
NOTES ON TRANSLATIONS OF A SEMIGROUP

BY TAKAYUKI TAMURA

In the present paper we shall correct mistakes and incompleteness in the
previous paper [1], and shall discuss the results again and develop them.
Further the main purpose of this paper is to investigate the structure of a
semigroup whose right translation semigroup is a group or a semilattice.
We express many thanks to Prof. G. B. Preston and Mr. Kaichiro Fujiwara
for their kind advice and their pointing out our mistakes. We shall retain
the notations in the previous paper.

1. Corrections and Addenda.

1. Corrections to the theorems of the previous paper.

In Theorems 4, 4' of the paper [1] pp. 68-69, we assume S to satisfy S2=S.
Read " isomorphic" for " homomorphic ", line 15, right, from the bottom,
p. 68, and line 4, left, p. 69.

We devide the theorems into two cases and describe them again.

THEOREM 4. (4/.) The conditions (2) and (3) are equivalent, and (20 and
(3y) are equivalent. (We may provide no condition for S.)

(2) S contains a right unit, (3) Φ=R;
(20 S contains a left unit, (30 Ψ=L.

THEOREM 4. (4'.) Let S be a semigroup which satisfies S2=S. The
conditions (1) and (2) are equivalent, (10 and (20 are equivalent.

(1) Φ is isomorphic to R, (2) S contains a right unit;
(10 Ψ is isomorphic to L, (20 & contains a left unit.

Theorem 5 is valid for S having no condition. We shall rewrite the
theorem:

THEOREM 5. Φ(Ψ) is dually isomorphic (isomorphic) to S if and only if
S has a two-sided unit.

In its proof, line 14, left, p. 69, read " dually isomorphic " for " isomorphic " .

The converse of Theorem 9 is not generally true. In Theorem 9, line 7,
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left, p. 70, read " Furthermore, if S has a right zero 0 and if xy=y implies
y = Q, then the converse of the theorem is true" for "Furthermore the
converse is true". We shall describe Theorem 9 again:

THEOREM 9. If S is a semigroup with multiplication xy=0 for every x
and y<^S, then Φ—Ψy and Φ is composed of all mappings ψ of S into S
satisfying ^(0)=:0. Conversely, let S be a semigroup which has a right zero
0 and in which xy=y implies y=0. If Φ is composed of all the mappings
ψ of S into S satisfying >̂(0) = 0, then S is a semigroup defined as xy=0 for
every x and S

2. Addenda and remark.

Addendum to the proof of Theorem 4. Since Φ contains a two-sided unit
i.e. an identical mapping ε, R also contains the isomorphic image fe of ε:
fefx=fxfe=fχ for every x^S. This fe is proved to be an identical mapping
of S in the following way. Since S2=S, any element z is written as z=xy
or z=fy(x) for some x and y. Then we have

fe(z)=fefy(x)=fy(x) = Z fθΓ

in other words ze=z; e is a right unit of S.

Addendum to the proof of the converse of Theorem 9. At first we easily
see that 0 is a unique right zero. Moreover 0 is proved to be a left zero at
the same time in the following manner. Let u=0y. Then Ow=O(θ3/)=(OO)]/
= 0y=u, concluding u=0 by the assumption. Hence 0y=0 for all J/ES. NOW
let us prove that xy=0 for every x, y^S. Without loss of generality we
may assume that S contains three elements at least. For, if S is of order
2, then S is nothing but £={0, a} where 02=0α=α0=α2=0, and so the theorem
holds. Suppose that the proposition is not true, then there are x0, y0 such
that Xoyo^^oΦO where x0Φ0, y0 =£0, and y^Φz^ are concluded. Utilizing the
mapping ψ of S into S satisfying

we can prove the proposition as the previous paper shows.

THEOREM Ϊ . Theorems 4, 4; hold even if S is finite.

Proof. (l)-»(2). Considering the construction method of all the trans-
lations [2], it follows that if S is finite, Φ is also so. Since Φ is isomorphic
to the subsemigroup R of Φ, Φ must coincide with R: Φ=R. By Theorem
4, we obtain (2). (2) -> (1) is clear by Theorem 4.

REMARK. If S is neither finite nor S2=S, then Theorems 4 and 4r are
not necessarily true as the following counter-example shows.
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EXAMPLE. S is the set of all non-negative integers with an element p
adjoined: S=So^{p} where S0={0,1, •}. The multiplication of S is defined
as

pi = ip=i,

pp=0.

S is proved to be a commutative semigroup, S¥=S2, and so it has no unit.
Since the right base of S is {p}, Φ is composed of the identical mappings ψp

and ψu i<ESo, as follows (cf. [2]):

Ϊ
max (i, x) for x<E:S0,

i=0,1, ,
i for x=p,

for

Obviously all ψι form R: R~{ψΰ i<^S0}, where the correspondence ψi <~> i
between R and So is one-to-one and satisfies <Pi<Pj=(fji=<Pij- In fact,

(j, α?)) = max {%, j , x) for

,j) for x=pfP
and

'ΐ, x) = ma,x(i,j, x) for

ji = max(i,j) for x=p.

Hence the correspondence ^ o i is an isomorphism.
Consider a mapping of Φ to jβ as the following manner:

(1.1) ψ-^ψύy *Pi-*<pi+u i^So.

Then, for i, i<=£0, ψίψj=ψji=ψn^iι,^ is mapped to ^i+ifj+^ΫWxα+i.j+D

=ίpnnαcί,j)+ι; and ψίψ=ψφi=ψi is mapped to ψi+φ = φoφi+i = ψnχΆχiι+i,o^ = φί+i',

moreover ^ 2 = ^ is mapped to ^=ywxco,o)=^o. Hence the mapping (1.1) is
an isomorphism.

§2. Extension of Theorem 9.

Let So be a proper subset of a semigroup S, Δ be certain set of some
mappings of So into So, and Γ be the set of all the mappings of S—So into
S. For d^Δ and r e Γ , we define ψ as follows:

φ(x) =
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this ψ is denoted by δ*r. We denote by Δ*Γ the set of all δ*T: Δ*Γ
= {δ*ΐ;

As the extension of Theorem 9 in [1], we shall determine the structure
of a semigroup £> whose right translation semigroup Φ satisfies each of the
following conditions.

Condition I. There are So and Δ such that Φ=Δ*Γ.
Condition II. Φ is composed of all the mappings ψ of S into S which fix

So elementwise.
Condition III. Φ is composed of all the mappings ψ of S into S such that

Condition IV. Φ is composed of all the mappings ψ of S into S which fix
an element a.

Firstly we shall investigate the structure of a semigroup S which satisfies
Condition I.

LEMMA 2.1. SoSaSo and hence So is a subsemigroup of S.

Proof. Consider every inner right translation fx^Φ. For αGS0, x^S,
we get ax=fx(a)^fχ(So)cSo.

LEMMA 2. 2. Δ is a subsemigroup of the right translation semigroup of
So, and Δ contains an identical mapping ε0.

Proof. Δ is considered as the set of all the contractions of all ψ^Φ to
So. If <5i and <52 are contractions of ψx and <ρ2 respectively, then it is easily
shown that δλδ2 is a contraction of ψiψz, and hence δί<=Δ and δ2^Δ imply
ttezί. Since the identical mapping ε of S belongs to Δ, Δ contains the
identical mapping ε0 of So.

Denote by To the set of all x such that xSczS0: T0={x; xSaS0}. By
Lemma 2.1, SodTo.

LEMMA 2.3. If x^T0, then xz is independent of z.

Proof. Let yQ be a fixed element of S—So. For 2GS, we can find a right
translation ψz such that

z{y)=y if

Then we have xz=xψz(yo)=ψz(xy0)=xyo since

In virtue of this lemma, we can denote

(2.1) xz=a(x) for any

where a is a mapping of To into So and we derive
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(2.2) a\x) = a(x)

from the associative law (xy)z=x(yz) for x^T0.

LEMMA 2.4. xy^S0 implies y£=S0.

Proof. Consider φ^Φ such that

ψι(u)=u if we SO,

if

If we suppose that y^S0, then xy=x<p1(y)=φί(xy)^S0, contradicting xy£=S0.
q.e.d.

LEMMA 2.5. ίueTΌ implies xz=z.

Proof. Since αjeT0, there exists y0 such that xyo€ΞSo and so yo^So by
Lemma 2.4. For any zeS, we consider ψ2^Φ such that 2̂(#2/o)=^2(2/0)=#.
Then we have xz=xφ2(yo)=ψ2(^yo) = z.

Denote by Sx the set of all a(x), for «eΓ 0, i.e. Si = T0S. Clearly
Combining the above lemmas, it follows that S has the following multiplication:

(a(x) X<EΞT0,
(2.3) χy=

\y χ^T0

where a is a mapping of To onto £ύ such that a*=a i.e. αr(α) = α for αeSi.
Conversely, the multiplication defined by (2. 3) is associative, for

(xy)z=a(x)z=a2(x)=a(x)=x(yz) if ase Γo,

(xy)z=yz=x(yz) if tfe TV

LEMMA 2. 6. Iw α semigroup S with multiplication (2. 3), the right trans-
lation semigroup Φ of S is composed of all the mappings of S into S which
fix Si elementwise.

Proof. At first, we shall show that ψ^Φ implies <ρ(u)=u for %£&. Since
u=a(x)=xz, φ(u)=<ρ(a(x))=<ρ(xz)=xφ(z)=a(x)=u. Next, we shall prove that
a mapping of S into S, which fixes Si elementwise, is a right translation
of S. If x^Toy then <p(xy)=<p(a(x))=a(x)=xφ(y); and if α e Γ 0 then (̂OJJ/)
=φ(y)=xφ(y). q.e.d.

LEMMA 2.7. 7/ Φ satisfies Condition I, then S! = S0; hence a{x)=x for
in other words, Δ is composed of only an identical mapping.

Proof. Suppose So—SiΦφ. Since Φ satisfies Condition I, S has a multi-
plication (2.3), and so Lemma 2. 6 makes us to see that Φ contains a mapping
which maps S0—Sι into S—So. This contradicts Condition L Hence Sι=So*
q.e.d.
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At last (2. 3) is reformed as
( a(x),

(2.30 χy=i

\v,
where a is a mapping of To onto So such that ct*=a i.e. a fixes So element-
wise.

By Lemma 2. 6, it is easily seen that a semigroup with a multiplication
(2. 30 satisfies Condition I. Thus we have

THEOREM 2.1. The right translation semigroup Φ satisfies Condition I if
and only if S has the following structure: There exist a subset To contain-
ing So and a mapping a of To onto So which fixes So elementwise, and the
multiplication in S is given by

( a(x),
(2. 30 xy= I

[ y,

Therefore we have

COROLLARY 1. Conditions I and II are equivalent.

Next, let us investigate the structure of a semigroup whose Φ satisfies
Condition III.

LEMMA 2.8. So is composed of only one element.
Proof. We shall prove that x<=S0, xf<^S0, and xΦxf imply a(x)=a(x'). Let

us consider ψ^Φ such that ψ(xy)=ip(xfy)^Sύ. Then a(x)=x<p(y)=φ(xy)=<p(x'y)
=xrφ(y)=a(xr).

COROLLARY 2. Condition III is equivalent to Condition IV.

As a special case of Theorem 2.1, we obtain

THEOREM 2. 2. A semigroup S whose Φ satisfies Condition IV has the
structure: There exists a subset To containing a, and the multiplication
in S is given by

( a, x<=T0,
(2.4) χy=

[yt xεΞS-T0.

Now Ψ denotes the left translation semigroup of S. We shall determine
the structure of a semigroup S whose Φ and Ψ satisfy each of the following
conditions.

Condition Ia. There are So and Δ such that φ=.ψ~Δ^Γ.
Condition Πa. Φ=Ψ and it is composed of all the mappings of S into S

which fix So elementwise.
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Condition IIIa. Φ=Ψ and it is composed of all the mappings of S into S
such that So is mapped into So.

Condition ΓVa. Φ=¥ and it is composed of all the mappings of S into S
which fix an element a.

Let us consider the case of Ia. S satisfies not only Theorem 2.1 but also

the dual form of it: There exist a subset Qo containing So and a mapping
β of Qo onto So which fixes So elementwise and

ί β(y),
(2.5) xy=l

[ x,

Immediately we have

THEOREM 2. 2. The right translation semigroup Φ and the left translation
semigroup Ψ satisfy Condition 7a if and only if S is either a semilattice
of order 2 or a semigroup defined as xy=0 for all x, y(=S.

Proof. If neither S—To nor S—Qo is empty, let xt and yt be elements
of S— To and S—Qo, respectively. For any xo^TOf yo^Qo, we get xo = xoyi
=XoVo=oo1yo:=yo by (2.30 and (2.5), hence To~Qo and it is composed of only
one element a. On the other hand, for any x2 and y2^S~To = S—Qo, we
get #2=#22/2=2/2 by (2.30 and (2.5); hence S~T0 is also composed of only
one element b. Consequently S={a, b} where a2=ab=ba=a, W—b. Next, if
either S-To or S—QQ is empty, for example, if S—T0=φ then £ = J Γ 0 and,
for every x, y^S and the fixed xf, ^ e Q 0 , we have xy=xy'=xfy' which is
independent of x and y; therefore S is a semigroup defined as xy=0 for
every x,

Hence Condition Ia is equivalent to Condition IVa and at last we see

COROLLARY 3. Conditions /a, /7a, III& and IV& are equivalent.

§3. The Case where Φ is a Group.

In this paragraph we shall investigate the structure of a semigroup S
whose right translation semigroup Φ is a group.

THEOREM 3.1. Φ is a group if and only if S is a left group.

Proof. Assume that Φ is a group. Φ contains the identical mapping ε
as a left unit of the group Φ. Then, for any αe£, there exists ψa^Φ such
that faψa=ψ/afa:=e. Now, for any x e S w e have

%ψa(a) = ψa(xa) = ψafa(x) = f (») = X

and for any a, χ(=S,
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X = e(χ) =faψa(x) =

Therefore S is a left group. Next, we shall prove the converse. Assume
that S is a left group. Then by Theorem 4 in §1, we have Φ—R. Denote
by e a right unit of S. Evidently fe is the two-sided unit of R. For fa^R,
we have fafa'—fe where a' is an element such that a'a=e. Thus Φ=R is a
group.

Easily we have

THEOREM 3. 2. Both the right translation semigroup Φ and the left trans-
lation semigroup Ψ are groups if and only if S is a group.

Proof. According to Theorem 3.1, Φ and Ψ are groups if and only if S
is a left group and a right group at the same time, namely S is a group.

§4. The Cases where Φ is a Semilattice.

In this paragraph we shall investigate the structure of a semigroup whose
right translation semigroup Φ is a semilattice. If Φ is a semilattice, then
the inner right tronslation semigroup R={fa; a<=S} is a semilattice because
it is a subsemigroup of Φ.

1. The Structure of a Semigroup S whose R is a Semilattice.

Suppose that the inner right translation semigroup R of S is a semilattice.
We get easily

LEMMA 4.1. R is a semilattice if and only ifxy=xy2 and xyz=xzy for
any x, y,

The homomorphism S^a-*fa^R gives a semilattice-decomposition of S:
S= Σ Sσ where, for simplicity, we redenote by σ etc. the elements of R,

σe-β

and the multiplication in Sa is given by

(4.1) xayo=ara(Xo),

ac being an idempotent mapping of Sσ into Sa: a\-=aG. We denote x~y if
x<=So,

LEMMA 4. 2. By the homomorphism a—>fa, the semigroup S is decomposed
into the union of s-indecomposable semigroups Sσ defined by (4.1).

Proof. Let x^y be a congruence relation by which Sσ is decomposed to
a semilattice. Let a be a fixed element of ^σ. Then, for any x^Sσ, x^x2

= xa^ax=aa(a). Hence any s-decomposition of Sσ gathers all the elements
into a class, i.e. SQ is s-indecomposable.
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THEOREM 4.1. There are given a semilattice T and a system of s-inde-
composable semigroups Sσ (^eT) defined by (4.1). If we construct a com-
position S of So by T such that

(4.2) α, b(=Sσ implies xa=xb for every X<BS,

then the inner right translation semigroup R of S is a semilattice which
is isomorphic to T. Any semigroup whose R is a semilattice is obtained
as the above.

Proof. Let R be the inner right translation semigroup of S. We consider
a decomposition dύ S=Y^Sτ, beside the decomposition d0: S=y]Sσ. By

the assumption, if α, δe£ σ , then fa=fb and so we get ^ V 5 , in other
words, T is homomorphic to R, whence R is a semilattice. On the other hand,
since each Sσ (<^eT) is s-indecomposable by the assumption, and each Sτ

(ΓGJ2) is also s-indecomposable by Lemma 4.2, the decompositions δt and d0

are greatest. Therefore dt=dOf and hence R is isomorphic to T. q.e.d.

In order to construct such a composition of Sσ by T, it is sufficient and
necessary to find a system of mappings {/j; a, Γ G T } where / ; is a mapping
of So into Sστ and satisfies

(4.3) f*=cta,

(4.4) ff

and the multiplication in S is defined as

There exists in reality such a system {/;} as the following examples show,
but in this paper we cannot solve the problem how all the systems are
determined.

EXAMPLE 1. Let μ be a non-zero-element of T, i.e. μ^T%. Take an element
pμ in any S^aSμ. For the system {pμ; μeT 2 }, and for any a, Γ G T , / ; is
defined as

aa(Xa), σ^τ,

pστ, σ^τ.

Clearly fϊ(pa)=Paτ. We shall prove that (4.4) is fulfilled. If σ^τλ, then
τ^r, and

1) <5I5Ξ;<5O means that the decomposition <50 is a refinement of the decomposition
See [3].
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If σ^μτλ and σ^τ, then o^μλ and

If a^τλ and <τφτ, then

=fϊτ(Poτ) = P(στ)λ = Pσ(τλ) =ff(Xo).

EXAMPLE 2. For any μ<=T2, we take pμeSjJ and select j9μ of Γ such that
βμ<μ. For the systems {/3μ; μ(=T2} and {pμ; μejΓ2}, and for any σ,
we define / ; as follows:

J
σ ) if Oz^τ, /2σϊ

otherwise.

If σ>βσ^τλ, then σ>τ, στ=σ>λ and so

fλA/'/y. \ fλΛy \ /y. fτλΛy. N
JΰJa\Xσ)~Jo\Xσ)~'Xσ~Jσ \Xo)'

If σ^τ/ί, βa^τλ, and either i9σ^/ί or j9σ^τ, then

)=/Sλ(»σ) if

If σ^τλ} βo^τλ, /9σφ^, and /5σφτ, then

If ^φτ^, cr^τ, then we get <rφΛ and

If tfφτΛ and ίTφτ, then

=foτ(Poτ) = Rστ)λ = PσCτλ) =f?(Xo).

Now the translation semigroup Φ of the semilattice R is a semilattice.

(See [4].) We shall relate to the relation between Φ and Φ when R is a
semilattice.

LEMMA 4. 3. #~2/ implies φ(x)~φ{y) for every

Proof. From zx=zy, we get

z<p(x)=φ(zx)=φ(zy)=zφ(y) for all z<=S,

and hence <p(x)~φ(y).

For any yeΦ, we define a mapping ψ of R into 12 as follows:
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ψ(ά)=ϊ means σ(φ(x))=T for χ(=Sa,

in which ϊ is determined independently from an element x by Lemma 4. 3.
This ψ is a translation of R, because we have

φ(aβ) = σ(ψ(yz))=σ(yφ(z)) = σ{y)σ(φ{z)) = άψ(β)

where y<^Sa, z<=S$, yz^Sa$. Next we shall show that ^ - > ^ is a homomor-

phism of Φ into Φ. For ψ, ψ<=Φ, x<=Sa,

ψφ(a) = σ(ψψ(x)) = σ(ψ(φ(x))) = ψ(σψ(x)) = ̂ (αr).

Therefore we have

THEOREM 4. 2. 7/ R is a semilattice, then Φ is homomorphic into Φ by
the correspondence ψ~^ψ.

2. The Structure of a Semigroup S in Case that S=S2 and Φ is a Semi-
lattice.

THEOREM 4.3. Let S=S2. The right translation semigroup Φ of S is a
semilattice if and only if the inner right translation semigroup R is a
semilattice.

Proof. We shall prove only that Φ is a semilattice if R is a semilattice.
For any x^S, x=yz, we have, by Lemma 4. 1,

<p2(x)=ψ\yz)=ψ2(yz2)=ψ{yzψ{z))=ψ{yψ{z)z) = yψ{z)ψ{z)=^(z)=ψ(yz)=^(α)

whence ψ2=ψ.

(ψψ)(x)=^(2/z)=ψψ(yz2)=ψ{yzψ{z))=ψ{yψ{z)z)=yψ(z)<p(z).

Similarly (Ψφ)(x)=Ψφ(yz) = yψ(z)ψ(z)=yψ(z)φ(z). Hence <pψ=ψφ. q.e.d.

Consider the decomposition of S: <S= Σ & . Since S=S2, we see that
Sσ=S£ if ίr is minimal in T. We are arbitrarily given semilattice T and a
system of s-indecomposable semigroups Sσ (σ<=T) defined by (4.1) such that
So=S2 if σ is minimal. Then a semigroup S whose Φ is a semilattice
is constructed as a composition of Sσ by T such that S=S2 in addition to
(4. 2). In order to construct S, it is necessary and sufficient to find {/j;
a, r e T} where /£ is a mapping of *Sσ into Saτ such that in addition to (4. 3)
and (4. 4),

(4.5) Σ fτ(Sσ)=So for any ^eΓ.

For example, Example 2 shows that {/j} exists.

By the way, we shall relate to the relation between Φ and Φ in the case
where R is a semilattice and S=S2,
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THEOREM 4.4. // S=S2 and R is a semilattice, then Φ is isomorphic

onto the subsemilattice of Φ by the correspondence φ->ψ (described in
Theorem 4. 2).

Proof. In order to prove the isomorphism, we may show only that ψ-^ψ
is one-to-one, or σ(ψ(x))=σ(ψ(x)) for all x<=S implies <ρ(x)=ψ(x) for all x^S.
Since S=S2, any x is decomposed into the product x=yz for some y and z,
and so <p(x)=<p(yz)=yφ(z)=yψ(z)=ψ(yz)=ψ(x). Since the isomorphic image

of Φ is a subsemigroup of the semilattice Φ, it is a semilattice.

3. The Structure of a Semigroup S in Case that S Φ S2 and Φ is a

Semilattice.

LEMMA 4.4. TΓe assume SΦS2 and let p<=S—S2. The class SΛ which
contains p is a semigroup of order 2 defined as Sa={p, q} where p2=pq=qp
= q2=q.

Proof. Suppose that Sa contains two distinct elements q, r at least besides
p. Consider two mappings ψι and φ2 of S into S defined as follows:

ψι(p) = q, ί

(px(x) = x if xφp; \ <p2(%)~% if xΦp.

Since p^S—S2 and p~qf we get

ψi(xy)=xy=xψι{y) for yφp and every x,

<p1(xp)=xp=xq = xψ1(p) for every x.

Hence ψι is a right translation of S; and >̂2 is similarly proved to be also
so. Then ψi<p2Φψ2ψi is proved as follows:

ψφ(p) = ψι(r)=r, Wi(p) = ̂ 2to) = (?•

This contradicts the assumption that Φ is a semilattice. Therefore Sa

contains one element at most besides p. Since p^(S—S2)^Sa, we see SaΦS*.
Consequently it follows that Sa is nothing but a semigroup Sa={p, q}, where

LEMMA 4. 5. Let SΦS2 and let p<=S—S2 and so p(=Sa={p, q}. (Cf. Lemma
4.4.) Furthermore suppose that a<β which shows the ordering in the
semilattice R. Then S& is composed of only one element.

Proof. Suppose that £β contains two elements α, b at least. We see that
there is a^Sβ such that pa~a. For, if pa=bΦa, then pb=pa because a~b;
and then we can find b such that pb=b. Hence we may assume

(4.6) fa(p) = a
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without loss of generality. Then since fl=fa by the initial assumption,

(4. 7) fa(a) =fafa(p) =fa(p) = a.

Now, let us consider a mapping ψ defined as

fa(x), %Φp,

b, x=p.

This ψ is proved to be a right translation of S:

for yφp and any x,

for any x,

because we use a~b and (4. 6). Since φ2=φ must hold,

(4.8) faΦ) = φΦ) = <f(X>) = φ(3>) = b.

On the other hand, we see ψfaΦfaψ- In fact,

φfa(p) = φ(a)=fa(a) = a (by (4. 6), (4. 7)),

fa<f(p)=faΦ) = b (by (4.8)).

This result contradicts the assumption that Φ is a semilattice. Thus the
lemma has been completely proved.

LEMMA 4.6. p, r<=S—S* and pφr imply p + r. If peSα and reSβ, then

Proof. Since neither p nor r lies in S2, Lemma 4. 4. makes it impossible
that p and r belong to the same Sa. Also a%β is immediately shown by
the result of Lemma 4. 5.

Thus we have known that if S"ΦS and Φ is a semilattice, then R is a
semilattice, and the decomposition S= Σ &σ of S is obtained where the

subsemigroups So satisfy Lemmas 4.4, 4.5, and 4. 6. On the other hand,
the converse will hold. Hereafter we shall prove that if R is a semilattice
and the classes Sσ in the decomposition S= Y] Sa satisfy Lemmas 4. 4, 4. 5

(and consequently 4. 6), then Φ is a semilattice.

Let S— S2={6A; λ<BRfaR}, and Sλ be the class which contains bλ. By

Lemma 4. 4,

(4.9) Sλ={αλ, 6λ} where α^=αA=bλ=b{=α λ ,

and there is a one-to-one correspondence between bλ and £λ. As easily seen,

λ if
(4.10)

= W2 where <τ(i6)=^ σ(ί») if σ(x) dβλ.
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LEMMA 4. 7. Letting S*=S2, we have £* 2 =£*. If R is a semilattice,
then the inner right translation semigroup R* of S* is a semilattice.

Proof. We may show only £*c£* 2 . Letting any X<BS* = S2, x=yz for
some ΐ/, z<^S, x=yz = yzz={yz)z2 by Lemma 4.1. Hence S*aS*2. By the
assumption, R is a semilattice and so /*=/>,

hence R is also a semilattice. On the other hand, since any inner right

translation / * of S* is a contraction of fs^R, R is homomorphic to R*.
Consequently R* is a semilattice.

LEMMA 4. 8. Let ψ be a right translation of a semigroup M, and let N
be a subsemigroup of M. If φ(N)aN, then the contraction of ψ to N is a
right translation of N.

Let ψ be a right translation of S and let φ* be the contraction of φ to
S* = S2. Since φ(S2)aS2, we have

LEMMA 4. 9. The contraction φ* of ψ^Φ to S* = S2 is a right translation
of S*.

LEMMA 4.10. Let Sλ be the subsem.igroup defined in (4.9). If ψ is
a right translation of S, we have one of the following three cases (4.11),
(4.12), (4.13):

(4.11) ψ{ay)=ψ{by) = aχ,

(4.12) <p(aλ) = aλ, ψ(bλ) = bλ,

(4.13) φ(aλ) = <p(bλ) = c where σ(c)>λ.

Proof. By Lemma 4.3, ψ(Sλ)czSμ for some μ. Reminding us of Theorem
4. 2 and Lemma 19 in [4], we see λ^μ. In the case λ=μ, since ψ(Sx)c:Sx, ψ
is considered as a right translation of Sx, and consequently we have either
(4.11) or (4.12). In the case λ<μ, Sμ={c} by Lemma 4.5, and so we have
(4.13).

According to Lemma 4. 7 and Theorem 4. 3,

LEMMA 4.11. The translation semigroup Φ* of S* is a semilattice.

For any <^>*eΦ*, a mapping ψ of S into S is defined as follows:

φ*(x) if xeS 2 ,

αλ or 6λ if x = bχ, φ*(aχ) = aχ,(4. 14) φ(x) =

if x=bχ, <p*(ax)=c, o(c)>λ.
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LEMMA 4.12. This φ is a right translation of S.

Proof. In order to prove ψ(xy) = xφ(y), we must consider several cases.

I. The Case y^S2.
If x<=S2, φ(xy)=<ρ*(xy)=xφ*(y)=x<p(y), and if XEΞS2 i.e. x=bλ,

ψΦλV)=φ(a,λy) = φ*(aλy) = aλφ*(y) = bλφ*(y) = 6λ^(l/),

because bχz=a^z for all 2 by (4.10).

II. The Case y^S2 i.e. y=bλ.

φ(xbλ)=φ(xaχ) by (4.10),

= x<p(ax) by the Case I,

while, if φ(a,λ) = <f(bλ), then xφ{aτ) = xφ(b-)), and if <f(aχ)Φφ(b\) i.e. (f(aλ) = aλf

φ(bλ) = bλ, then

by (4.10). Therefore we obtain φ(xy) = xφ(y) in all cases.

LEMMA 4.13. 0 denotes the set of all translations defined by (4.14). Φ is
a semilattice.

Proof. The Proof of φ2=ψ.

In the case x^S2,
(4.15) <p2(x)=<p(φ(x)) = φ(φ*(x)) = φ*φ*(x)=<p*(x) = φ(x) by (4.14) and Lemma 4.11.

In the case XCΞS2, i.e. x=b^

if <p(bx)=<p(ax), then ψ2(h)=ψ(φ(bλ))=(f((p(aλ))=φ(aλ) = ψ(bλ) because α λ e S 2

and so (4.15) is used;

if ψ{by)Φψ{a^)f then ψ(bλ) = bλ and ψ2φλ) = φ(φ(bλ)) = φ(bλ).

The Proof of φψ=ψφ.

For x<=S2, φψ(x)=φ*ψ*{x)=ψ*φ*{x)=ψ(p(x) by Lemma 4.11.

For a e S 2 , if <ρφλ)=<ρ(aλ) and ΨΦλ) = Ψ(aλ), then

if ψφύ=φ{a )) and ψφ-χ)Φψ{aτ) i.e. ψ{aτ) = a^ ψφλ) = bλ, then

^ λ ( δ ) = y (δ λ )=y>(α λ )=^*(α λ )=^*^*(α λ )=ψ*ψ*(aχ)

if φφλ)Φψ{ay) and Ψφλ)Φψ(aλ), then

Thus we conclude the following theorem:

THEOREM 4. 5. Lei SΦS2. The right translation semigroup Φ of a semi-
group S is a semilattice if and only if S satisfies the following conditions:
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(1) The inner right translation semigroup R of S is a semilattice, and
so S= Y]Sσ where every Sσ is defined as xGyσ=aa{xo).

σgiί

(2) Letting S-S2={bλ; λ<=R'aR}, the subsemigroup Sλ which contains
bλ is a semigroup of order 2 defined as

and if λ<β, then S? is a semigroup composed of only one element.

Lastly we shall consider the relation between the structure of S and that
of S* = S2 when SφS* and Φ is a semilattice. We denote by S* the inter-
section of S* and Sσ: S* = S*^Sa. Then S= Σ £ σ corresponds to S*= Σ-S*

σe-β σe-B

where, letting Sλ={aχ,bχ} and bx<^S—S*,

if a=λ, then S* = {aλ}, if σΦλ, then S*=Sa;

especially if σ^λ, Sσ consists of only one element. Lemma 4. 6 reminds us
of the fact that λx and λ2 are incomparable.

Now we shall construct S from S*. Let R be a semilattice and Q be a
subset of R, any two elements of which is incomparable:

Furthermore a system {S*; σ^R} of s-indecomposable semigroups S^ is given
such that
(4.15) the multiplication in £ j is defined as xoyσ = aa{Xo).
(4.16) σl^λi (for certain i^Q) implies that S* consists of only one element
ασ.
(4.17) if σζ=Q and a is minimal, then Sa=Sl.
At first, construct S* as a composition of Sσ by R such that S*=S*2 and
the inner right translation semigroup i2* of S* is a semilattice. (See
Theorems 4.1 and 4. 3.) By Theorem 4.1, R* is isomorphic to R and so jβ*
is a semilattice. Compose S by adding new elements bχv •••, bxm to S* such
that S= Σ &, where Sλ^ia^, δλj, ϊ = l, , m, and creQ implies Sσ=S* and
the multplication cc /̂ in S is defined as follows.

Let x<^So, y^Sx. Clearly oτ^λz (for all i) implies σ^λ% and τ^λ% for all
i, and hence Sσ=S*, Sx=Sχ.

Ϊ
<Zστ if aτ^λ% for some ^ G Q ,

x?/ otherwise,

where a?2/ means the product of elements x and y of S*. Then S is a semi-
group. In fact, we shall prove (Xσ'yτ) zμ=xσ (yτ zμ).

If (σr)μ=σ(τμ)^λι for some

(Xo' Vτ) ' Zμ = Ct(στ)μ = α σ ( τ μ ) = XG' (yτ' Zμ),
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if (στ)μ=a(τμ)^λι for all i, then στή=λz, μ^λlf a^λτi τμ^λ% for all i,

(Xa V z) * Zμ.= (%σ' #τ)Sμ= (»σ2Ac)Sμ= »σ(ίΛc3μ) = #σ (l/τSμ) = %o ' (#τ ' Sμ)

Clearly S2 = S* and Q=S-S2. From the definition (4.18),

α? αλi=a? δλ i=αλ ι aj = 6λi ίc for

in particular αλί 6λi=δλί αλi=αλι=6λΐ=αλι 0& = l, •••, m) and so it is easily
shown that S satisfies (4. 2) and every Sσ is s-indecomposable. By Theorem
4.1, the inner right translation semigroup of S is isomorphic to the semi-
lattice R. Thus we see that S fulfils all the conditions of Theorem 4. 5.
Therefore it is assured that Φ of S is a semilattice.

THEOREM 4.6. Let Q = {λlf •••, λm} be a subset of a semilattice R, where

λu •••, λm o,re mutually incomparable. Let S * = Σ S * be a semigroup whose
inner right translation semigroup is isomorphic to R such that (4.15),
(4.16), and (4.17) are fulfilled. For S*, a semigroup S:

S=S*^{hv . . ., δλ m }=Σ£ σ , where Sλ< = {αλ<, 6λJ, ^σ=^* (erEQ)
06-β

ŝ defined by the multiplication (4.18). TT̂ ew ί/̂ e right translation semi-
group Φ of S is a semilattice. Conversely a semigroup S with SφS2 whose
Φ is a semilattice, is obtained in such a manner.

4. The Case whose R and L are Semilattices.
Ψ denotes the left translation semigroup of S, and L denotes the inner

left translation semigroup of S.

LEMMA 4.14. // R and L are semilattices, then S is commutative.

Proof. By Lemma 4.1 and its dual form, we have

xy=xyy=yxy=yyx = yx.

LEMMA 4.15. // and only if R and L are semilattices and S=SίJ, then
S is a semilattice.

Proof. If R and L are semilattices and S=S2, then x=yz,

x2=yzyz=(yzy)z=(yyz)z={yz)z=y(zz)=yz=x.

Combining it with Lemma 4.14, it follows that S is a semilattice. The
proof of the converse is already shown in [4].

Using Theorem 4. 6 and Lemma 4.15, we shall investigate the structure
of a semigroup S whose R and L are semilattices and in which SΦS2.

T H E O R E M 4.7. Let S* be a semilattice and Q={λl9 •••, λm} be a subset of

S*, λίf •••, λm being mutually incomparable. We construct a semigroup S
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by adding new elements bxv

= {λι, δλ.} and Sa={(7}, if <
follows: For x^Sσ and

(4.19) x y=
xy

if στ=λ

if

bλm to S* such that S= Σ Sa where Sλ.

and the multiplication in S is given as

), where xy is the product of x^S* and
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