φ1)

we can apply for (3.1) the same methods as used in the preceding section under
the following conditions:

( i ) /(#, y, t, μ) is a continuous function of x, y, t, μ for \ x \ < oo,
\y < oo, 1 1 1< oo, and small \μ\;

(ii) |/(0, 0, £, μ) I ̂ Me2δt for 1 1< oo, where M is a constant independent
of μ',

(iii) f ( x , y, t, μ) satisfies Lipschitz condition such that

l/(«ι, yi, t, μύ-ffa, 2/2, ί, μ2)\^k(\xί-X2\ + \yι- 2 / 2 1 + 1^1-^21)

for I xl |< oo, I yi |< oo, 1 1 1< co, and small \ μ t \ (i = l, 2), where k is a constant
independent of μ\

(iv) the condition (iv) in the preceding section is still retained.
Then, by just the same reason as before, we can establish, under the con-

ditions (i), (ii), (iii) and (iv), the existence of the unique solution of the integral
equation

(3.2) y(t + 1) = P e~2δsf(e2δsy(s + 1), e™'-»y(8), s, μ)Ky(t - s)ds
J -oo

for | ί |<oo, provided that 2ck/δ is less than one. Furthermore, it is also ob-
served that the solution of (3.2) is bounded and is also that of the equation

(3.3) l = (a - 2δ)y(t + 1) + be~2δy(t) + e-
2δtf(ezsty(t + 1), <?*«-» y(t), t, μ)

at

for | ί |<oo.
Since the equation (3.2) has a parameter μ, the solution may depend on μ.

Hence, we denote it by y(t, μ). The solution corresponding to μ = 0 is simply
denoted by y(t).

Now, we shall prove that y(t, μ) uniformly converges to y(t) for ] t < oo as
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μ tends to zero. For two solutions y(t, μ) and y(t) of (3.2), it follows from
(3.2) that

^ e~2δs \f(e2δsy(s + 1, μ), #*«-»y(s, μ), s, μ)

-f(e2δsy(s+l), <P*«-»y(s), s, 0) \\Ky(t -s)\ds

(I y(s + l,μ)-y(s + ΐ)\ + \ y(s, μ) - y(s) \ + \μ |) <racί-β)<fe.
0

Let B(t) be the supremum of | y(s, μ) — y(s) \ over — oo < s ̂  + 1. Then, it
follows that

i t c

β-ί«-«dβ = -
— 00

Hence, we obtain

Since 2ck/δ is less than one, the above inequality shows us that y(t, μ) uni-
formly converges to y(t) for |£ |<oo, as μ tends to zero. This is the desired
result.

Thus, returning to the equations

(3.4) x(t + 1) = e2δ P f(x(s + 1), x(s), s, μ)Kx(t - s) ds
J -oo

and

(3.5) dx^ 1) - ax(t + 1) + bx(t) +f(x(t + 1), x(t), t, μ)
at

by means of the transformations x(t + ϊ) = e2δty(t + 1) and Kx(t + 1) = eZδtKy(t + 1),
we can assert that there exists a solution of (3.5) (or (3.4)) for |£ |<co con-
verging uniformly to that of (3.5) (or (3.4)) corresponding to μ = 0 as μ tends
to zero.

For different values μι and μz, it follows from (3.2) that

^ ck \ (I y(8 + 1, μύ ~
J —oo

Let M(t) be the supremum of | y(s, μi) — y(s, μ2) I over — oo < s ̂  ί + 1. Then,
it follows that

Hence, we have
ck

\y(t + l, μι)-

which implies that y(t +1, μ) is a equi-continuous function of μ. Furthermore,
it was proved that y(t + l, μ) is bounded for small \μ\ and |ί |<co. Hence,
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by means of a well-known theorem in the theory of normal families, any family
of solutions {y(t + 1, μn)}n=o such that μn — * 0 contains a subsequence converging
uniformly to a function yQ(t + l) for | £ | < o o as n— -> oo. It is expected that
y0(t + 1) will be a solution of (3.2). This fact was already proved before. Thus,
we obtain the following

THEOREM 2. Under the conditions (i), (ii), (iii) and (iv), there exists a
solution of (3.5) for \t <oo. Furthermore, the solution is bounded for
| ί |<oo, an equi-continuous function of μ for small \ μ \ , and it converges
uniformly to that of the equation corresponding to μ = Q as μ tends to zero.

COROLLARY. Let f(x, y, t, μ) be of the form μf(x, y, t), where f(x, y, t)
satisfies the following conditions:

( i ) f(x,y,t) is a continuous function of x, y, t for |#|<°°, \y\<°°,

(ii) |/(0, 0, t)\^Me2δt for \t \< oo, where M is a constant]
(iii) f(x, y, t) satisfies Lipschitz condition, that is, there exists a con-

stant k such that

l/(«ι, 2/ι, 0 -/fe, 2/2, t) I ̂  k(\ Xί - x2 \ + 1 2/1- 2/2 1)

for \xl <oo, \yt\<oo (i = l, 2) and \t |< oo;
Then, there exists a solution of (3.1) for | £ |<oo, provided that \μ\ is

less than d/2ck.

4. Equations with forcing functions. Now, we consider an equation

(4.1) - ax(t + 1) + bx(t) +f(x(t + 1), x(t), u(t), t)

for | ί |<oo, where u(t) is a given function of t, which is called a forcing
function.

In [2], the author discussed the problems of the boundedness of solutions
and existence of periodic solutions of (4.1) under the condition that every real
part of all the roots of the characteristic equation is negative. On the con-
trary, in this section, there will appear some roots having positive real part.
That is, we shall consider (4.1) under the following conditions:

( i ) /(#, 2/, z, t) is a continuous function of x, y, z, t for | α j | < o o ,
I 01 < oo, \Z\<<x>, m<oo;

(ii) |/(0, 0, u(t), t) ^Me2δt for \t \< oo, where M is a constant]
(iii) f(x, y, z, t) satisfies Lipschitz condition such that

l/(#ι, 2/ι, ti, t) -/fe, 2/2, £2, ί) I ̂  fc(| Xi - x2 1 + 1 2/1 - 2/2 1+ Zί-zz I)

for \ xl \< oo, I yi |< oo, zt\< oo (i = 1, 2) and \ t \< oo;
(iv) every real part of all the roots of the characteristic equation es(s — a)

— 6 = 0 is less than d, where d is a positve constant',
( v ) u(s) is a continuous function of s for \ s \ < oo and is integrable over

— oo < s ̂  t for any t.
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Then, by means of the same reason as in the preceding sections, it is ob-
served that there exists a solution of (4.1) for |£ |<oo, provided that 2ck/d is
less than one.

Now, let ι/i(£) (ΐ = 1, 2) be solutions of

(4.2) y(t + 1) = P e-2δsf(e2δsy(s + 1), e^s~»y(s), ul(s), s)Ky(t - s) ds
J -oo

for t\< oo, where ul(t) (i = 1, 2) are forcing functions satisfying the conditions
stated above. Then, (4.2) yields that

^ ck (I y,(s + 1) - 1/2(8 +
J —oo

Let N(t) be the supremum of | y\[s) — τ/2(s) | over — oo < s ̂  ί + 1. Then, it
follows that

Hence, we have an estimation

fick C*
(4.3) I y,(t + 1) - y*(t + 1) I ^ -̂ 2 -̂ J _oo

for ί |<oo. Thus, we obtain the following

THEOREM 3. Under the conditions (i), (ii), (iii), (iv) and (v), there exists a
solution of (4.1) for | £ | < o o . Furthermore, the estimation (4.3) for the dif-
ference of two solutions corresponding to two forcing functions holds good.

COROLLARY. Let f(x, y, u(t), t) be of the form f(x, y, t) + u(t), where
f(x, y, t) and u(t) satisfy the following conditions:

( i ) /(#, U> t) is a continuous function of x, y, t for \ x |< oo, and /(O, 0, t)
= 0for ί |<oo;

(i i) f(x, T/, t) satisfies Lipschitz condition such that

\f(xι, ylt t) -f(x2,

for x^\<oo, l i / ί K o o (i = l, 2), |
(iii) u(s) is a continuous function of s for | s |<oo, \u(s)\ is integrable

over — oo < s 5j t for any t, and there exists a constant M such that \ u(t) \
^Me2dt for | ί |<oo.

Then, there exists a solution of (4.1) for ί|< oo, if 2ck<d, and the in-
equality (4.3) remains valid for two forcing functions.

REMARK. Let us suppose that all the roots of the characteristic equation
lie to the left of the straight line $s = — d, where d is a positive constant.
Then, in Theorem 1, the assumptions on f(x, y, t) are replaced by the follow-
ing ones:
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(i) f(x,y, t) is a continuous function of x, y, t for \x\<R, \y\<R,

(ii) |/(0, 0, t)\^M for | ί |<oo, where M is a constant\Ώ

(iiϊ) f(x, y, t) satisfies Lipschitz condition such that

l/G&i, yi, t ) — f ( x z , y2, t)\^k(\xί-x2\ + \yί-y2\)

for \xl\<R1 yt\<R(ί = l,2), \t\<oo.
Then, the uniform convergence is guaranteed, if the inequality 2ck/d < 1 is

fulfilled. Furthermore, if the inequality Mc/(d- 2ck)<R holds good, the limit-
ing function will be a solution of the equation (2.1). If R = + oo, we need only
the first inequality, which has been used before.2'

The similar remarks to the above ones may be applied for Theorem 3, if
the forced term is of the form f ( x , y, t) + u(t) for \t \< oo.
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1) If /(O, 0, t) is a periodic function of t for |ί | <oo, the boundedness condition (ii)
remains valid for |ί| <oo. The periodicity was assumed in [2] and [3].

2) Cf. [3].




