NOTES ON TRANSLATIONS OF A SEMIGROUP

By TAKAYUKI TAMURA

In the present paper we shall correct mistakes and incompleteness in the
previous paper [1], and shall discuss the results again and develop them.
Further the main purpose of this paper is to investigate the structure of a
semigroup whose right translation semigroup is a group or a semilattice.
We express many thanks to Prof. G.B. Preston and Mr. Kaichiro Fujiwara
for their kind advice and their pointing out our mistakes. We shall retain
the notations in the previous paper.

1. Corrections and Addenda.

1. Corrections to the theorems of the previous paper.

In Theorems 4,4’ of the paper [1] pp. 68-69, we assume S to satisfy S*=S.
Read ‘“isomorphic’’ for * homomorphic’’, line 15, right, from the bottom,
p. 68, and line 4, left, p. 69.

We devide the theorems into two cases and describe them again.

THEOREM 4. (4.) The conditions (2) and (3) are equivalent, and (2) and
(8) are equivalent. (We may provide no condition for S.)

(2) S contains a right unit, ) O=R;

@) S contains a left unit, @) ¥=L.

THEOREM 4. (4’.) Let S be a semigroup which satisfies S*=S. The
conditions (1) and (2) are equivalent, (1') and (2)) are equivalent.

1) @ is isomorphic to R, 2) S contains a right unit;

@) ¥ s isomorphic to L, @) S contains a left unit.

Theorem 5 is valid for S having no condition. We shall rewrite the
theorem:

THEOREM 5. OW) is dually isomorphic (isomorphic) to S if and only if
S has a two-sided unit.

In its proof, line 14, left, p. 69, read ‘‘ dually isomorphic’’ for ‘‘ isomorphic”’.

The converse of Theorem 9 is not generally true. In Theorem 9, line 7,
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left, p. 70, read ‘ Furthermore, if S has a right zero 0 and +f xy=vy implies
y=0, then the converse of the theorem is true’ for ‘‘ Furthermore the
converse 18 true’”’. We shall describe Theorem 9 again:

THEOREM 9. If S is a semigroup with multiplication xy=0 for every x
and yES8, then 0=V, and @ is composed of all mappings ¢ of S into S
satisfying ¢(0)=0. Conversely, let S be a semigroup which has a right zero
0 and in which xy=y implies y=0. If @ is composed of all the mappings
¢ of S into S satisfying ¢(0)=0, then S is a semigroup defined as xy=0 for
every ¢ and y=8S.

2. Addenda and remark.

Addendum to the proof of Theorem 4. Since @ contains a two-sided unit
i.e. an identical mapping ¢, R also contains the isomorphic image f. of &:
Sefo=Ffufe=Fz for every x<S. This f. is proved to be an identical mapping
of S in the following way. Since S*=S, any element 2z is written as z=2xy
or z=f,(x) for some = and y. Then we have

fe(@)=Fff(x)=Ff,(x)=% for any z€&S,
in other words ze=z; ¢ is a right unit of S.

Addendum to the proof of the converse of Theorem 9. At first we easily
see that 0 is a unique right zero. Moreover 0 is proved to be a left zero at
the same time in the following manner. Let u=0y. Then 0u=0(0y)=(00)y
=0y=u, concluding =0 by the assumption. Hence 0y=0 for all yS. Now
let us prove that xy=0 for every z, y=S. Without loss of generality we
may assume that S contains three elements at least. For, if S is of order
2, then S is nothing but S={0, a} where 0*=0a=a0=a?=0, and so the theorem
holds. Suppose that the proposition is not true, then there are x,, ¥, such
that 2,yo=2,7#0 where z,#0, ¥,#0, and y,#2, are concluded. Utilizing the
mapping ¢ of S into S satisfying

00)=0,  ¢H)=Yo,  ¢(20)=0,
we can prove the proposition as the previous paper shows.
THEOREM 4. Theorems 4, 4 hold even if S is finite.

Proof. (1)—(2). Considering the construction method of all the trans-
lations [2], it follows that if S is finite, @ is also so. Since @ is isomorphic
to the subsemigroup R of @, ® must coincide with R: #=R. By Theorem

4, we obtain (2). (2)—(1) is clear by Theorem 4.

REMARK. If S is neither finite nor S?=S, then Theorems 4 and 4’ are
not necessarily true as the following counter-example shows.
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EXAMPLE. S is the set of all non-negative integers with an element p
adjoined: S=S,~{p} where S,={0,1,---}. The multiplication of S is defined
as

ij=max (i,7), 1, JES,,
PI=1p=1,
pp=0.

S is proved to be a commutative semigroup, S+S% and so it has no unit.
Since the right base of S is {p}, @ is composed of the identical mappings ¢,
and ¢;, 1€S,, as follows (cf. [2]):

max (¢, &) for z€S,,

Sﬂl(x)z 7':07 1""!
7 for x=p,

op(X)=2 for z&S.

Obviously all ¢; form R: R={¢; t¢<S,}, where the correspondence ¢;< 1%
between R and S, is one-to-one and satisfles ¢ip;=¢;;=¢;;. In fact,

¢(max (7, ¥))=max (¢, J, ¥) for zS,,
Pip ()= {
¢i(J)=max (1, J) for xz=p,
and
max (j¢, £)=max (1, J, ©) for z€S,,
@j:(%) = @s5(x)= {
jt=max (1, 7) for xz=p.

Hence the correspondence ¢; < % is an isomorphism.
Consider a mapping of @ to R as the following manner:

1.1 @ = Po, D> Qi 1ES,.

Then’ fOI' 7:7 jESO; Soi¢j:ﬁ0ji:¢lllax(z,]) iS mapped tO ‘;pi+1¢1+1:‘f’maxu+l,]+1)
=@naxc,n+; AN @ip=¢@;=¢; is mapped 10 @i 1Qo=Qo@ii1=Pnaxai1,00=Fis1;
moreover ¢*=¢ is mapped to ¢Z=¢naxw,0,=¢,. Hence the mapping (1.1) is
an isomorphism.

§2. Extension of Theorem 9.

Let S, be a proper subset of a semigroup S, 4 be certain set of some
mappings of S, into Sy, and I" be the set of all the mappings of S—S, into
S. For 64 and rel’, we define ¢ as follows:

a(x), xESOy
{ r(x)y xES-SO:
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this ¢ is denoted by 0+r. We denote by 4+I" the set of all éxr: AxI"
={0xr; o4, rel’}.

As the extension of Theorem 9 in [1], we shall determine the structure
of a semigroup S whose right translation semigroup @ satisfies each of the

following conditions.
Condition I. There are S, and 4 such that @=4axI".
Condition II. @ s composed of all the mappings ¢ of S into S which fix

S, elementwise.
Condition III. @ ¢s composed of all the mappings ¢ of S into S such that

SO(S())CS().
Condition IV. @ ¢s composed of all the mappings ¢ of S into S which fix

an element a.
Firstly we shall investigate the structure of a semigroup S which satisfies

Condition I.

LEMMA 2.1. S,ScS, and hence S, is a subsemigroup of S.

Proof. Consider every inner right translation f,=®. For a&S, z&S8,
we get ax=f(a)E[f(Sy)S,.

LEMMA 2.2. 4 is a subsemigroup of the right translation semigroup of
S,, and 4 contains an tdentical mapping &.

Proof. 4 is considered as the set of all the contractions of all 99 to
So. If 6, and J; are contractions of ¢; and ¢, respectively, then it is easily
shown that 6,0, is a contraction of ¢,¢;, and hence d;€4 and d,=4 imply
0.0.€4. Since the identical mapping & of S belongs to 4, 4 contains the
identical mapping & of S,.

Denote by T, the set of all & such that xScS,: To={x; 2ScS,}. By
Lemma 2.1, S,cT..

LEMMA 2.3. If 2T, then xz is independent of z.

Proof. Let y, be a fixed element of S—S,. For z&S, we can find a right
translation ¢, such that

PAY)=Y tf YES,,
{ ¢:(Yo)=2.
Then we have 2z=x¢,(¥o)=¢(*Yo)=2Y, since xy,ES,.
In virtue of this lemma, we can denote
2.1) r2=a() for any 2T,

where a is a mapping of T, into S, and we derive
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2.2 a(®)=a(x)
from the associative law (xy)z=2x(yz2) for x=T,.
LEMMA 2.4, xyES, implies yES,.
Proof. Consider ¢,=® such that
o (u)=u if ueS,,
owesS, if u&S,.

If we suppose that y&S,, then xy=x¢,(y)=¢.(xy)=S,, contradicting xy&ES,.
qg.ed.

LEMMA 2.5. 2ET, implies xz=z.

Proof. Since xET,, there exists y, such that 2y,€S, and so ¥,ES, by
Lemma 2.4. For any z&€S, we consider ¢.® such that ¢u(xy,)=¢i(y,)=%.
Then we have xz=x¢y(¥,)=¢(xYs)=2.

Denote by S; the set of all a(x), for 2T, i.e. S;=T,S. Clearly S,cS,.
Combining the above lemmas, it follows that S has the following multiplication:

a(x) xzeT,,
Ty =
y zET,

(2.3)

where « is a mapping of T, onto S; such that a*=a i.e. al(a)=a for a=S,.
Conversely, the multiplication defined by (2.8) is associative, for

(xy)z=a(r)z=a’(x)=a(x)=2(yz) if 2T,
(xy)z=yz=1u(yz) if xE€T,.

LEMMA 2.6. In a semigroup S with multiplication (2.8), the right trans-
lation semigroup @ of S is composed of all the mappings of S into S which
Jfix S; elementwise.

Proof. At first, we shall show that o=@ implies ¢p(u)=u for u€S,. Since
u=a(@)=uz, ¢u)=g(a(®))=p@z)=r¢p()=a(x)=u. Next, we shall prove that
a mapping of S into S, which fixes S; elementwise, is a right translation
of S. If z€T,, then ¢(ry)=¢(a@)=a(x)=2¢(y); and if *ET, then ¢(xy)
=oy)=wp(y). q.e.d.

LeEMMA 2.7. If @ satisfies Condition I, then S;=S,; hence a(x)=x for
2ES, in other words, 4 is composed of only an identical mapping.

Proof. Suppose S,—S;#¢. Since @ satisfies Condition I, S has a multi-
plication (2.3), and so Lemma 2. 6 makes us to see that @ contains a mapping
which maps S,—S; into S—S,. This contradicts Condition I, Hence S,=S..
q.e.d,
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At last (2.8) is reformed as
a(x), ze T,
Y=

Y, €T,

2.3)

where « is a mapping of T, onto S, such that o=« i.e. « fixes S, element-
wise.

By Lemma 2.6, it is easily seen that a semigroup with a multiplication
(2. 8") satisfies Condition I. Thus we have

THEOREM 2.1. The right translation semigroup @ satisfies Condition I if
and only if S has the following structure: There exist a subset T, contain-
ing S, and a mapping « of T, onto S, which fixes S, elementwise, and the
multiplication in S is given by

a(x)r re TO:
rYy=

@.38)
y, xES_‘ To.

Therefore we have
COROLLARY 1. Conditions I and II are equivalent.

Next, let us investigate the structure of a semigroup whose @ satisfies
Condition III.

LEMMA 2.8. S, 18 composed of only one element.

Proof. We shall prove that xS, 2’S,, and 2+’ imply a(x)=a(z’). Let
us consider 9= @ such that p(xy)=¢@y)ES,. Then a(x)=r¢y)=¢(xy)=q¢y)
=a'p(y)=a(z’).

COROLLARY 2. Condition III is equivalent to Condition IV.

As a special case of Theorem 2.1, we obtain

THEOREM 2.2. A semigroup S whose @ satisfies Condition IV has the
structure: There exists a subset T, containing a, and the multiplication
wn S is given by

a, re To,
2.4) 2y =
Y, r=S—T,.

Now ¥ denotes the left translation semigroup of S. We shall determine
the structure of a semigroup S whose @ and ¥ satisfy each of the following
conditions.

Condition I,. There are S, and 4 such that @=¥=AxI".

Condition IL.. &=V and it is composed of all the mappings of S into S
which fix S, elementwise.
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Condition IIl,. @=¥ and it is composed of all the mappings of S into S
such that S, is mapped into S,.

Condition IV,. 0=V and it is composed of all the mappings of S into S
which fix an element a.

Let us consider the case of I,. S satisfies not only Theorem 2.1 but also

the dual form of it: There exist a subset @, containing S, and a mapping
B of Q, onto S, which fixes S, elementwise and

{ By), YEQ,
xYy=
x, yeS—Q,.

(2.5)

Immediately we have

THEOREM 2. 2. The right translation semigroup @ and the left translation
semigroup ¥ satisfy Condition I, if and only if S is either a semilattice
of order 2 or a semigroup defined as xy=0 for all x, y=8S.

Proof. If neither S—T, nor S—Q, is empty, let 2, and y,; be elements
of S—T, and S—Q,, respectively. For any 2,7y, ¥,EQo, We get xo=2Y,
=2Yo=2Yo=%Yo by (2.8) and (2.5), hence T,=Q, and it is composed of only
one element @. On the other hand, for any x, and ¥,€S—T,=S—Q, we
get Xo=xy2=¥y2 by (2.8) and (2.5); hence S—T, is also composed of only
one element b. Consequently S={a, b} where a*=ab=ba=a, b*=b. Next, if
either S— T, or S—@Q, is empty, for example, if S-—Ty=¢ then S=T, and,
for every «, y=S and the fixed 2/, ¥'€Q,, we have xy=xy’=2x'y’ which is
independent of x and y; therefore S is a semigroup defined as xzy=0 for
every x, y=S.

Hence Condition I. is equivalent to Condition IV, and at last we see

COROLLARY 3. Conditions I,, II,, III, and IV, are equivalent.

§3. The Case where @ is a Group.

In this paragraph we shall investigate the structure of a semigroup S
whose right translation semigroup @ is a group.
THEOREM 3.1. @ 4s a group if and only if S is a left group.

Proof. Assume that @ is a group. @ contains the identical mapping &
as a left unit of the group @. Then, for any a<S, there exists ¢,=® such
that fop.=¢ufa=¢. Now, for any xS we have

2o (0)=Pa(0a) =@ fo(¥) =&(x) =2

and for any a, xS,
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r=g(x) :fasaa(x) = Spa(x)a-

Therefore S is a left group. Next, we shall prove the converse. Assume

that S is a left group. Then by Theorem 4 in §1, we have ®=R. Denote
by e a right unit of S. Evidently f, is the two-sided unit of R. For f,€R,
we have f.f.,=f. where a’ is an element such that a’a=e. Thus #=R is a
group.

Easily we have

THEOREM 3. 2. Both the right translation semigroup ® and the left trans-
lation semigroup ¥ are groups if and only if S is a group.

Proof. According to Theorem 3.1, @ and ¥ are groups if and only if S
is a left group and a right group at the same time, namely S is a group.

84. The Cases where @ is a Semilattice.

In this paragraph we shall investigate the structure of a semigroup whose
right translation semigroup @ is a semilattice. If @ is a semilattice, then
the inner right tronslation semigroup R={f,; a=S} is a semilattice because
it is a subsemigroup of @.

1. The Structure of a Semigroup S whose R is a Semilattice.

Suppose that the inner right translation semigroup R of S is a semilattice.
We get easily

LEMMA 4.1. R s a semilattice if and only if xy=xy* and xyz=2x2y for
any x, ¥, 2€8.

The homomorphism S>a —~f,R gives a semilattice-decomposition of S:
S= 318, where, for simplicity, we redenote by o etc. the elements of R,

¥4
andoethe multiplication in S; is given by
4.1) TolYo=ao(%s),

as being an idempotent mapping of S; into S5 a?=as. We denote x~y if
x2E8Ss, Y=Ss.

LEMMA 4.2. By the homomorphism a — f,, the semigroup S s decomposed
into the union of s-indecomposable semigroups S; defined by (4.1).

Proof. Let x~y be a congruence relation by which S, is decomposed to
a semilattice. Let a be a fixed element of S;. Then, for any 2€S,;, x~x*
=za~ar=asa). Hence any s-decomposition of S, gathers all the elements
into a class, i.e. S, is s-indecomposable.



TRANSLATIONS OF A SEMIGROUP 17

THEOREM 4.1. There are given a semilattice T and a system of s-inde-
composable semigroups Ss (6=T) defined by (4.1). If we construct a com-
position S of Ss by T such that

4.2) a, beS; implies xa=xb for every xS,

then the inmer right translation semigroup R of S is a semilattice which
18 isomorphic to T. Any semigroup whose R is a semilattice is obtained
as the above.

Proof. Let R be the inner right translation semigroup of S. We consider
a decomposition §;: S= ERS" beside the decomposition d,: S= Z;So. By
the assumption, if a, bTeES,,, then f,=f, and so we get r%gﬁolf,e in other
words, T is homomorphic to R, whence R is a semilattice. On the other hand,
since each S, (¢=T) is s-indecomposable by the assumption, and each S.
(r€R) is also s-indecomposable by Lemma 4.2, the decompositions ¢, and J,
are greatest. Therefore §,=0d,, and hence R is isomorphic to 7. q.e.d.

In order to construct such a composition of S, by T, it is sufficient and
necessary to find a system of mappings {f%; s, €T} where fT is a mapping
of S, into Ss. and satisfies

4.3 fi=ao,
.4 Io=1515
and the multiplication in S is defined as
Lol =[5(2s) for z,€8;, z.€8S..

There exists in reality such a system {f=} as the following examples show,
but in this paper we cannot solve the problem how all the systems are
determined.

ExaMPLE 1. Let u be a non-zero-element of T, i.e. u=T? Take an element

P in any SZCS,. For the system {p,; ueT"}, and for any o, 7€ T, f= is
defined as

ao(xo)’ O';Ty
f§(%)= {
pO’Cy a ¥ 7.

Clearly fi(ps)=ps.. We shall prove that (4.4) is fulfilled. If 6=74, then
o=4, o=71, and

I 2(2s) =fNas(®s))=a o) = ao(@e)=FNs).

1) 0,=0, means that the decomposition d, is a refinement of the decomposition d,.
See [3].
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If 0272 and o=r, then o341 and

FoI§(@e) =1 5(f5(#0)) = Dor= Pocsry=F (%)
If 6274 and oz7, then

S ool §(26) =13 (Pox) = Piown =Poceny =S (%o).

ExaMPLE 2. For any ueT?, we take p,ES2 and select f,. of T such that
pB.<um. For the systems {B,; usT?} and {p,; usT?}, and for any o, r€T,
we define f7 as follows:

Zo if o>fs=1,
Jias)= 1 as(xs) if o=t, PoErT,
l Dor otherwise.
If 6>pBs=74, then 6>7, ot=0>4 and so
Fofe@o) = 3(w0) =0 =F5(@o).
If 6=>74, Bs%74, and either B,=41 or Bs=7, then
Pfsa= { Flao@e)=as@)=FP@s)  if Po=A, PoET,
So(@°) = ao(@o) =f (%) if Bo=r, BoEA
If o=72, Bozktd, Bo4d, and PsZ7, then
Fofa(@e) =1 (ae(we) = aj(@e) = ato(te) =F (o).
If 6%7, 6=1, then we get s34 and
Sofi(@0) =FL(fE(%o)) = Por=Docxn = (¥o).
If 62=72 and o2z, then
S Fu(@6) =12 (Pow) = Dcoemn=Pocery =S (o).

Now the translation semigroup @ of the semilattice R is a semilattice.

(See [4].) We shall relate to the relation between @ and ® when R is a
semilattice.

LEMMA 4.3, x~y tmplies ¢(x)~¢(y) for every ¢c0.
Proof. From zx=zy, we get
20(w)=@(zx)=0(Yy)=2¢(Y) for all z&S,
and hence ¢(x)~¢(y).

For any ¢=®, we define a mapping ¢ of R into R as follows:
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o(a)=r means o(o)=r for zE8,,

in which 7 is determined independently from an element x by Lemma 4. 3.
This ¢ is a translation of R, because we have

P(aB)=a(p(yz))=o(y¢(2)) =o(y)o(¢(2)) = ag(B)
where y=S,, 2€S;, y2z=Sa. Next we shall show that ¢ — ¢ is a homomor-
phism of @ into @. For ¢, ¢=0, €8S,
@s—ﬂ(a)=0(¢s0(90))=0(¢(90(90)))=¢7(0s0(90))=€3977(a).
Therefore we have

THEOREM 4.2. If R is a semilattice, then @ is homomorphic into @ by
the correspondence ¢ — ¢.

2. The Structure of a Semigroup S in Case that S=S% and @ is a Semi-
lattice.

THEOREM 4.3. Let S=S°. The right translation semigroup @ of S is a
semilattice if and only if the inner right translation semigroup R is a
semilattice.

Proof. We shall prove only that @ is a semilattice if R is a semilattice.
For any z=S, x=yz, we have, by Lemma 4. 1,

V(@) =¢*(y2) = (Y2") = (Y29 (2)) = ¢(Y¢(2)2) =Y ¢(2)p(2) =Y () = (y2) = ()
whence ¢*=¢.
(pd)(@)=p¢(y2) =@ (y2*) = (Y2 (2)) = p(y¢(2)2) =y (2)¢(2).
Similarly (¢¢)(@)=¢¢(yz)=y¢()¢(z)=y¢()¢(z). Hence ¢¢=d¢. q.e.d.

Consider the decomposition of S: S= >}S,. Since S=S% we see that

Ss=82 if o is minimal in 7. We are arbﬁx{earily given semilattice T and a
system of s-indecomposable semigroups S; (¢ 7T) defined by (4.1) such that
S;=8% if o is minimal. Then a semigroup S whose @ is a semilattice
is constructed as a composition of S; by T such that S=8§? in addition to
(4.2). In order to construct S, it is necessary and sufficient to find {f5;
o, t€T} where ft is a mapping of S, into Ss- such that in addition to (4.3)

and (4. 4),

4.5) > f(S;)=Ss  for any o<T.
o>neT

For example, Example 2 shows that {fc} exists.

By the way, we shall relate to the relation between @ and @ in the case
where R is a semilattice and S=S2,
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THEOREM 4.4. If S=8% and R is a semilattice, then @ 1is isomorphic

onto the subsemilattice of @ by the correspondence ¢ —¢ (described inm
Theorem 4. 2).

Proof. In order to prove the isomorphism, we may show only that ¢ - ¢
is one-to-one, or a(p(x))=a(¢(x)) for all xS implies ¢(r)=¢(x) for all z&S.
Since S=S8?% any x is decomposed into the product x=yz for some y and z,
and so ¢@)=¢Yr)=yp()=y¢(@)=¢(yz)=¢(x). Since the isomorphic image
of @ is a subsemigroup of the semilattice @, it is a semilattice.

3. The Structure of a Semigroup S in Case that S+ S? and @ is a
Semilattice.

LEMMA 4.4. We assume S+S* and let p=S—S%. The class S. which
contains p 18 a semigroup of order 2 defined as Sa={p, ¢} where p*=pg=qp
=q2=q.

Proof. Suppose that S, contains two distinct elements ¢, » at least besides
p. Consider two mappings ¢; and ¢, of S into S defined as follows:

o(p)=q, Pup)=1,
{ o(x)=x if xz+#p; oy(x)=1 if x#p.
Since p=S—S8?% and p~q, we get
oi(xy) =2y =2¢:(y) for y+#p and every z,
¢i(xp)=xp=ag=2¢,(p) for every z.

Hence ¢, is a right translation of S; and ¢, is similarly proved to be also
so. Then ¢ #¢sp; is proved as follows:

1P(D)=1(r)=7,  @0:(P)=2(0)=4.

This contradicts the assumption that @ is a semilattice. Therefore S,
contains one element at most besides p. Since p=(S—S8?),~S., we see Sa#S2.
Consequently it follows that S. is nothing but a semigroup S.={p, ¢}, where

PP=pe=qp=¢*=q.

LEMMA 4.5. Let S+#8* and let pS—S8? and so p=S.={p, q}. (Cf. Lemma
4.4.) Furthermore suppose that «<f which shows the ordering in the
semilattice B. Then S; is composed of only one element.

Proof. Suppose that S; contains two elements a, b at least. We see that
there is a=S; such that pa=a. For, if pa=b+a, then pb=pa because a~b;
and then we can find b such that pb=b. Hence we may assume

4.6 Sfup)=0a
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without loss of generality. Then since fi=f, by the initial assumption,

4.7 fa(a/) :fafa(p) :fu(p):a“
Now, let us consider a mapping ¢ defined as
fa(x)! x#pr
p(x)=
b, r=p.

This ¢ is proved to be a right translation of S:
¢@y)=fu(xy)=af(y)=2¢(y) for y#p and any @,
¢@p)=rfuxp)=2afo(p)=xa=xb=a¢(p)  for any x,

because we use a~b and (4. 6). Since ¢*=¢ must hold,

4.8) Fa0)=¢(0)=¢*(p)=¢(p)=b.

On the other hand, we see ¢f,# fop. In fact,

ofd@)=¢@)=fu(@)=a  (by 4.6), 4.7),
Fagp()=Fa(b)=0 (by (4.8)).

This result contradicts the assumption that @ is a semilattice. Thus the
lemma has been completely proved.

LEMMA 4.6. p, r€S—S? and p#r imply p+r. If peS. and rES;, then
aZEf.
Proof. Sinece neither p nor » lies in S?, Lemma 4. 4. makes it impossible

that p and » belong to the same S.. Also aZEp is immediately shown by
the result of Lemma 4. 5.

Thus we have known that if S*#S and @ is a semilattice, then R is a

semilattice, and the decomposition S= %SG of S is obtained where the
cE

subsemigroups S, satisfy Lemmas 4.4, 4.5, and 4.6. On the other hand,
the converse will hold. Hereafter we shall prove that if R is a semilattice
and the classes S; in the decomposition S= S‘Sa satisfy Lemmas 4.4, 4.5
(and consequently 4.6), then @ is a semllattlce

Let S—82={by; AeR'cR}, and S» be the class which contains . By
Lemma 4. 4,
4.9 Sa={ax b} where ai=abr=brar=bi=as,

and there is a one-to-one correspondence between by and S,. As easily seen,

ax it o(x)=2,
(4.10) zar=ax=xbr=bua=
u=u*> where o(u)=21-0(x) if o(x)£Al.
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LEMMA 4.7. Letting S*=S% we have S*¥*=8S* If R is a semilattice,
then the imner right translation semigroup R* of S* is a semilattice.

Proof. We may show only S*cS**. Letting any x=S*=S? xz=yz for
some ¥y, 2€8S, r=yz=yz*=(y2)2> by Lemma 4.1. Hence S*cS*’. By the
assumption, R is a semilattice and so f,=f:,

R={fy; s€S*}={f,; s€S}=R,

hence R is also a semilattice. On the other hand, since any inner right

translation f* of S* is a contraction of f,€R, R is homomorphic to R*.
Consequently R* is a semilattice.

LEMMA 4.8. Let ¢ be a right translation of a semigroup M, and let N
be a subsemigroup of M. If ¢o(N)CN, then the contraction of ¢ to N is a
right translation of N.

Let ¢ be a right translation of S and let ¢* be the contraction of ¢ to
S*=82 Since ¢(S*cS?% we have

LEMMA 4.9. The contraction ¢* of =@ to S*=S8* is a right translation
of S*.

LEMMA 4.10. Let S, be the subsemigroup defined in (4.9). If ¢ is
a right translation of S, we have one of the following three cases (4.11),
(4.12), (4.13):

(4.11) o(a)=¢(b)=an,
(4.12) olan)=a, ©(b)=0ba,
(4. 13) o(a)=¢b)=c where a(c)>A.

Proof. By Lemma 4.8, ¢(S»)CS, for some u. Reminding us of Theorem
4.2 and Lemma 19 in [4], we see A=u. In the case A=y, since ¢(Sr)CSy, ¢
is considered as a right translation of S,, and consequently we have either
(4.11) or (4.12). In the case A<y, S,={c} by Lemma 4.5, and so we have
(4. 13).

According to Lemma 4.7 and Theorem 4. 3,
LEMMA 4.11. The translation semigroup @* of S* is a semilattice.
For any ¢*=0* a mapping ¢ of S into S is defined as follows:
o*(x) if xz=8?,
(4. 14) o@)=< ax or b if x=b,, o*(a)=an,

c if x=b,, o*(aa)=c, o(c)>A.
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LeEmMA 4.12. This ¢ s a right translation of S.

Proof. In order to prove ¢(xy)=2x¢(y), we must consider several cases.
I. The Case y=S-=.
If z=8?% ¢y)=¢*(@y)=2¢*(W)=2¢(y), and if ES? i.e. x=b,

¢(0:y) = @(a:xy) =¢*(a2y) = ax¢*(¥) =brp*(y) = bag(¥),

because byz=axz for all z by (4.10).
JI. The Case yES5? i.e. y=b,.

o(xbr)=¢(xa) by (4.10),
=x¢(az) by the Case I,

while, if ¢(a)=¢(b,), then zg(a))=z¢(b), and if ¢(a)#¢dy) ie. ¢la)=a,
¢(b2)=by, then

zo(m)=rar=xbr=1x¢(b»)
by (4.10). Therefore we obtain ¢(xy)=x¢(y) in all cases.

LEMMA 4.13. @ denotes the set of all translations defined by (4.14). @ is
a semilattice.

Proof. The Proof of ¢*=¢.

In the case x=S?,
(4.15) ¢ (@)=¢(e@)=e(e*@)=@*¢*(x)=¢*@)=¢(x) by (4. 14) and Lemma 4. 11.

In the case xES?, i.e. x=b),

it @b)=¢(ax), then ¢*b)=¢(@d))=¢(@(a)=¢(@)=¢by) because a&S*
and so (4.15) is used;

if @(b)#¢(as), then ¢(b)=bx and ¢*(b)=¢ (@) =¢(b2).

The Proof of ¢¢=¢e.

For z&8?, ¢d(x)=¢*¢*(x)=¢*o*(x)=¢¢(x) by Lemma 4.11.

For xES?, if ¢(b)=¢(ax) and ¢(b)=¢(as), then

¢P(br)=¢d(a:) =¢*¢* (@) =¢*¢*(an) =Pg(ar) =P¢(ba);
if p(b)=¢(ax) and ¢b)#=P(ar) i.e. Plar)=ax, ¢(br)=b,, then
@Pa(b)=¢(b2) = ¢(an)=¢*(@) =¢*¢*(an) =¢*¢*(ar) =¢¢(an) =P¢(br);
if p(b)#¢(ax) and ¢(b)#¢(ar), then
P (02)=(b2) =br=¢(b)=¢¢(bs).
Thus we conclude the following theorem:

THEOREM 4.5. Let S#S% The right translation semigroup @ of a semi-
group S is a semilattice if and only if S satisfies the following conditions:
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(1) The inner right translation semigroup R of S is a semilattice, and
so S= 318 where every S ts defined as ToYo=as(Xs).

(2) Ufgtting S—S82={by; AER'CR}, the subsemigroup S which contains
by 1s a semigroup of order 2 defined as

S;\Z{ax, bx}, a§= (l)\b}\=b)\a;\=b§=a)\,
and itf A<pB, then Sp is a semigroup composed of only one element.

Lastly we shall consider the relation between the structure of S and that
of S*=8? when S#S? and @ is a semilattice. We denote by S%* the inter-
section of S*and S;: S¥=S*_S,. Then S= >}S; corresponds to S*= ;S;"

CER (o]

where, letting Sa={a, b2} and br&S—S*,
if o=, then S*={aa}, if o#4, then S*=S;

especially if 6=4, S; consists of only one element. Lemma 4.6 reminds us
of the fact that 1, and A, are incomparable.

Now we shall construct S from S*. Let R be a semilattice and @ be a
subset of R, any two elements of which is incomparable:

Q:{er”'!zm}v ]i%&y; 'L?ﬁj.

Furthermore a system {S*; &R} of s-indecomposable semigroups S * is given
such that
(4.15) the multiplication in S* is defined as o¥s=ao(®s).
(4.16) o=4, (for certain 1€Q) implies that S* consists of only one element
aU-
(4.17) if s=Q and o is minimal, then S;=S2
At first, construet S* as a composition of S; by R such that S*=S*% and
the inner right translation semigroup R* of S* is a semilattice. (See
Theorems 4.1 and 4.3.) By Theorem 4.1, R* is isomorphic to R and so R*
is a semilattice. Compose S by adding new elements by, ---, by, to S* such
that S= S‘_AS(,, where Sy, ={a», b}, ©=1, .-+, m, and 6EQ implies S;=S} and
the multplication z-y in S is defined as follows.

Let z€8S,, y=S.. Clearly or#4 (for all ¢) implies 0%4, and v#4, for all
1, and hence S,=S8%, S.=8%.

Ao if 6r=4, for some 4,€Q,
(4.18) RS
Ty otherwise,

where 2y means the product of elements # and ¥ of S*. Then S is a semi-
group. In fact, we shall prove (@sy<) 2, =%+ (Yc-2y).
If (or)u=o(r)=4, for some 4,€Q,

(Ts* Y) * 20 = Qomp = Qoo =To* (Y 2),
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if (or)u=o(cpu)Z4, for all ¢, then ori,, uzkd, oz, tuzl, for all 1,
(%o*Y) * 2= (To Yr) 2= (oY )20 = To(Y 2) =T (Y52) =T (Y= Z)-
Clearly S?=S* and Q=S—S%. From the definition (4. 18),
z-ar,=x-by,=ax, x=by-x  for zES§,

in particular as-bx,=by-ax,=ai,=b} =a», (¢=1, ---, m) and so it is easily
shown that S satisfies (4.2) and every S, is s-indecomposable. By Theorem
4.1, the inner right translation semigroup of S is isomorphic to the semi-
lattice R. Thus we see that S fulfils all the conditions of Theorem 4.5.
Therefore it is assured that @ of S is a semilattice.

THEOREM 4.6. Let Q={4;, -+, »} be a subset of a semilattice R, where

A, +e+y An are mutually incomparable. Let S*= Y] S* be a semigroup whose
o

R
inner right translation semigroup 1is isomorphisc to R such that (4.15),
(4.16), and (4.17) are fulfilled. For S*, a semigroup S:

S=8*{ba, -+-, ba }= Z;Sc, where S»,={axr, b}, Se=8*% (¢s€Q)
cE

is defined by the multiplication (4.18). Then the right translation semti-
group @ of S is a semilattice. Conversely a semigroup S with S+#S* whose
@ is a semilattice, is obtained im such a manner.

4. The Case whose R and L are Semilattices.
¥ denotes the left translation semigroup of S, and L denotes the inner
left translation semigroup of S.

LEMMA 4.14. If R and L are semilattices, then S is commutative.
Proof. By Lemma 4.1 and its dual form, we have
TY=TYY=YTrY=yYyr=y=x.

LEmmMmA 4.15. If and only if R and L are semilattices and S=S*, then
S is a semilattice.

Proof. If R and L are semilattices and S=S%, then x=yz,
P*=yzyz=(yzy)2=(yy2)2=(y2)2=y(22) =yz=2.

Combining it with Lemma 4.14, it follows that S is a semilattice. The
proof of the converse is already shown in [4].

Using Theorem 4.6 and Lemma 4.15, we shall investigate the structure
of a semigroup S whose R and L are semilattices and in which S=.S2,

THEOREM 4.7. Let S* be a semilattice and Q={A,, ---, An} be a subset of
S*, A, -+, An being mutually incomparable. We construct a semigroup S



26 TAKAYUKI TAMURA

by adding new elements br, ---, by to S* such that S= Z,Sc where Sa,

={4, br} and So={c}, if 0€EQ, and the multiplication in S 18 given as
Sollows: For x€S; and y=S;

/2,, ’if 0"L'=11'EQ,
4.19 2z-y=
xy if ot EQ, where xy is the product of xt€8S* and y=S*
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