By Yûsaku KOMATU and Han NISHIMIYA

1．W．Gustin ${ }^{(1)}$ has recently shown that any pair of functions harmonic in respective domains of a euclidean space satisfies a certain bilinear integral identity，and then applied it obtaining systematically new proofs of a few fundamental theorems in classical har－ monic function theory．His principal theorem may be stated as follows：
＂Let ϕ_{1} be harmonic in a domain D_{1} containing a point（expressed by a vec－ tor）q_{1} and ϕ_{2} be harmonic in D_{2} containing q_{2} ．Then the bilinear integral expression

$$
\int_{\Omega} \phi_{1}\left(q_{1}+p_{1} x\right) \phi_{2}\left(q_{2}+f_{2} x\right) d \omega_{x}
$$

depends only on the product $\rho_{1} \rho_{2}$ ， provided the closed sphere with radius
P_{1} about q_{1} and the closed sphere with radius ρ_{2} about q_{2} are contained in D_{1} and D_{2} ，respectively．Here the integral is taken such that the unit vector x extends over the peri－ phery Ω of the unit sphere with sur－ face element $d \omega_{x}$ ，the dimension of the space being arbitrary。＂

Gustin has given two proofs of the theorem；the first being based on Poisson integral formula and the second on Green＇s bilinear integral identity． In this Note we shall give a brief pro－ of which will furthermore clarify the ossential nature of the theorem．

2．Now，we may suppose，without loss of generality，that q_{i} and q_{2} bo－ th coincide with the origin，since the harmonicity remains invariant by any translation．As well known ${ }^{(2)}$ ，any func－ tion $\phi(\rho x)$ harmonic in a closed sphere
$0 \leqq \rho \leqslant \rho^{*}$ can be expanded in a uni－ formly convergent series of the form

$$
\phi(\rho x)=\sum_{n=0}^{\infty} p^{n} Y_{n}(x) \quad\left(0 \leqq p \leqq \rho^{*}\right)
$$

$Y_{n}(x)$ for each n ，denoting a spherical surface harmonic of order on． （As to spherical surface harmonics，of． Remark 2 at the end of the present Note．） Hence we may put

$$
\phi_{1}\left(\rho_{1} x\right)=\sum_{n=0}^{\infty} \rho_{1}^{n} Y_{n}^{(x)}(x)
$$

and

$$
\phi_{2}\left(\rho_{2} x\right)=\sum_{n=0}^{\infty} \rho_{2}^{n} Y_{n}^{(2)}(x)
$$

where $Y_{x}^{(1)}(x)$ and $Y_{x}^{(2)}(x)$ are spherical surface harmonics of order x ．Remembering the orthogonality character of spherical surface har－ monics

$$
\int_{\Omega} Y_{m}^{(1)}(x) Y_{n}^{(2)}(x) d \omega_{x}=0 \quad(m \neq n)
$$

we deduce immediately the relation
$\int_{\Omega} \phi_{1}\left(\rho_{1} x\right) \phi_{2}\left(\rho_{2} x\right) d \omega_{x}=\sum_{n=0}^{\infty}\left(\rho_{1} \rho_{2}\right)^{n} \int_{\Omega} Y_{n}^{(1)}(x) Y_{n}^{(2)}(x) d \omega_{x}$,
yielding the desired result．
3．Remark 1。 In Gustin＇s paper the dimension of basic space is assumed to be not less than two．But，if the space is one－dimensional，the bilinear integral expression may be considered to degenerate into the sum

$$
\phi_{1}\left(q_{1}+\rho_{1}\right) \phi_{2}\left(q_{2}+\rho_{2}\right)+\phi_{1}\left(q_{1}-\rho_{1}\right) \phi_{2}\left(q_{2}-\rho_{2}\right) .
$$

On the other hand，the only harmonic functions in one－dimensional space are innear functions， $1 . e \%$ of the form

$$
\dot{\phi}(\rho x)=a \rho x+b, \quad \rho z 0, x= \pm 1
$$

a and f being constants．It is quite easy to see that the above expression depends on the aggregate $\rho_{1} \rho_{2}$ alone for any pair of such iinear ϕ_{1} and ϕ_{2} 。

Remark 2．In an N－dimenstonal euclidean space，the rectangular carte－ sian and polar coordinates．（ $\left.\xi_{i,}, \xi_{m}\right)$ and（ $\rho, 夕_{1}, \cdots, v_{N-1}$ ）are connected in the follow ing manner ${ }^{(3)}$ ：

$$
\begin{aligned}
& \xi_{j}=P\left(\prod_{k=1}^{i-1} \sin \Delta_{k}\right) \cos \rho_{j} \quad(1 \pm \hat{x} N-1), \\
& \xi_{N}=\rho \prod_{k<i}^{N-1} \sin g_{k} ; \\
& \rho \geq 0, \quad 0 \leqq j_{j} \leqslant \pi \quad(1 \leqq j \leqslant N-2), \quad 0 \leq j_{j-1} \leq 2 \pi ;
\end{aligned}
$$

the empty product being understood，in the usual way，to denote unity．The square of line element is given by

$$
d s^{2}=\sum_{j=1}^{N} d \xi_{j}^{2}=d \rho^{2}+\rho^{2} \sum_{j=1}^{N-1}\left(\prod_{k=1}^{j-1} \sin ^{2} v_{k}\right) d \hat{v}_{j}^{2}
$$

On the other hand, by introducing general orthogonal curvilinear coordinates $\left(\sigma_{1}, \cdots, \sigma_{N}\right)$ with $d \sigma^{2}=\sum_{j=1}^{N} g_{j} d \sigma_{j}^{2}$, the Laplacian operator

$$
\Delta \equiv \sum_{j=1}^{N} \frac{\partial^{2}}{\partial \xi_{j}^{2}}
$$

13 transformed into (4)

$$
\Delta=\frac{1}{\sqrt{g}} \sum_{j=1}^{N} \frac{\partial}{\partial \sigma_{j}}\left(\frac{\sqrt{g}}{g_{j}} \frac{\partial}{\partial \sigma_{j}}\right), \quad g \equiv \prod_{j=1}^{N} g_{j},
$$

which reduces, in our case of polar coordinates, to

$$
\Delta=\frac{1}{\rho^{N-1}} \frac{\partial}{\partial \rho}\left(\rho^{N-1} \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \Delta^{*} \equiv \frac{\partial^{2}}{\partial \rho^{2}}+\frac{N-1}{\rho} \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \Delta^{*}
$$

with

$$
\Delta=\sum_{j=1}^{*-1}\left(\prod_{k=1}^{j-1} \operatorname{cosec}^{2} v_{k}\right) \cdot\left(\frac{\partial^{2}}{\partial \lambda_{j}^{2}}+(N-j+1) \cot \vartheta_{j} \frac{\partial}{\partial g_{j}}\right)
$$

Hence, for any solid harmonics of the form $\rho^{*} Y_{n}\left(l_{1}, \cdots, A_{n-1}\right)$, we have

$$
0=\Delta\left(\rho^{n} Y_{n}\right)=\rho^{n-2}\left(n(n+N-2) Y_{n}+\Delta^{*} Y_{n}\right)_{2}
$$

1.0.,

$$
\Delta^{*} Y_{n}+n(n+N-2) Y_{n}=0
$$

The last relation is the self-adjoint partial differential equation for sphem rical surface harmonics Y_{n} of order x, which belong to the eigen-value
$n(n+N-2)$ (5). In case of N veriables, a general homogeneous function (polynomial) of order x (with respect to cartesian coordinates) possesses

$$
\text { (n+N-1 }{ }_{N-1} \text {) coefficients. Hence, }
$$ the maximal number of inearly independent Y_{n} is, in general, equal to

$$
\binom{n+N-1}{N-1}-\binom{n+N-3}{N-1}=2\binom{n+N-3}{N-2}+\binom{n+N-3}{N-3}
$$

(*) Received September 1, 1950 .
(1) William Gustin, A bilinear integral identity for harmonic functions. Amer. Journ. of Math. 70(1948), 212220.
(2) Cf., e.g., R.Courant u. D.H11bert, Methoden der mathematischen Physik, I. Berlin (1931), p.443, where the completeness of the system is shown for three-dimensional case.
(3) A.Dinghas, Geometrische Anwendunger der Kugelfunktionen. Göttinger Nachr. Neue Folge 1, No. 18 (1940), 213-235.
(4) See, for instance, H.Cartan, Legons sur le géométrie des espaces de Riemann. Paris (1928), pp.48-49; for particular case of $N=3$ see also Courant-Hilbert, loc. cito, pp.194-195。
(5) Courant-Hilbert, loc. cit., pp. 270 and 441 .

Pokyo Institute of Technology.

