ON A THEOREM OF W. GUSTIN

By Ydsaku KOMATU and Han NISHIMIYA

1. W.Gustin“)has recently shown
that any pair of functionsd harmonlc in
reaspective domains of a eucllidean space
satlsfies a certain bilinear Integral
identity, and then applled 1t obtalning
systematically new proofs of a few
fundamental theorems in classicel har-
monic function theory. Hls principal
theorem may be stated as follows:

“Let ¥, be harmonic in a domain D,
containing a point (expressed by a vec-
tor) ¢t and ¢, be harmonlc in D
containing 2 o Then the bilinear
integral expression

L (k («L«‘—fix) <;>2(zl+f21) dw,

depends only on the product {f, »
provided the closed sphere wlth radius

P, about ¢, and the closed sphere
with radius g, about . are contained
in D, and D, , respectively. Here
the integral 1s taken such that the
unit vector 2 extends over the peri-
phery (L. of the unit sphere with sur-
face element dw, , the dimension of
the space being arbitrary.’

Gustin has given two proofs of the
theorem; the first being based on
Poisson integral formula and the second
on Green’s billinear integral identity.
In this Note we shall give a brief pro-
of which will furthermore clarify the
sssential nature of the theorem.

2. Now, we may suppose, without
loss of generality, that ¢ and §, bo-
th coincide with the origin, since the
harmonicity remains Invarlant by any
translation. As well known‘*), any func-
tion <P(Px) harmonic in a closed sphere

0s § < ¢ can be expanded in a uni-
formly convergent series of the form

P ex) 22'_40 P Y, 00

Yo (<> for each = , denoting &
spherical surface harmonic of order = ,
(As to spherical surface harmonics, cf.,
Remark 2 at the end of the present Nots.)

Hence we may put
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where Ytﬁt) and YZ2w@) are
spherical surface harmonics of order
w . Remembering the orthogonality
character of spherical surface har-
monics
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we deduce immediately the relation
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yielding the desired result.

3. Remark 1. In Gustin’s paper
the dimension of basic space is assumed
to be not less than two. But, if the
spece is one-dimensional, the bilinear
integral expression may be considered
to degenerate into the sum
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On the otber hand, the only harmonic
functions in one-dimensional space are
linear functions, i.e., of the form

Po=apx+4, Pzo, x=ti,
0. and & Dbeing constants. It 1s quite
easy to see that the above expression
depends on the aggregate §P  alone for
any pair of such linear ¢ and ¢, .

Remark 2, In an j( -dimensional
euclidean space, the rectangular carte-
sian and polar coordinates, (§,, > 8y
and ( §, 8., --, ¢y );, are connected
in the following manner 3,
4'“} e Y
éé = f(kﬂm”i)msé GEpan-D,

<,
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the empty product being undsrstood, in
the usual way, to denote unity. The
square of line element is given by
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On the other hand, by introducing ge-
nersal orthogonal curvilinear coordi-
natea ( si, -+, Sy ) with dA"ser?i'wJ ’
the laplacian operator
N Fhd
b=2 5y
=t
is transformed into *’

which reduces, in our case of polar
coordinates, to
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Hence, for any solld harmonics of the
form §°Y, <% -, 8,40 5 We have

0= ACE™ 1= 5" (o Cert- 2L+ 6F Y.,
1.8,

A" Yo+ m (e N-2)Y =0,

The lest relation is the self-adjoint
partlal differentlal equation for sphe-
ricel surface harmonics Y, of order
m , which belong to the eigen-value
nw (n+ N~2) %70 In case of N va-
riebles, a general homogeneous function
(polynomial) of order - (with respect
tc carteslan coordinastes) possesses

~1
("R¥TY ) coefficients. Hence,
the maximal number of linearly indepen-
dent Y, 1is, in general, equal to

_ - +N-3 N-3
("wN ! (ﬂffxs)=zﬂu-z (53,
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(*) Received September 1, 1950,
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