A THEOREM ON FOURIER SERIES

By Zuiman YUJOBO

(Comm. by T. Kawata)

Theorem!) Suppose that a function f(x,t) is defined in $-\infty < x < \infty$, $o \le t \le 1$, with period 2π and measurable with respect to x and there exists a function $S^{(x)}$ with period 2π , integrable in $[o, 2\pi]$ and, such that

$|f(x,t)| \leq S(x)$

for every x and t. Now suppose further that f(x,t) is continuous with respect to t at each x belonging to a set A ($C[0,2\pi]$) of positive measure; then $O_{\pi}(x,t)$ tends to f(x,t) uniformly in $0 \le t \le 1$ at almost all x belonging to A, where $O_{\pi}(x,t)$ denotes the π -th Cesaro sum of the Fourier series of f(x,t) of order 1 with respect to x.

Lemma?) If a function $\mathfrak{g}^{(\kappa, t)}$ defined in $A \leq x \leq \lambda$, $o \leq t \leq 1$ is measurable with respect to \mathfrak{X} for every \mathfrak{t} and continuous with respect to \mathfrak{X} for every \mathfrak{X} belonging to a set A^* of positive measure. Then for any positive number \mathfrak{E} there exists a closed set $F^{(\mathfrak{k})}$ such that

 $\begin{array}{ll} m\left(A^{*}-F^{(\varepsilon)}\right)\leqslant \epsilon \\ \text{and} \ f^{(*,t)} \quad \text{is continuous on} \end{array}$

 $\left\{ (x,t) ; x \in F^{(\epsilon)}, 0 \leq t \leq 1 \right\}.$

Proof. Let $t^{(i)}, t^{(a)}, \dots, t^{(b)}, \dots$ be all the rational numbers in $[\circ, 1]$. Since $f^{(a,t)}$ is uniformly continuous on $[\circ, 1]$ as a function of t at every $x \in A^*$, we have

$$A^* = \sum_{m=1}^{\infty} A^*_{n,m}$$

where $A_{n,m}^*$ is the set of all x^* ($e A^*$) such that for every $t^{(i)}$ and $t^{(j)}$ that satisfy $|t^{(i)}-t^{(j)}| < \frac{1}{m}$, $|\int (x^*, t^{(i)}) - \int (x^*, t^{(j)})| < \frac{1}{n}$. $A_{n,m}^*$ are clearly measurable.

Now we take the positive numbers \mathcal{E}_i ($i=1,2,\cdots$), such that

We can take a positive integer m_n for every positive integer n, such that

$$m (A^* - A^*_{n,m_n}) < \varepsilon_n$$

On the other hand, we can take for every integer k > 0 a measurable set A^*_{k} , such that $f(x, t^{(k)})$ is continuous on A^*_{k} and

$$m (A^* - A^*_{\mathbf{k}}) < \varepsilon_{\mathbf{k}}$$

by Lusin's theorem. Then we have
$$m (A^* - \Pi^{\circ}_{\mathbf{k}=1} A^*_{\mathbf{k}} \cdot \Pi^{\circ}_{\mathbf{n}=1} A^*_{\mathbf{n},\mathbf{m}_n})$$

$$= m \left(\sum_{\mathbf{k}=1}^{\infty} (A^* - A^*_{\mathbf{k}}) + \sum_{n=1}^{\infty} (A^* - A^*_{n,\mathbf{m}_n}) \right)$$

$$< \sum_{\mathbf{k}=1}^{\infty} \varepsilon_{\mathbf{k}} + \sum_{n=1}^{\infty} \varepsilon_n = \varepsilon_{\mathbf{k}}. \quad (1)$$

Since $\Pi_{k=1}^{\infty} A_{k}^{*} \cdot \Pi_{n=1}^{\infty} A_{n,m_{n}}^{*}$

is

measurable, it contains a closed set $F^{(\ell)}$, such that

$$\mathfrak{m} \left(\pi_{\mathbf{k}_{e_{1}}}^{\mathbf{p}} A_{\mathbf{k}}^{*} \cdot \pi_{n_{e_{1}}}^{\mathbf{p}} A_{n, \mathbf{w}_{u}}^{*} - F^{(\varepsilon)} \right)$$

$$< \varepsilon_{2}, \qquad (2)$$

Then it follows from (1) and (2) that

$$m(A^*-F^{(\varepsilon)}) < \varepsilon$$
.

Now let us prove that f(x,t) is continuous on the set $\{(x,t); x \in F^{(k)}\}$ $0 \le t \le 1$. Since the set of $t^{(j)}$ ' $(j=1,2,\cdots)$ is dense in [0,1]and f(x,t) is continuous with respect to t at every $x \in A^*$, we have

$$\begin{split} \left| \begin{array}{c} \left\{ (x,t_{1}) - \int (x,t_{2}) \right\} &\leq \frac{1}{2} \\ \text{whenever } x \in A_{n,m}^{*}, \quad o \leq t_{1} \leq 1 \\ o \leq t_{2} \leq 1 \quad \text{and} \quad \left| \begin{array}{c} t_{1} - t_{2} \right| < \frac{1}{2} \\ \text{consequently} \quad f(x,t) \quad \text{converges to} \\ \end{split} \end{split}$$

$$f(x, t_0)$$
 uniformly on $\prod_{n=1}^{\infty} A_{n,m_n}$

when t tends to an arbitrary number t_{\circ} , such that $\circ \le t_{\circ} \le 1$. Since furthermore there exists a sequence

continuous on $\Pi_{\boldsymbol{\ell}_{n-1}}^{\infty} \mathcal{A}_{\boldsymbol{\ell}_{n}}^{*} (\subset \Pi_{n-1}^{\infty} \mathcal{A}_{\mathcal{V}_{n}}^{*}).$

Next we take an arbitrary number $x_{\circ} \in F^{(\epsilon)}$. Then, as proved above, for any integer n > 1 there exists a positive number δ_n such that $|x-x_0| < \delta_n$, $x \in F^{(c)}$ implies

$$\int f(x,t) - f(x,t_0) | \leq \frac{1}{n}$$
On the other hand $|t-t_0| < \frac{1}{m_n}$
 $x \in F^{|E|}$ implies
$$(3)$$

$$|f(x,t) - f(x,t_0)| < 1/n$$
 (4)

Since $F^{(c)} \subset A_{n,m_n}^*$. Then it follows from (3) and (4) that $|x-x_0| < \delta_n$, $x \in F^{(c)}$, $|t-t_0| < \frac{1}{m_n}$ implies

$$|f(x,t) - f(x_{\bullet},t_{\bullet})| < \frac{z}{n}$$

,

q. e. d.

Proof of the theorem. By the above lemma, for any integer m > 1, there exists a closed set F_m , such that F_m , $m(A-F_m) < 1/m$ and further such that f(x,t) is continuous on

the set $\{(x,t); x \in F_m, o \leq t \leq i\}$.

First we will prove

$$\frac{1}{n} \Phi_{\mathbf{x}}(\mathbf{u}, t) = \frac{1}{n} \int_{-n}^{n} f^{(\mathbf{x}+\mathbf{v}, t)} - f^{(\mathbf{x}, t)} d\mathbf{v}$$

tends to 0 uniformly in $o \le t \le 1$ for almost all $x \in A$ when $u(z_0)$ tends to O. Now we have

$$\frac{1}{\omega} \Phi_{x}(u,t)$$

$$= \frac{1}{\omega} \int_{F_{m,u,x}} |f(w,t) - f(x,t)| dw$$

$$+ \frac{1}{\omega} \int_{F_{m,u,x}} |f(w,t) - f(x,t)| dw$$
(5)
where $F_{m,u,x}$ is $[x, -u, x+u] \cdot F_{m}$

and Since f(x,t) is uniformly continuous on the set $\{(x,t); x \in F_{m}\}$ $o \leq t \leq i$ because of its compact-ness, the first term of the right hand tends to 0 uniformly in osts! with u--- in case x eFm . Next by Lebesgue's theorem the additive

function of a set,

$$G_{m}(E) = \int_{E \cdot CF_{m}} S(x) dx$$

has a derivative equal to 0 at almost all x belonging to the set F_m^* ($\subset F_m$) such that $m(F_m - F_m^*) = o$ and further such that all the points of F_m^* are density points. Since

$$\frac{1}{u}\int_{F_{m,u,x}^{(c)}} \left| \int (w,t) - \int (x,t) \right| dw$$

$$\leq \frac{1}{u}\int_{F_{m,u,x}^{(c)}} S(w) dw + M(x) \frac{M(F_{m,u,x}^{(c)})}{u},$$

where $M(x) = \sup_{\substack{o \leq t \leq 1}} |f(x, t)|$, the

second term of the right hand of (5) tends to 0 uniformly in $0 \le t \le 1$ with $u \rightarrow v$, in case $x \in F_m^{\star}$, by the definition of F_m^{\star} and in virtue of $M(x) < \infty$ at any $x \in F_m$. Thus $\Phi_x(u,t) / u$ tends to 0 uniformly in $o \leq t \leq 1$ for all κ belonging to

 $\sum_{m=1}^{\infty} F_m^*$ (In the sequel we denote it

by A_{∞}) which satisfies

$$m\left(A-\sum_{m=1}^{\infty}F_{m}^{*}\right)=o.$$

Now let us prove that $\sigma_n(x,t)$ tends to f(x,t) uniformly in ost≤1 with n→∞, in case We can easily obtain

$$2\pi \left(\sigma_{n}^{\pi} (x,t) - f(x,t) \right)$$

$$= \int_{-\pi}^{\pi} \left\{ f(x+u,t) - f(x,t) \right\} K_{n}(u) du$$

$$= \int_{-\frac{1}{2}}^{\pi} \left\{ f(x+u,t) - f(x,t) \right\} K_{n}(u) du$$

$$+ \int_{-\pi}^{\pi} \left\{ f(x+u,t) - f(x,t) \right\} K_{n}(u) du$$

$$+ \int_{-\pi}^{\pi} \left\{ f(x+u,t) - f(x,t) \right\} K_{n}(u) du$$

where $K_n(u) = \frac{1}{n} \left(\frac{\lambda \ln \frac{n \sqrt{2}}{2}}{4 \ln \frac{1}{2}} \right)^2$. Since $|K_n(u)| \leq n$ in $[-\pi, \pi]$, $\left| \int_{-\frac{1}{N}}^{\frac{1}{N}} \left\{ f(x, u, t) - f(x, t) \right\} K_n(u) du \right|$ $\leq n \Phi_s(\frac{1}{n}, t)$

- 9 -

The left hand tends to 0 uniformly with respect to t with $n \rightarrow \infty$, in case $x \in A_{\infty}$, since so is the right hand, as proved above.

Next, since $|K_n(u)| \leq \sqrt{nu^2}$ in $\lfloor \sqrt{n}, \pi \rfloor$ (C: absolute constant), we have

$$\begin{split} & \int_{\frac{1}{n}}^{\pi} \left\{ f(x+u,t) - f(x,t) \right\} K_{n}(u) du \\ & \leq \frac{C}{n} \int_{\frac{1}{n}}^{\pi} \frac{|f(x+u,t) - f(x,t)|}{u^{2}} du \\ & = \frac{C}{n} \left[\frac{\Phi_{x}(u,t)}{u^{2}} \right]_{\frac{1}{n}}^{\pi} \\ & + \frac{2C}{n} \int_{\frac{1}{n}}^{\pi} \frac{\Phi_{x}(u,t)}{u^{3}} du . \end{split}$$

As is proved above, when $x \in A_{\infty}$, there exists for any $\varepsilon > o$ a positive number δ , such that $\Phi_x(u,t) / u < \varepsilon$ in $\upsilon < u \le \delta$, $o \le t \le 1$. Then if $\frac{1}{n} < \delta$, we have

$$\frac{1}{n} \int_{\frac{1}{n}}^{\pi} \frac{\Phi_{\chi}(u, t)}{u^{3}} du$$

$$= \frac{1}{n} \left(\int_{\frac{1}{n}}^{\delta} \frac{\Phi_{\chi}(u, t)}{u^{3}} du + \int_{\delta}^{\pi} \frac{\Phi_{\chi}(u, t)}{u^{3}} du \right)$$

$$\leq \varepsilon - \frac{\varepsilon}{\delta n} + \frac{1}{\delta^{3}n} \int_{\delta}^{\pi} \int_{-u}^{u} (S(x+v) + M(x)) dv du$$

$$\leq \varepsilon + \frac{\pi}{\delta^{3}n} \left\{ \int_{\delta}^{2\pi} S(v) dv + 2\pi M(x) \right\}.$$

The rightest hand of this is smaller than 2ε when n is sufficiently large. On the other hand we have

$$\left|\left[\frac{C}{n}\frac{\Phi_{x}(u,t)}{u^{2}}\right]_{Y_{n}}^{\pi}\right| \leq Cn\Phi_{x}(Y_{n},t) + \frac{C}{\pi^{2}n}\int_{-\pi}^{\pi}\left\{S(x+u)+M(x)\right\}du$$

which tends to 0 uniformly in $o \le t \le 1$ with $n \rightarrow \infty$ in case $x \in A_{\infty}$.

Quite similarly it follows that $\int_{-\pi}^{-\frac{1}{\pi}} \left\{ f(x+u,t) - f(x,t) \right\} K_n(u) du$ tends to 0 uniformly in $o \leq t \leq i$, in case $x \in A_{\infty}$.

From all the results obtained above and (6), it follows immediately that $\sigma_{\overline{n}}(x,t) - \int (x,t)$ tends to 0 uniformly in $o \leq t \leq i$, in case $x \in A_{\infty}$, 9. e. d.

- We can prove also its generalization for functions of the form f (x,t.,t., --, tm) in the same manner.
- 2) This lemma can be regarded as a generalization of Egoroff's theorem.

Department of Mathematics, St. Paul's University.

(*) Received Sept. 15, 1953.