
NOTE ON LAPLACE-TRANSFORMS (VII)

Til]?. OVERCONVΞKGrENCE AND SINGULARITIES OF LAPLACE-TRANSFORMS

By Chuji TANAKA

(Communicated by Y. Komatu)

L e t
 <***>

 b θ

of bounded variation in any finite
interval c t = * ^ X

 y
 _χ being

arbitrary* Put

= j
e

In this present Note, we shall
discuss the relation between the
overconvergence and singularities
of ( 1 . 1 ) . Ve sha l l begin with

Let
convergent for
- o *n e(AZ

<r> o
be slπply

If
) witn

λ)i < τ
p
 and ̂ ^

 Ύ
'/Xv > J- , then in

the._suf ί i ciently small neighbour-
hood of the regular point on <r=o.
the'_SJBquence of partial sums

_/ "mpt J*) rfJ-c*) (y=r.* ••••) i s u n i -
formly ̂ convergent, i .e.

is uni*xΌrmTy convergent«,

If we apply Theorem 1 to
Dirichlβt series, putting acx)
^^Λ,<x

a
^ CO^Λ,<Λ

Λ
<-^^, we get

easil*y

I^ROLLARY I (A.Ostrowski;,
(Cll , C23 p.39). Lei τU) *

£L a
n
 >sut{-λ*t) be simply convergent

Lor' cfyo . If in \λ*,\ ,
.tn̂ .Γ-θ exists a subsequence {λ-n*\

wi.;.,:. 4^i-
 λ/t71y

 1^"
 >
'

x
 * the*** the

sequence*
9
 of partial sums ίl a* ttpi-A*,

C y = r, A .) is uniformly con-
vergent in the suificiently small
neighbourhood of the regular point
on ΰ" — o

Theorem
For the proof of

we need next Lemma.

Let (1.1) be simply
convergent for <r>o β Then, we
have

r ) < ~

λe?

where c\ > U)

( ii ) -p : bounded domain, in which

-FU) is regular.
(iii) £yU)-+o &s t/-+rκ> unitorm-

ly in j> c

Proof. Put I

0 , ^ J5
By Lemma 1 of the previous Note
( )

iJL2>

-cc-otfj {

where ( i ) d

Since
large

^^o , for sufficiently
, by (2.2) we get

{ jί +

Hence

(-2 3) -y- I "*/ ί'ί I

•+ —γ- C
r
 c <fύ, 2. ? I .

where c, = Uj { j. χι<r.) C J + *¥?-'%'-) I

On the other hand, by Lemma 2 of

the previous Note ( ΐ33 ),

i /*'

where (i) 1/

( i i )

Letting y

K«r.)

so t h a t

where tx-lη\ W.i tf/'/J \
F i n a l l y , by (2.3) and ' (2.4; ,

Since
put

At?

is arbitrary, we can

- 100 -



j U)

(3) PROOF OF THEOREM I. By the
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