NOTES ON TRANSLATIONS OF A SEMIGROUP

BY TAKAYUKI TAMURA

In the present paper we shall correct mistakes and incompleteness in the previous paper [1], and shall discuss the results again and develop them. Further the main purpose of this paper is to investigate the structure of a semigroup whose right translation semigroup is a group or a semilattice. We express many thanks to Prof. G. B. Preston and Mr. Kaichiro Fujiwara for their kind advice and their pointing out our mistakes. We shall retain the notations in the previous paper.

1. Corrections and Addenda.

1. Corrections to the theorems of the previous paper.

In Theorems 4, 4' of the paper [1] pp. 68-69, we assume S to satisfy $S^2=S$. Read "isomorphic" for "homomorphic", line 15, right, from the bottom, p. 68, and line 4, left, p. 69.

We devide the theorems into two cases and describe them again.

THEOREM 4. (4'.) The conditions (2) and (3) are equivalent, and (2') and (3') are equivalent. (We may provide no condition for S.)

(2) S contains a right unit, (3) $\Phi = R$;

(2') S contains a left unit, (3') $\Psi = L$.

THEOREM 4. (4'.) Let S be a semigroup which satisfies $S^2 = S$. The conditions (1) and (2) are equivalent, (1') and (2') are equivalent.

(1) Φ is isomorphic to R, (2) S contains a right unit;

(1') Ψ is isomorphic to L, (2') S contains a left unit.

Theorem 5 is valid for S having no condition. We shall rewrite the theorem:

THEOREM 5. $\Phi(\Psi)$ is dually isomorphic (isomorphic) to S if and only if S has a two-sided unit.

In its proof, line 14, left, p. 69, read "dually isomorphic" for "isomorphic".

The converse of Theorem 9 is not generally true. In Theorem 9, line 7,

Received April 5, 1957; in revised form October 2, 1957.

left, p. 70, read "Furthermore, if S has a right zero 0 and if xy=y implies y=0, then the converse of the theorem is true" for "Furthermore the converse is true". We shall describe Theorem 9 again:

THEOREM 9. If S is a semigroup with multiplication xy=0 for every x and $y \in S$, then $\Phi=\Psi$, and Φ is composed of all mappings φ of S into S satisfying $\varphi(0)=0$. Conversely, let S be a semigroup which has a right zero 0 and in which xy=y implies y=0. If Φ is composed of all the mappings φ of S into S satisfying $\varphi(0)=0$, then S is a semigroup defined as xy=0 for every x and $y \in S$.

2. Addenda and remark.

Addendum to the proof of Theorem 4. Since Φ contains a two-sided unit i.e. an identical mapping ε , R also contains the isomorphic image f_e of ε : $f_e f_x = f_x f_e = f_x$ for every $x \in S$. This f_e is proved to be an identical mapping of S in the following way. Since $S^2 = S$, any element z is written as z = xyor $z = f_y(x)$ for some x and y. Then we have

$$f_e(z) = f_e f_y(x) = f_y(x) = z$$
 for any $z \in S$,

in other words ze=z; e is a right unit of S.

Addendum to the proof of the converse of Theorem 9. At first we easily see that 0 is a unique right zero. Moreover 0 is proved to be a left zero at the same time in the following manner. Let u=0y. Then 0u=0(0y)=(00)y=0y=u, concluding u=0 by the assumption. Hence 0y=0 for all $y\in S$. Now let us prove that xy=0 for every $x, y\in S$. Without loss of generality we may assume that S contains three elements at least. For, if S is of order 2, then S is nothing but $S=\{0, a\}$ where $0^2=0a=a0=a^2=0$, and so the theorem holds. Suppose that the proposition is not true, then there are x_0, y_0 such that $x_0y_0=z_0\neq 0$ where $x_0\neq 0, y_0\neq 0$, and $y_0\neq z_0$ are concluded. Utilizing the mapping φ of S into S satisfying

$$\varphi(0) = 0, \qquad \varphi(y_0) = y_0, \qquad \varphi(z_0) = 0,$$

we can prove the proposition as the previous paper shows.

THEOREM $\overline{4}$. Theorems 4, 4' hold even if S is finite.

Proof. $(1) \rightarrow (2)$. Considering the construction method of all the translations [2], it follows that if S is finite, Φ is also so. Since Φ is isomorphic to the subsemigroup R of Φ , Φ must coincide with R: $\Phi=R$. By Theorem $\overline{4}$, we obtain (2). $(2) \rightarrow (1)$ is clear by Theorem $\overline{4}$.

REMARK. If S is neither finite nor $S^2=S$, then Theorems 4 and 4' are not necessarily true as the following counter-example shows.

EXAMPLE. S is the set of all non-negative integers with an element padjoined: $S=S_0 \subseteq \{p\}$ where $S_0 = \{0, 1, \dots\}$. The multiplication of S is defined \mathbf{as}

$$\left\{egin{array}{lll} ij\!=\!\max{(i,j)}, & i,\,j\!\in\!S_{\scriptscriptstyle 0},\ pi\!=\!ip\!=\!i,\ pp\!=\!0. \end{array}
ight.$$

S is proved to be a commutative semigroup, $S \neq S^2$, and so it has no unit. Since the right base of S is $\{p\}$, ϕ is composed of the identical mappings φ_p and φ_i , $i \in S_0$, as follows (cf. [2]):

$$arphi_i(x) = egin{cases} \max{(i,x)} & ext{for} & x \in S_0, \ i = 0, 1, \cdots, \ i & ext{for} & x = p, \ arphi_p(x) = x & ext{for} & x \in S. \end{cases}$$

Obviously all φ_i form R: $R = \{\varphi_i; i \in S_0\}$, where the correspondence $\varphi_i \leftrightarrow i$ between R and S_0 is one-to-one and satisfies $\varphi_i \varphi_j = \varphi_{ji} = \varphi_{ij}$. In fact,

$$arphi_i arphi_j(x) = egin{cases} arphi_i(\max{(j,x)}) = \max{(i,j,x)} & ext{for} \quad x \in S_0, \ arphi_i(j) = \max{(i,j)} & ext{for} \quad x = p, \ arphi_i(x) = arphi_i(x) = egin{cases} \max{(ji,x)} = \max{(i,j,x)} & ext{for} \quad x \in S_0, \ arphi_i(x) = arphi_i(x) = arphi_i(x) & ext{for} \quad x \in S_0, \ arphi_i(x) = arphi_i(x) = arphi_i(x) & ext{for} \quad x \in S_0, \ arphi_i(x) = arphi_i(x) = arphi_i(x) & ext{for} \quad x \in S_0, \ arphi_i(x) = arphi_i(x) & ext{for} \quad x \in S_0, \ arphi_i(x) = arphi_i(x) & ext{for} \quad x \in S_0, \ arphi_i(x) = arphi_i(x) & ext{for} \quad arphi_i(x) & ext{for} \quad arphi_i(x) = arphi_i(x) & ext{for} \quad arphi_i(x) & ext{for} \quad arphi_i(x) & ext{for} \arphi_i(x) & ext{for} \arphi_i(x)$$

and

$$\varphi_{ji}(x) = \varphi_{ij}(x) = \begin{cases} \max(ji, x) = \max(i, j, x) & \text{for } x \in S_0 \\ ji = \max(i, j) & \text{for } x = p. \end{cases}$$

Hence the correspondence $\varphi_i \leftrightarrow i$ is an isomorphism.

Consider a mapping of Φ to R as the following manner:

$$(1.1) \qquad \qquad \varphi \to \varphi_0, \qquad \varphi_i \to \varphi_{i+1}, \qquad i \in S_0.$$

Then, for *i*, $j \in S_0$, $\varphi_i \varphi_j = \varphi_{ji} = \varphi_{\max_{(i,j)}}$ is mapped to $\varphi_{i+1} \varphi_{j+1} = \varphi_{\max_{(i+1,j+1)}}$ = $\varphi_{\max(i,j)+1}$; and $\varphi_i \varphi = \varphi \varphi_i = \varphi_i$ is mapped to $\varphi_{i+1} \varphi_0 = \varphi_0 \varphi_{i+1} = \varphi_{\max(i+1,0)} = \varphi_{i+1}$; moreover $\varphi^2 = \varphi$ is mapped to $\varphi_0^2 = \varphi_{\max(0, 0)} = \varphi_0$. Hence the mapping (1.1) is an isomorphism.

§2. Extension of Theorem 9.

Let S_0 be a proper subset of a semigroup S, \varDelta be certain set of some mappings of S_0 into S_0 , and Γ be the set of all the mappings of $S\!-\!S_0$ into S. For $\delta \in \Delta$ and $\gamma \in \Gamma$, we define φ as follows:

$$arphi(x) = \left\{egin{array}{ll} \delta(x), & x \in S_0, \ & & & \\ r(x), & x \in S - S_0; \end{array}
ight.$$

this φ is denoted by $\delta * \mathcal{I}$. We denote by $\Delta * \Gamma$ the set of all $\delta * \mathcal{I}$: $\Delta * \Gamma = \{\delta * \mathcal{I}; \delta \in \Delta, \mathcal{I} \in \Gamma\}.$

As the extension of Theorem 9 in [1], we shall determine the structure of a semigroup S whose right translation semigroup Φ satisfies each of the following conditions.

Condition I. There are S_0 and \varDelta such that $\Phi = \varDelta * \Gamma$.

Condition II. Φ is composed of all the mappings φ of S into S which fix S_0 elementwise.

Condition III. Φ is composed of all the mappings φ of S into S such that $\varphi(S_0) \subset S_0$.

Condition IV. Φ is composed of all the mappings φ of S into S which fix an element a.

Firstly we shall investigate the structure of a semigroup S which satisfies Condition I.

LEMMA 2.1. $S_0S \subset S_0$ and hence S_0 is a subsemigroup of S.

Proof. Consider every inner right translation $f_x \in \Phi$. For $a \in S_0$, $x \in S$, we get $ax = f_x(a) \in f_x(S_0) \subset S_0$.

LEMMA 2.2. Δ is a subsemigroup of the right translation semigroup of S_0 , and Δ contains an identical mapping ε_0 .

Proof. \varDelta is considered as the set of all the contractions of all $\varphi \in \Phi$ to S_0 . If δ_1 and δ_2 are contractions of φ_1 and φ_2 respectively, then it is easily shown that $\delta_1\delta_2$ is a contraction of $\varphi_1\varphi_2$, and hence $\delta_1 \in \varDelta$ and $\delta_2 \in \varDelta$ imply $\delta_1\delta_2 \in \varDelta$. Since the identical mapping ε of S belongs to \varDelta , \varDelta contains the identical mapping ε_0 of S_0 .

Denote by T_0 the set of all x such that $xS \subset S_0$: $T_0 = \{x; xS \subset S_0\}$. By Lemma 2.1, $S_0 \subset T_0$.

LEMMA 2.3. If $x \in T_0$, then xz is independent of z.

Proof. Let y_0 be a fixed element of $S-S_0$. For $z \in S$, we can find a right translation φ_z such that

$$\left\{egin{array}{ll} arphi_z(y)\!=\!y & if \quad y\!\in\!S_0, \ arphi_z(y_0)\!=\!z. \end{array}
ight.$$

Then we have $xz = x\varphi_z(y_0) = \varphi_z(xy_0) = xy_0$ since $xy_0 \in S_0$.

In virtue of this lemma, we can denote

$$(2.1) xz = \alpha(x) for any x \in T_0,$$

where α is a mapping of T_0 into S_0 and we derive

TRANSLATIONS OF A SEMIGROUP

$$(2.2) \qquad \qquad \alpha^2(x) = \alpha(x)$$

from the associative law (xy)z = x(yz) for $x \in T_0$.

LEMMA 2.4. $xy \in S_0$ implies $y \in S_0$.

Proof. Consider $\varphi_1 \in \Phi$ such that

$$arphi_1(u) = u \quad ext{if} \quad u \in S_0, \ arphi_1(u) \in S_0 \quad ext{if} \quad u \in S_0.$$

If we suppose that $y \in S_0$, then $xy = x\varphi_1(y) = \varphi_1(xy) \in S_0$, contradicting $xy \in S_0$. q.e.d.

LEMMA 2.5. $x \in T_0$ implies xz=z.

Proof. Since $x \in T_0$, there exists y_0 such that $xy_0 \in S_0$ and so $y_0 \in S_0$ by Lemma 2.4. For any $z \in S$, we consider $\varphi_2 \in \Phi$ such that $\varphi_2(xy_0) = \varphi_2(y_0) = z$. Then we have $xz = x\varphi_2(y_0) = \varphi_2(xy_0) = z$.

Denote by S_1 the set of all $\alpha(x)$, for $x \in T_0$, i.e. $S_1 = T_0S$. Clearly $S_1 \subset S_0$. Combining the above lemmas, it follows that S has the following multiplication:

(2.3)
$$xy = \begin{cases} \alpha(x) & x \in T_0, \\ y & x \in T_0 \end{cases}$$

where α is a mapping of T_0 onto S_1 such that $\alpha^2 = \alpha$ i.e. $\alpha(a) = a$ for $a \in S_1$. Conversely, the multiplication defined by (2.3) is associative, for

$$(xy)z = lpha(x)z = lpha^2(x) = lpha(x) = x(yz)$$
 if $x \in T_0$,
 $(xy)z = yz = x(yz)$ if $x \in T_0$.

LEMMA 2.6. In a semigroup S with multiplication (2.3), the right translation semigroup Φ of S is composed of all the mappings of S into S which fix S_1 elementwise.

Proof. At first, we shall show that $\varphi \in \Phi$ implies $\varphi(u) = u$ for $u \in S_1$. Since $u = \alpha(x) = xz$, $\varphi(u) = \varphi(\alpha(x)) = \varphi(xz) = x\varphi(z) = \alpha(x) = u$. Next, we shall prove that a mapping of S into S, which fixes S_1 elementwise, is a right translation of S. If $x \in T_0$, then $\varphi(xy) = \varphi(\alpha(x)) = \alpha(x) = x\varphi(y)$; and if $x \in T_0$ then $\varphi(xy) = \varphi(y) = x\varphi(y)$. q.e.d.

LEMMA 2.7. If Φ satisfies Condition I, then $S_1=S_0$; hence $\alpha(x)=x$ for $x\in S_0$ in other words, \varDelta is composed of only an identical mapping.

Proof. Suppose $S_0-S_1 \neq \phi$. Since ϕ satisfies Condition I, S has a multiplication (2.3), and so Lemma 2.6 makes us to see that ϕ contains a mapping which maps S_0-S_1 into $S-S_0$. This contradicts Condition I. Hence $S_1=S_0$. q.e.d.

At last (2.3) is reformed as

(2.3')
$$xy = \begin{cases} \alpha(x), & x \in T_0, \\ y, & x \in T_0 \end{cases}$$

where α is a mapping of T_0 onto S_0 such that $\alpha^2 = \alpha$ i.e. α fixes S_0 elementwise.

By Lemma 2.6, it is easily seen that a semigroup with a multiplication (2, 3') satisfies Condition I. Thus we have

THEOREM 2.1. The right translation semigroup Φ satisfies Condition I if and only if S has the following structure: There exist a subset T_0 containing S_0 and a mapping α of T_0 onto S_0 which fixes S_0 elementwise, and the multiplication in S is given by

$$(2.3') xy = \begin{cases} \alpha(x), & x \in T_0, \\ y, & x \in S - T_0. \end{cases}$$

Therefore we have

COROLLARY 1. Conditions I and II are equivalent.

Next, let us investigate the structure of a semigroup whose Φ satisfies Condition III.

LEMMA 2.8. S_0 is composed of only one element.

Proof. We shall prove that $x \in S_0$, $x' \in S_0$, and $x \neq x'$ imply $\alpha(x) = \alpha(x')$. Let us consider $\varphi \in \Phi$ such that $\varphi(xy) = \varphi(x'y) \in S_0$. Then $\alpha(x) = x\varphi(y) = \varphi(xy) = \varphi(x'y) = x'\varphi(y) = \alpha(x')$.

COROLLARY 2. Condition III is equivalent to Condition IV.

As a special case of Theorem 2.1, we obtain

THEOREM 2.2. A semigroup S whose Φ satisfies Condition IV has the structure: There exists a subset T_0 containing a, and the multiplication in S is given by

(2.4)
$$xy = \begin{cases} a, & x \in T_0, \\ y, & x \in S - T_0 \end{cases}$$

Now Ψ denotes the left translation semigroup of S. We shall determine the structure of a semigroup S whose Φ and Ψ satisfy each of the following conditions.

Condition I_a. There are S_0 and \varDelta such that $\Phi = \Psi = \varDelta * \Gamma$.

Condition II_a. $\Phi = \Psi$ and it is composed of all the mappings of S into S which fix S₀ elementwise.

14

Condition III_a. $\Phi = \Psi$ and it is composed of all the mappings of S into S such that S_0 is mapped into S_0 .

Condition IV_a. $\Phi = \Psi$ and it is composed of all the mappings of S into S which fix an element a.

Let us consider the case of Ia. S satisfies not only Theorem 2.1 but also

the dual form of it: There exist a subset Q_0 containing S_0 and a mapping β of Q_0 onto S_0 which fixes S_0 elementwise and

(2.5)
$$xy = \begin{cases} \beta(y), & y \in Q_0, \\ x, & y \in S - Q_0. \end{cases}$$

Immediately we have

THEOREM 2.2. The right translation semigroup Φ and the left translation semigroup Ψ satisfy Condition I_a if and only if S is either a semilattice of order 2 or a semigroup defined as xy=0 for all $x, y \in S$.

Proof. If neither $S-T_0$ nor $S-Q_0$ is empty, let x_1 and y_1 be elements of $S-T_0$ and $S-Q_0$, respectively. For any $x_0 \in T_0$, $y_0 \in Q_0$, we get $x_0=x_0y_1$ $=x_0y_0=x_1y_0=y_0$ by (2.3') and (2.5), hence $T_0=Q_0$ and it is composed of only one element a. On the other hand, for any x_2 and $y_2 \in S-T_0=S-Q_0$, we get $x_2=x_2y_2=y_2$ by (2.3') and (2.5); hence $S-T_0$ is also composed of only one element b. Consequently $S=\{a, b\}$ where $a^2=ab=ba=a$, $b^2=b$. Next, if either $S-T_0$ or $S-Q_0$ is empty, for example, if $S-T_0=\phi$ then $S=T_0$ and, for every $x, y \in S$ and the fixed $x', y' \in Q_0$, we have xy=xy'=x'y' which is independent of x and y; therefore S is a semigroup defined as xy=0 for every $x, y \in S$.

Hence Condition I_a is equivalent to Condition IV_a and at last we see

COROLLARY 3. Conditions I_a , II_a , III_a and IV_a are equivalent.

§3. The Case where Φ is a Group.

In this paragraph we shall investigate the structure of a semigroup S whose right translation semigroup Φ is a group.

THEOREM 3.1. Φ is a group if and only if S is a left group.

Proof. Assume that Φ is a group. Φ contains the identical mapping ε as a left unit of the group Φ . Then, for any $a \in S$, there exists $\varphi_a \in \Phi$ such that $f_a \varphi_a = \varphi_a f_a = \varepsilon$. Now, for any $x \in S$ we have

$$x\varphi_a(a) = \varphi_a(xa) = \varphi_a f_a(x) = \varepsilon(x) = x$$

and for any $a, x \in S$,

$$x = \varepsilon(x) = f_a \varphi_a(x) = \varphi_a(x) a.$$

Therefore S is a left group. Next, we shall prove the converse. Assume that S is a left group. Then by Theorem $\overline{4}$ in §1, we have $\Phi = R$. Denote by e a right unit of S. Evidently f_e is the two-sided unit of R. For $f_a \in R$, we have $f_a f_{a'} = f_e$ where a' is an element such that a'a = e. Thus $\Phi = R$ is a group.

Easily we have

THEOREM 3.2. Both the right translation semigroup Φ and the left translation semigroup Ψ are groups if and only if S is a group.

Proof. According to Theorem 3.1, Φ and Ψ are groups if and only if S is a left group and a right group at the same time, namely S is a group.

§4. The Cases where ϕ is a Semilattice.

In this paragraph we shall investigate the structure of a semigroup whose right translation semigroup Φ is a semilattice. If Φ is a semilattice, then the inner right translation semigroup $R = \{f_a; a \in S\}$ is a semilattice because it is a subsemigroup of Φ .

1. The Structure of a Semigroup S whose R is a Semilattice.

Suppose that the inner right translation semigroup R of S is a semilattice. We get easily

LEMMA 4.1. R is a semilattice if and only if $xy=xy^2$ and xyz=xzy for any x, y, $z \in S$.

The homomorphism $S \ni a \to f_a \in R$ gives a semilattice-decomposition of S: $S = \sum_{\sigma \in R} S_{\sigma}$ where, for simplicity, we redenote by σ etc. the elements of R, and the multiplication in S_{σ} is given by

 $(4.1) x_{\sigma}y_{\sigma} = \alpha_{\sigma}(x_{\sigma}),$

 α_{σ} being an idempotent mapping of S_{σ} into S_{σ} : $\alpha_{\sigma}^2 = \alpha_{\sigma}$. We denote $x \sim y$ if $x \in S_{\sigma}$, $y \in S_{\sigma}$.

LEMMA 4.2. By the homomorphism $a \to f_a$, the semigroup S is decomposed into the union of s-indecomposable semigroups S_{σ} defined by (4.1).

Proof. Let $x \approx y$ be a congruence relation by which S_{σ} is decomposed to a semilattice. Let a be a fixed element of S_{σ} . Then, for any $x \in S_{\sigma}$, $x \approx x^2 = xa \approx ax = \alpha_{\sigma}(a)$. Hence any s-decomposition of S_{σ} gathers all the elements into a class, i.e. S_{σ} is s-indecomposable.

THEOREM 4.1. There are given a semilattice T and a system of s-indecomposable semigroups S_{σ} ($\sigma \in T$) defined by (4.1). If we construct a composition S of S_{σ} by T such that

(4.2)
$$a, b \in S_{\sigma} \text{ implies } xa = xb \text{ for every } x \in S,$$

then the inner right translation semigroup R of S is a semilattice which is isomorphic to T. Any semigroup whose R is a semilattice is obtained as the above.

Proof. Let R be the inner right translation semigroup of S. We consider a decomposition δ_1 : $S = \sum_{\tau \in R} S_{\tau}$, beside the decomposition δ_0 : $S = \sum_{\sigma \in T} S_{\sigma}$. By the assumption, if a, $b \in S_{\sigma}$, then $f_a = f_b$ and so we get $\delta_1 \leq \delta_0^{(1)}$, in other words, T is homomorphic to R, whence R is a semilattice. On the other hand, since each S_{σ} ($\sigma \in T$) is s-indecomposable by the assumption, and each S_{τ} ($\tau \in R$) is also s-indecomposable by Lemma 4.2, the decompositions δ_1 and δ_0 are greatest. Therefore $\delta_1 = \delta_0$, and hence R is isomorphic to T. q.e.d.

In order to construct such a composition of S_{σ} by T, it is sufficient and necessary to find a system of mappings $\{f_{\sigma}^{\tau}; \sigma, \tau \in T\}$ where f_{σ}^{τ} is a mapping of S_{σ} into $S_{\sigma\tau}$ and satisfies

$$(4.3) f^{\sigma}_{\sigma} = \alpha_{\sigma},$$

(4.4)
$$f_{\sigma}^{\tau\lambda} = f_{\sigma\tau}^{\lambda} f_{\sigma}^{\tau}$$

and the multiplication in S is defined as

$$x_{\sigma}x_{\tau}=f_{\sigma}^{\tau}(x_{\sigma})$$
 for $x_{\sigma}\in S_{\sigma}, x_{\tau}\in S_{\tau}$.

There exists in reality such a system $\{f_{\sigma}^{\tau}\}\$ as the following examples show, but in this paper we cannot solve the problem how all the systems are determined.

EXAMPLE 1. Let μ be a non-zero-element of T, i.e. $\mu \in T^2$. Take an element p_{μ} in any $S^2_{\mu} \subset S_{\mu}$. For the system $\{p_{\mu}; \mu \in T^2\}$, and for any $\sigma, \tau \in T, f^{\tau}_{\sigma}$ is defined as

$$f_{\sigma}^{\tau}(x_{\sigma}) = \begin{cases} \alpha_{\sigma}(x_{\sigma}), & \sigma \geq \tau, \\ \\ p_{\sigma\tau}, & \sigma \geq \tau. \end{cases}$$

Clearly $f_{\sigma}^{\tau}(p_{\sigma}) = p_{\sigma\tau}$. We shall prove that (4.4) is fulfilled. If $\sigma \geq \tau \lambda$, then $\sigma \geq \lambda$, $\sigma \geq \tau$, and

$$f^{\lambda}_{\sigma}f^{\tau}_{\sigma}(x_{\sigma}) = f^{\lambda}_{\sigma}(\alpha_{\sigma}(x_{\sigma})) = \alpha^{2}_{\sigma}(x_{\sigma}) = \alpha_{\sigma}(x_{\sigma}) = f^{\tau\lambda}_{\sigma}(x_{\sigma}).$$

¹⁾ $\delta_1 \leq \delta_0$ means that the decomposition δ_0 is a refinement of the decomposition δ_1 . See [3].

If $\sigma \geqq \tau \lambda$ and $\sigma \geqq \tau$, then $\sigma \geqq \lambda$ and

$$f^{\lambda}_{\sigma}f^{ au}_{\sigma}(x_{\sigma}) = f^{\lambda}_{\sigma}(f^{ au}_{\sigma}(x_{\sigma})) = p_{\sigma\lambda} = p_{\sigma(au\lambda)} = f^{ au\lambda}_{\sigma}(x_{\sigma}).$$

If $\sigma \geq \tau \lambda$ and $\sigma \geq \tau$, then

$$f_{\sigma\tau}^{\lambda}f_{\sigma}^{\tau}(x_{\sigma}) = f_{\sigma\tau}^{\lambda}(p_{\sigma\tau}) = p_{(\sigma\tau)\lambda} = p_{\sigma(\tau\lambda)} = f_{\sigma}^{\tau\lambda}(x_{\sigma}).$$

EXAMPLE 2. For any $\mu \in T^2$, we take $p_{\mu} \in S^2_{\mu}$ and select β_{μ} of T such that $\beta_{\mu} < \mu$. For the systems $\{\beta_{\mu}; \mu \in T^2\}$ and $\{p_{\mu}; \mu \in T^2\}$, and for any $\sigma, \tau \in T$, we define f^{τ}_{σ} as follows:

$$f^{ au}_{\sigma}(x_{\sigma}) = egin{cases} x_{\sigma} & ext{if} \quad \sigma \! > \! eta_{\sigma} \! \ge \! au, \ lpha_{\sigma}(x_{\sigma}) & ext{if} \quad \sigma \! \ge \! au, \quad eta_{\sigma} \! st au, \ p_{\sigma au} & ext{otherwise.} \end{cases}$$

If $\sigma > \beta_{\sigma} \ge \tau \lambda$, then $\sigma > \tau$, $\sigma \tau = \sigma > \lambda$ and so

$$f^{\lambda}_{\sigma}f^{\tau}_{\sigma}(x_{\sigma}) = f^{\lambda}_{\sigma}(x_{\sigma}) = x_{\sigma} = f^{\tau\lambda}_{\sigma}(x_{\sigma}).$$

If $\sigma \geq \tau \lambda$, $\beta_{\sigma} \geq \tau \lambda$, and either $\beta_{\sigma} \geq \lambda$ or $\beta_{\sigma} \geq \tau$, then

$$f^{\lambda}_{\sigma} f^{\tau}_{\sigma}(x_{\sigma}) = \begin{cases} f^{\lambda}_{\sigma}(\alpha_{\sigma}(x_{\sigma})) = \alpha_{\sigma}(x_{\sigma}) = f^{\tau\lambda}_{\sigma}(x_{\sigma}) & \text{if} \quad \beta_{\sigma} \ge \lambda, \quad \beta_{\sigma} \ge \tau, \\ f^{\lambda}_{\sigma}(x^{\sigma}) = \alpha_{\sigma}(x_{0}) = f^{\tau\lambda}_{\sigma}(x_{\sigma}) & \text{if} \quad \beta_{\sigma} \ge \tau, \quad \beta_{\sigma} \ge \lambda. \end{cases}$$

If $\sigma \geq \tau \lambda$, $\beta_{\sigma} \geq \tau \lambda$, $\beta_{\sigma} \geq \lambda$, and $\beta_{\sigma} \geq \tau$, then

$$f^{\lambda}_{\sigma}f^{\tau}_{\sigma}(x_{\sigma}) = f^{\lambda}_{\sigma}(\alpha_{\sigma}(x_{\sigma})) = \alpha^{2}_{\sigma}(x_{\sigma}) = \alpha_{\sigma}(x_{\sigma}) = f^{\tau\lambda}_{\sigma}(x_{\sigma}).$$

If $\sigma \not\equiv \tau \lambda$, $\sigma \geq \tau$, then we get $\sigma \not\equiv \lambda$ and

$$f^{\lambda}_{\sigma} f^{\tau}_{\sigma}(x_{\sigma}) = f^{\lambda}_{\sigma}(f^{\tau}_{\sigma}(x_{\sigma})) = p_{\sigma\lambda} = p_{\sigma(\tau\lambda)} = f^{\tau\lambda}_{\sigma}(x_{\sigma}).$$

If $\sigma \not\equiv \tau \lambda$ and $\sigma \not\equiv \tau$, then

$$f^{\lambda}_{\sigma au} f^{ au}_{\sigma}(x_{\sigma}) = f^{\lambda}_{\sigma au}(p_{\sigma au}) = p_{(\sigma au)\lambda} = p_{\sigma(au\lambda)} = f^{ au\lambda}_{\sigma}(x_{\sigma}).$$

Now the translation semigroup $\overline{\phi}$ of the semilattice R is a semilattice. (See [4].) We shall relate to the relation between ϕ and $\overline{\phi}$ when R is a semilattice.

LEMMA 4.3. $x \sim y$ implies $\varphi(x) \sim \varphi(y)$ for every $\varphi \in \Phi$.

Proof. From zx = zy, we get

$$z\varphi(x) = \varphi(zx) = \varphi(zy) = z\varphi(y)$$
 for all $z \in S$,

and hence $\varphi(x) \sim \varphi(y)$.

For any $\varphi \in \Phi$, we define a mapping $\overline{\varphi}$ of R into R as follows:

18

$$\bar{\varphi}(\alpha) = \gamma$$
 means $\sigma(\varphi(x)) = \gamma$ for $x \in S_{\alpha}$,

in which γ is determined independently from an element x by Lemma 4.3. This $\overline{\varphi}$ is a translation of R, because we have

$$\overline{\varphi}(\alpha\beta) = \sigma(\varphi(yz)) = \sigma(y\varphi(z)) = \sigma(y)\sigma(\varphi(z)) = \alpha\overline{\varphi}(\beta)$$

where $y \in S_{\alpha}$, $z \in S_{\beta}$, $yz \in S_{\alpha\beta}$. Next we shall show that $\varphi \to \overline{\varphi}$ is a homomorphism of Φ into $\overline{\Phi}$. For φ , $\psi \in \Phi$, $x \in S_{\alpha}$,

$$\overline{\psi}\overline{\varphi}(\alpha) = \sigma(\psi\varphi(x)) = \sigma(\psi(\varphi(x))) = \overline{\psi}(\sigma\varphi(x)) = \overline{\psi}\overline{\varphi}(\alpha).$$

Therefore we have

THEOREM 4.2. If R is a semilattice, then Φ is homomorphic into Φ by the correspondence $\varphi \to \overline{\varphi}$.

2. The Structure of a Semigroup S in Case that $S=S^2$ and ϕ is a Semilattice.

THEOREM 4.3. Let $S=S^2$. The right translation semigroup Φ of S is a semilattice if and only if the inner right translation semigroup R is a semilattice.

Proof. We shall prove only that Φ is a semilattice if R is a semilattice. For any $x \in S$, x = yz, we have, by Lemma 4.1,

$$\varphi^2(x) = \varphi^2(yz) = \varphi^2(yz^2) = \varphi(yz\varphi(z)) = \varphi(y\varphi(z)z) = y\varphi(z)\varphi(z) = \varphi(yz) = \varphi(x)$$

whence $\varphi^2 = \varphi$.

$$(\varphi\psi)(x) = \varphi\psi(yz) = \varphi\psi(yz^2) = \varphi(yz\psi(z)) = \varphi(y\psi(z)z) = y\psi(z)\varphi(z).$$

Similarly $(\psi \varphi)(x) = \psi \varphi(yz) = y\varphi(z)\psi(z) = y\psi(z)\varphi(z)$. Hence $\varphi \psi = \psi \varphi$. q.e.d.

Consider the decomposition of $S: S = \sum_{\sigma \in R} S_{\sigma}$. Since $S = S^3$, we see that $S_{\sigma} = S^2_{\sigma}$ if σ is minimal in T. We are arbitrarily given semilattice T and a system of s-indecomposable semigroups S_{σ} ($\sigma \in T$) defined by (4.1) such that $S_{\sigma} = S^2_{\sigma}$ if σ is minimal. Then a semigroup S whose Φ is a semilattice is constructed as a composition of S_{σ} by T such that $S = S^2$ in addition to (4.2). In order to construct S, it is necessary and sufficient to find $\{f^{\tau}_{\sigma}; \sigma, \tau \in T\}$ where f^{τ}_{σ} is a mapping of S_{σ} into $S_{\sigma\tau}$ such that in addition to (4.3) and (4.4),

(4.5)
$$\sum_{\sigma \geq \tau \in T} f^{\tau}_{\sigma}(S_{\sigma}) = S_{\sigma} \quad \text{for any } \sigma \in T.$$

For example, Example 2 shows that $\{f_{\sigma}^{\tau}\}$ exists.

By the way, we shall relate to the relation between Φ and $\overline{\Phi}$ in the case where R is a semilattice and $S=S^2$.

THEOREM 4.4. If $S=S^2$ and R is a semilattice, then Φ is isomorphic onto the subsemilattice of $\overline{\Phi}$ by the correspondence $\varphi \rightarrow \overline{\varphi}$ (described in Theorem 4.2).

Proof. In order to prove the isomorphism, we may show only that $\varphi \to \overline{\varphi}$ is one-to-one, or $\sigma(\varphi(x)) = \sigma(\psi(x))$ for all $x \in S$ implies $\varphi(x) = \psi(x)$ for all $x \in S$. Since $S = S^2$, any x is decomposed into the product x = yz for some y and z, and so $\varphi(x) = \varphi(yz) = y\varphi(z) = y\psi(z) = \psi(yz) = \psi(x)$. Since the isomorphic image of Φ is a subsemigroup of the semilattice $\overline{\phi}$, it is a semilattice.

3. The Structure of a Semigroup S in Case that $S \neq S^2$ and Φ is a Semilattice.

LEMMA 4.4. We assume $S \neq S^3$ and let $p \in S - S^2$. The class S_a which contains p is a semigroup of order 2 defined as $S_a = \{p, q\}$ where $p^2 = pq = qp = q^2 = q$.

Proof. Suppose that S_{α} contains two distinct elements q, r at least besides p. Consider two mappings φ_1 and φ_2 of S into S defined as follows:

$$\left\{egin{array}{ll} arphi_1(p)=q, & \ arphi_2(x)=x & ext{if} & x
eq p; \end{array}
ight. \left\{egin{array}{ll} arphi_2(p)=r, & \ arphi_2(x)=x & ext{if} & x
eq p. \end{array}
ight.$$

Since $p \in S - S^2$ and $p \sim q$, we get

$$arphi_1(xy) = xy = x arphi_1(y)$$
 for $y \neq p$ and every x ,
 $arphi_1(xp) = xp = xq = x arphi_1(p)$ for every x .

Hence φ_1 is a right translation of S; and φ_2 is similarly proved to be also so. Then $\varphi_1\varphi_2 \neq \varphi_2\varphi_1$ is proved as follows:

$$arphi_1arphi_2(p) \!=\! arphi_1(r) \!=\! r, \qquad arphi_2arphi_1(p) \!=\! arphi_2(q) \!=\! q.$$

This contradicts the assumption that Φ is a semilattice. Therefore S_{α} contains one element at most besides p. Since $p \in (S-S^2) \cap S_{\alpha}$, we see $S_{\alpha} \neq S_{\alpha}^2$. Consequently it follows that S_{α} is nothing but a semigroup $S_{\alpha} = \{p, q\}$, where $p^2 = pq = qp = q^2 = q$.

LEMMA 4.5. Let $S \neq S^2$ and let $p \in S - S^2$ and so $p \in S_a = \{p, q\}$. (Cf. Lemma 4.4.) Furthermore suppose that $\alpha < \beta$ which shows the ordering in the semilattice R. Then S_{β} is composed of only one element.

Proof. Suppose that S_{β} contains two elements a, b at least. We see that there is $a \in S_{\beta}$ such that pa=a. For, if $pa=b\neq a$, then pb=pa because $a \sim b$; and then we can find b such that pb=b. Hence we may assume

$$(4.6) f_a(p) = a$$

without loss of generality. Then since $f_a^2 = f_a$ by the initial assumption,

(4.7) $f_a(a) = f_a f_a(p) = f_a(p) = a.$

Now, let us consider a mapping φ defined as

$$arphi(x) = \left\{ egin{array}{ll} f_a(x), & x
eq p, \ b, & x = p. \end{array}
ight.$$

This φ is proved to be a right translation of S:

$$arphi(xy) = f_a(xy) = x f_a(y) = x arphi(y)$$
 for $y \neq p$ and any x
 $arphi(xp) = f_a(xp) = x f_a(p) = x a = x b = x arphi(p)$ for any x ,

because we use $a \sim b$ and (4.6). Since $\varphi^2 = \varphi$ must hold,

(4.8)
$$f_a(b) = \varphi(b) = \varphi^2(p) = \varphi(p) = b.$$

On the other hand, we see $\varphi f_a \neq f_a \varphi$. In fact,

$$\varphi f_a(p) = \varphi(a) = f_a(a) = a$$
 (by (4. 6), (4. 7)),
 $f_a \varphi(p) = f_a(b) = b$ (by (4. 8)).

This result contradicts the assumption that ϕ is a semilattice. Thus the lemma has been completely proved.

LEMMA 4.6. $p, r \in S - S^2$ and $p \neq r$ imply p + r. If $p \in S_a$ and $r \in S_\beta$, then $\alpha \not\equiv \beta$.

Proof. Since neither p nor r lies in S^2 , Lemma 4.4. makes it impossible that p and r belong to the same S_{α} . Also $\alpha \equiv \beta$ is immediately shown by the result of Lemma 4.5.

Thus we have known that if $S^2 \neq S$ and Φ is a semilattice, then R is a semilattice, and the decomposition $S = \sum_{\sigma \in R} S_{\sigma}$ of S is obtained where the subsemigroups S_{σ} satisfy Lemmas 4.4, 4.5, and 4.6. On the other hand, the converse will hold. Hereafter we shall prove that if R is a semilattice and the classes S_{σ} in the decomposition $S = \sum_{\sigma \in R} S_{\sigma}$ satisfy Lemmas 4.4, 4.5 (and consequently 4.6), then Φ is a semilattice.

Let $S-S^2 = \{b_{\lambda}; \lambda \in R' \subset R\}$, and S_{λ} be the class which contains b_{λ} . By Lemma 4.4,

(4.9)
$$S_{\lambda} = \{a_{\lambda}, b_{\lambda}\}$$
 where $a_{\lambda}^2 = a_{\lambda}b_{\lambda} = b_{\lambda}a_{\lambda} = b_{\lambda}^2 = a_{\lambda}$,

and there is a one-to-one correspondence between b_{λ} and S_{λ} . As easily seen,

(4.10)
$$xa_{\lambda} = a_{\lambda}x = xb_{\lambda} = b_{\lambda}x = \begin{cases} a_{\lambda} & \text{if } \sigma(x) \leq \lambda, \\ u = u^2 & \text{where } \sigma(u) = \lambda \cdot \sigma(x) & \text{if } \sigma(x) \leq \lambda. \end{cases}$$

LEMMA 4.7. Letting $S^*=S^2$, we have $S^{*2}=S^*$. If R is a semilattice, then the inner right translation semigroup R^* of S^* is a semilattice.

Proof. We may show only $S^* \subset S^{*2}$. Letting any $x \in S^* = S^3$, x = yz for some y, $z \in S$, $x = yz = yz^3 = (yz)z^2$ by Lemma 4.1. Hence $S^* \subset S^{*2}$. By the assumption, R is a semilattice and so $f_s = f_{s^2}$,

$$\overline{R} = \{f_s; s \in S^*\} = \{f_s; s \in S\} = R,$$

hence \overline{R} is also a semilattice. On the other hand, since any inner right translation f_s^* of S^* is a contraction of $f_s \in \overline{R}$, \overline{R} is homomorphic to R^* . Consequently R^* is a semilattice.

LEMMA 4.8. Let φ be a right translation of a semigroup M, and let N be a subsemigroup of M. If $\varphi(N) \subset N$, then the contraction of φ to N is a right translation of N.

Let φ be a right translation of S and let φ^* be the contraction of φ to $S^*=S^2$. Since $\varphi(S^2)\subset S^2$, we have

LEMMA 4.9. The contraction φ^* of $\varphi \in \Phi$ to $S^* = S^2$ is a right translation of S^* .

LEMMA 4.10. Let S_{λ} be the subsemigroup defined in (4.9). If φ is a right translation of S, we have one of the following three cases (4.11), (4.12), (4.13):

(4. 11)
$$\varphi(a_{\lambda}) = \varphi(b_{\lambda}) = a_{\lambda},$$

(4.12)
$$\varphi(a_{\lambda}) = a_{\lambda}, \qquad \varphi(b_{\lambda}) = b_{\lambda},$$

(4.13)
$$\varphi(a_{\lambda}) = \varphi(b_{\lambda}) = c \quad where \quad \sigma(c) > \lambda.$$

Proof. By Lemma 4.3, $\varphi(S_{\lambda}) \subset S_{\mu}$ for some μ . Reminding us of Theorem 4.2 and Lemma 19 in [4], we see $\lambda \leq \mu$. In the case $\lambda = \mu$, since $\varphi(S_{\lambda}) \subset S_{\lambda}$, φ is considered as a right translation of S_{λ} , and consequently we have either (4.11) or (4.12). In the case $\lambda < \mu$, $S_{\mu} = \{c\}$ by Lemma 4.5, and so we have (4.13).

According to Lemma 4.7 and Theorem 4.3,

LEMMA 4.11. The translation semigroup Φ^* of S^* is a semilattice.

For any $\varphi^* \in \Phi^*$, a mapping φ of S into S is defined as follows:

(4.14)
$$\varphi(x) = \begin{cases} \varphi^*(x) & \text{if } x \in S^2, \\ a_{\lambda} \quad or \quad b_{\lambda} & \text{if } x = b_{\lambda}, \\ c & \text{if } x = b_{\lambda}, \\ \varphi^*(a_{\lambda}) = c, \\ \varphi^*(a_{\lambda}) = c, \\ \sigma(c) > \lambda. \end{cases}$$

22

LEMMA 4.12. This φ is a right translation of S.

Proof. In order to prove $\varphi(xy) = x\varphi(y)$, we must consider several cases. I. The Case $y \in S^2$.

If $x \in S^2$, $\varphi(xy) = \varphi^*(xy) = x\varphi^*(y) = x\varphi(y)$, and if $x \in S^2$ i.e. $x = b_{\lambda}$,

$$\varphi(b_{\lambda}y) = \varphi(a_{\lambda}y) = \varphi^{*}(a_{\lambda}y) = a_{\lambda}\varphi^{*}(y) = b_{\lambda}\varphi^{*}(y) = b_{\lambda}\varphi(y),$$

because $b_{\lambda}z = a_{\lambda}z$ for all z by (4.10).

II. The Case $y \in S^2$ i.e. $y = b_{\lambda}$.

$$\varphi(xb_{\lambda}) = \varphi(xa_{\lambda})$$
 by (4.10),
= $x\varphi(a_{\lambda})$ by the Case I,

while, if $\varphi(a_{\lambda}) = \varphi(b_{\lambda})$, then $x\varphi(a_{\lambda}) = x\varphi(b_{\lambda})$, and if $\varphi(a_{\lambda}) \neq \varphi(b_{\lambda})$ i.e. $\varphi(a_{\lambda}) = a_{\lambda}$, $\varphi(b_{\lambda}) = b_{\lambda}$, then

$$x\varphi(a_{\lambda}) = xa_{\lambda} = xb_{\lambda} = x\varphi(b_{\lambda})$$

by (4.10). Therefore we obtain $\varphi(xy) = x\varphi(y)$ in all cases.

LEMMA 4.13. Φ denotes the set of all translations defined by (4.14). Φ is a semilattice.

Proof. The Proof of $\varphi^2 = \varphi$.

In the case $x \in S^2$,

(4.15) $\varphi^2(x) = \varphi(\varphi(x)) = \varphi(\varphi^*(x)) = \varphi^* \varphi^*(x) = \varphi^*(x) = \varphi(x)$ by (4.14) and Lemma 4.11. In the case $x \in S^2$, i.e. $x = b_{\lambda}$,

if $\varphi(b_{\lambda}) = \varphi(a_{\lambda})$, then $\varphi^2(b_{\lambda}) = \varphi(\varphi(b_{\lambda})) = \varphi(\varphi(a_{\lambda})) = \varphi(b_{\lambda})$ because $a_{\lambda} \in S^2$ and so (4.15) is used;

if $\varphi(b_{\lambda}) \neq \varphi(a_{\lambda})$, then $\varphi(b_{\lambda}) = b_{\lambda}$ and $\varphi^2(b_{\lambda}) = \varphi(\varphi(b_{\lambda})) = \varphi(b_{\lambda})$.

The Proof of $\varphi \psi = \psi \varphi$.

For $x \in S^2$, $\varphi \psi(x) = \varphi^* \psi^*(x) = \psi^* \varphi^*(x) = \psi \varphi(x)$ by Lemma 4.11.

For $x \in S^2$, if $\varphi(b_{\lambda}) = \varphi(a_{\lambda})$ and $\psi(b_{\lambda}) = \psi(a_{\lambda})$, then

$$\varphi\psi(b_{\lambda}) = \varphi\psi(a_{\lambda}) = \varphi^{*}\psi^{*}(a_{\lambda}) = \psi^{*}\varphi^{*}(a_{\lambda}) = \psi\varphi(a_{\lambda}) = \psi\varphi(b_{\lambda});$$

if $\varphi(b_{\lambda}) = \varphi(a_{\lambda})$ and $\psi(b_{\lambda}) \neq \psi(a_{\lambda})$ i.e. $\psi(a_{\lambda}) = a_{\lambda}$, $\psi(b_{\lambda}) = b_{\lambda}$, then

$$arphi\psi_{\lambda}(b) = arphi(b_{\lambda}) = arphi(a_{\lambda}) = arphi^{*}(a_{\lambda}) = arphi^{*}\psi^{*}(a_{\lambda}) = \psi arphi(a_{\lambda}) = \psi arphi(b_{\lambda});$$

if $\varphi(b_{\lambda}) \neq \varphi(a_{\lambda})$ and $\psi(b_{\lambda}) \neq \psi(a_{\lambda})$, then

$$\varphi\psi(b_{\lambda}) = \varphi(b_{\lambda}) = b_{\lambda} = \psi(b_{\lambda}) = \psi\varphi(b_{\lambda}).$$

Thus we conclude the following theorem:

THEOREM 4.5. Let $S \neq S^2$. The right translation semigroup Φ of a semigroup S is a semilattice if and only if S satisfies the following conditions:

(1) The inner right translation semigroup R of S is a semilattice, and so $S = \sum_{\sigma \in R} S_{\sigma}$ where every S_{σ} is defined as $x_{\sigma}y_{\sigma} = \alpha_{\sigma}(x_{\sigma})$.

(2) Letting $S-S^2=\{b_{\lambda}; \lambda \in R' \subset R\}$, the subsemigroup S_{λ} which contains b_{λ} is a semigroup of order 2 defined as

$$S_{\lambda} = \{a_{\lambda}, b_{\lambda}\}, \qquad a_{\lambda}^2 = a_{\lambda}b_{\lambda} = b_{\lambda}a_{\lambda} = b_{\lambda}^2 = a_{\lambda},$$

and if $\lambda < \beta$, then S_{β} is a semigroup composed of only one element.

Lastly we shall consider the relation between the structure of S and that of $S^*=S^2$ when $S\neq S^2$ and \emptyset is a semilattice. We denote by S^*_{σ} the intersection of S^* and S_{σ} : $S^*_{\sigma}=S^*_{\frown}S_{\sigma}$. Then $S=\sum_{\sigma\in R}S_{\sigma}$ corresponds to $S^*=\sum_{\sigma\in R}S^*_{\sigma}$ where, letting $S_{\lambda}=\{a_{\lambda}, b_{\lambda}\}$ and $b_{\lambda}\in S-S^*$,

if
$$\sigma = \lambda$$
, then $S_{\sigma}^* = \{a_{\lambda}\}$, if $\sigma \neq \lambda$, then $S_{\sigma}^* = S_{\sigma}$;

especially if $\sigma \ge \lambda$, S_{σ} consists of only one element. Lemma 4.6 reminds us of the fact that λ_1 and λ_2 are incomparable.

Now we shall construct S from S^* . Let R be a semilattice and Q be a subset of R, any two elements of which is incomparable:

$$Q = \{\lambda_1, \cdots, \lambda_m\}, \qquad \lambda_i \equiv \lambda_j, \qquad i \neq j.$$

Furthermore a system $\{S^*_{\sigma}; \sigma \in R\}$ of s-indecomposable semigroups S^*_{σ} is given such that

(4.15) the multiplication in S_{σ}^* is defined as $x_{\sigma}y_{\sigma} = \alpha_{\sigma}(x_{\sigma})$.

(4.16) $\sigma \ge \lambda_i$ (for certain $i \in Q$) implies that S^*_{σ} consists of only one element a_{σ} .

(4.17) if $\sigma \in Q$ and σ is minimal, then $S_{\sigma} = S_{\sigma}^2$.

At first, construct S^* as a composition of S_{σ} by R such that $S^*=S^{*2}$ and the inner right translation semigroup R^* of S^* is a semilattice. (See Theorems 4.1 and 4.3.) By Theorem 4.1, R^* is isomorphic to R and so R^* is a semilattice. Compose S by adding new elements $b_{\lambda_1}, \dots, b_{\lambda_m}$ to S^* such that $S = \sum_{\sigma \in R} S_{\sigma}$, where $S_{\lambda_i} = \{a_{\lambda_i}, b_{\lambda_i}\}, i=1, \dots, m$, and $\sigma \in Q$ implies $S_{\sigma} = S^*_{\sigma}$ and the multiplication $x \cdot y$ in S is defined as follows.

Let $x \in S_{\sigma}$, $y \in S_{\tau}$. Clearly $\sigma \tau \not\equiv \lambda_{\iota}$ (for all *i*) implies $\sigma \not\equiv \lambda_{\iota}$ and $\tau \not\equiv \lambda_{\iota}$ for all *i*, and hence $S_{\sigma} = S_{\sigma}^*$, $S_{\tau} = S_{\tau}^*$.

(4.18)
$$x \cdot y = \begin{cases} a_{\sigma\tau} & \text{if } \sigma\tau \ge \lambda_i \text{ for some } \lambda_i \in Q, \\ xy & \text{otherwise,} \end{cases}$$

where xy means the product of elements x and y of S^* . Then S is a semigroup. In fact, we shall prove $(x_{\sigma} \cdot y_{\tau}) \cdot z_{\mu} = x_{\sigma} \cdot (y_{\tau} \cdot z_{\mu})$.

If $(\sigma \tau) \mu = \sigma(\tau \mu) \geq \lambda_i$ for some $\lambda_i \in Q$,

$$(x_{\sigma} \cdot y_{\tau}) \cdot z_{\mu} = a_{(\sigma\tau)\mu} = a_{\sigma(\tau\mu)} = x_{\sigma} \cdot (y_{\tau} \cdot z_{\mu}),$$

if $(\sigma \tau)\mu = \sigma(\tau \mu) \geqq \lambda_i$ for all *i*, then $\sigma \tau \geqq \lambda_i$, $\mu \geqq \lambda_i$, $\sigma \geqq \lambda_i$, $\tau \mu \geqq \lambda_i$ for all *i*,

$$(x_{\sigma} \cdot y_{\tau}) \cdot z_{\mu} = (x_{\sigma} \cdot y_{\tau}) z_{\mu} = (x_{\sigma} y_{\tau}) z_{\mu} = x_{\sigma} (y_{\tau} z_{\mu}) = x_{\sigma} \cdot (y_{\tau} z_{\mu}) = x_{\sigma} \cdot (y_{\tau} \cdot z_{\mu}).$$

Clearly $S^2 = S^*$ and $Q = S - S^2$. From the definition (4.18),

 $x \cdot a_{\lambda_i} = x \cdot b_{\lambda_i} = a_{\lambda_i} \cdot x = b_{\lambda_i} \cdot x$ for $x \in S$,

in particular $a_{\lambda_i} \cdot b_{\lambda_i} = b_{\lambda_i} \cdot a_{\lambda_i} = a_{\lambda_i}^2 = b_{\lambda_i}^2 = a_{\lambda_i}$ $(i=1, \dots, m)$ and so it is easily shown that S satisfies (4.2) and every S_{σ} is s-indecomposable. By Theorem 4.1, the inner right translation semigroup of S is isomorphic to the semilattice R. Thus we see that S fulfils all the conditions of Theorem 4.5. Therefore it is assured that φ of S is a semilattice.

THEOREM 4.6. Let $Q = \{\lambda_1, \dots, \lambda_m\}$ be a subset of a semilattice R, where $\lambda_1, \dots, \lambda_m$ are mutually incomparable. Let $S^* = \sum_{\sigma \in R} S^*_{\sigma}$ be a semigroup whose inner right translation semigroup is isomorphic to R such that (4.15), (4.16), and (4.17) are fulfilled. For S^* , a semigroup S:

$$S = S^* \smile \{b_{\lambda_1}, \ \cdots, \ b_{\lambda_m}\} = \sum_{\sigma \in \mathcal{R}} S_{\sigma}, \quad \text{where} \quad S_{\lambda_i} = \{a_{\lambda_i}, \ b_{\lambda_i}\}, \quad S_{\sigma} = S^*_{\sigma} \quad (\sigma \in Q)$$

is defined by the multiplication (4.18). Then the right translation semigroup Φ of S is a semilattice. Conversely a semigroup S with $S \neq S^2$ whose Φ is a semilattice, is obtained in such a manner.

4. The Case whose R and L are Semilattices.

 Ψ denotes the left translation semigroup of S, and L denotes the inner left translation semigroup of S.

LEMMA 4.14. If R and L are semilattices, then S is commutative.

Proof. By Lemma 4.1 and its dual form, we have

$$xy = xyy = yxy = yyx = yx$$
.

LEMMA 4.15. If and only if R and L are semilattices and $S=S^2$, then S is a semilattice.

Proof. If R and L are semilattices and $S=S^2$, then x=yz,

$$x^2 = yzyz = (yzy)z = (yyz)z = (yz)z = y(zz) = yz = x.$$

Combining it with Lemma 4.14, it follows that S is a semilattice. The proof of the converse is already shown in [4].

Using Theorem 4.6 and Lemma 4.15, we shall investigate the structure of a semigroup S whose R and L are semilattices and in which $S \neq S^2$.

THEOREM 4.7. Let S^* be a semilattice and $Q = \{\lambda_1, \dots, \lambda_m\}$ be a subset of $S^*, \lambda_1, \dots, \lambda_m$ being mutually incomparable. We construct a semigroup S

by adding new elements $b_{\lambda_1}, \dots, b_{\lambda_m}$ to S^* such that $S = \sum_{\sigma \in S^*} S_{\sigma}$ where $S_{\lambda_i} = \{\lambda_i, b_{\lambda_i}\}$ and $S_{\sigma} = \{\sigma\}$, if $\sigma \in Q$, and the multiplication in S is given as follows: For $x \in S_{\sigma}$ and $y \in S_{\tau}$

$$(4.19) \qquad x \cdot y = \begin{cases} \lambda_i & \text{if } \sigma \tau = \lambda_i \in Q, \\ xy & \text{if } \sigma \tau \in Q, \text{ where } xy \text{ is the product of } x \in S^* \text{ and } y \in S^* \end{cases}$$

References

- T. TAMURA, On translations of a semigroup. Kōdai Math. Sem. Rep. 7 (1955), 67-70.
- [2] —, One-sided bases and translations of a semigroup. Math. Jap. 3 (1955), 137–141.
- [3] -----, The theory of construction of finite semigroups I (Greatest decomposition of a semigroup). Osaka Math. J. 8 (1956), 243-261.
- [4] —, The theory of construction of finite semigroups II (Compositions of semigroups and finite s-decomposable semigroups). Osaka Math. J. 9 (1957), 1-42.

DEPARTMENT OF MATHEMATICS, TOKUSHIMA UNIVERSITY.