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A REMARK ON THE THIRD COEFFICIENT OF
MEROMORPHIC UNIVALENT FUNCTIONS

By YosHiHISA KUBOTA

1. Let G be a domain on the z-sphere containing the origin and let S(G)
denote the family of functions f(z) regular and univalent in G with expansion
at the origin

f(2)=z+ "%anz” )

Let D be a domain on the z-sphere containing the point at infinity and let
>Y(D) denote the family of functions f(z) meromorphic and univalent in D with
expansion at the point at infinity

fl)=z+ é}lbnz‘" .

The following problem was considered by Schaeffer and Spencer [5]. Let
& be the set of domains onto, which E, the unit circle, is mapped by functions
belonging to S(E). For each domain G belonging to & we write

a,(G)= sup |a,| (n=2,3, ).
res@é

Find the precise values
ra=infa,(G)  (n=2,3,)
GE®

and
I'n=supa,(G) (n=2,3,-).
GE®

Schaeffer and Spencer showed that y,=a,(F) and that if the Bieberbach con-
jecture is true, then I",=4""1,

In this paper we consider a similar problem fo~r meromorphic univalent
functions. Let D be the set of domains onto which E, the exterior of the unit
circle, is mapped by functions belonging to 3’(E). For each domain D belong-
ing to ® we write

D)= =1,92 ).
.Bn( ) fesg'lgD)lan (n 1: » )

Further we write
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198 YOSHIHISA KUBOTA
h=inf (D)  (n=12,-)

and
An= sup ‘Bn(D) (n:l’ 2,...)_
DED

Let D be a domain belonging to ® and let
HO=C+ Zalm

be the function belonging to E’(E) which maps E onto D. If
f@=2+ S byz

is a function belonging to >/(D), then there is a function
gO=C+ el

belonging to E’(ENI) such that f(z)=g-37*(z), and we have
by=c¢,—¢,,
by=¢,—0,,
bs=cy+c,&,—&—&".

Hence it follows that 4,=2, 4,=4/3. Further we can prove by the same method
as in [5] that ,=B,(E)=1, 2,=8, (E)=2/3 and 2=By(E)=1/2+¢"°. The purpose
of this paper is to find the precise value 4;. We shall prove the following

THEOREM.
=1+e7)=2111,

where T is the root of ¢ +7—3=0.

Since 3’ (E) is compact, there are extremal functions g({) and Z({) belong-
ing to S(E) such that geg™! attains the value 4,. In §2 we shall show by
using Jenkins General Coefficient Theorem that extremal functions g({) and (&)
are odd. In §3 we shall prove by Lowner’s method that if

£O=C+ Feal™
and
Q=0+ BaL
are odd functions belonging to Z’(E), then
lesteily—C—C | =(14-e77)%, e+7—-3=0,

and that equality is possible.
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2. The following two lemmas were given by Jenkins [1].

LEMMA 1. Let Q(z)dz*=e**(z*+a)dz? be a quadratic differential on the z-
sphere and let

gO =0+ Zext

be a function belonging to E’(E) which maps E onto a domain admissible with
respect to Q(z)dz® Let

gO=0+ Denl
be a function belonging to 2’(5) with ¢,;=cf. Then
Re{ePcy} < Re{e*ct} .
Equality occurs only for g(Q)=g*).

LEMMA 2. Let s, t and ¢ be real parameters with 0<t<1, —+/1—*+t cos™'¢

Ss<V1-¢ t?—tcos™'t and —w<p=m. Then there 1s an odd function h({:s,t, ¢)
belonging to Z’(E) which maps E onto a domain admissible with respect to €%
(22 —4ie™*t)dz® and which has the expansion at the point at infinity

hE:s, t, o) =C+e *[s+u(l—logt)]{?
-ﬂso[ 5 ——%—s —%tu—t?xog t+—5- tz(logt)z
Fist(I+log H]C*+ - (0<t=1),

=<:sz-wsc-1+—;—e—“«’(l—sZ)c-wr e (t=0).

By a similar argument as in [6, Chapter XII[] we can prove the following
lemma.

LEMMA 3. Let p, 0 and ¢ be real parameters with 0<p <1, —x<0=m, 0
9&52—, ——%« and —rw<ep=m. Then thereis an odd function g({: p, 8, ¢) belong-

ing to 2’(£73) which maps E onto a domain admissible with respect to ¢ (z*—
e %a)dz?, a=2¢"—(p+p ")e "’ and which has the expansion at the point at in-
finity
8(C:p,0,p) =LAt +cf+ -,
where
cikze—up[eiﬂ__%<e—i0 1 B et(i)log 1+:Z

—%<ew—~—f’—1;;, o =H ]
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and
2
2e%cF et —eack = —cos 20+ —H‘;‘o—
Here the logarithms have thewr principal values.

Proof. Let a be a complex number such that Rea#0. We consider the
quadratic differential

Qw: a)dw?*= “’;a dw?.

Formal integration gives

1/2 1/2 1/
W= j‘( w— a) dw———alog wl,g_*_E%-%m——l-wl/z(w a)2,
Since Rea#0, Im{W(a)—W(0)} #0, and so there is a trajectory 7 of Q(w: a)dw?®
having limiting end points at w=0 and the point at infinity. Let g be a func-
tion belonging to Z(E) which maps E onto a domain bounded by an arc on 7
and not containing the origin. The function g is uniquely defined. We show
that [e **g(e'?¢*)]"* is the desired function.
The function w=g(y) satisfies a differential equation of the form

(flw) = =) (— pe“°>(77—~e‘¢)

=7 +Bl7/+Bo‘|"Bx7]— +7”

ey

where
B,= ei20+ei2¢+2(p+ %') 21 (0+6) ,
B=—2¢%— (o)

and 0<p<l, —7<0=m, ¢=—0+nr (n=0 or 1). Since B, =<0, we must take
n=1 and then

B,=2cos 20—2(p+ %) ,

By=—2¢""+(p+ %) e i,

Setting
w=g(n)=n+by+b,p =+ -

we have

7/( WY W=l e ay—(2b,—aby)— -

Hence we obtain
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a=2¢""— (p—l— %) e,
(2
2,—aby = ~2 cos 20+2(p+ ).

Here we remark that p and 6 are uniquely determined for a given a and that

3
0?&2 » T

Formal integration gives

L R (e e

B X » 1 » 1/2
7= 2(.,__ il P 16\1/2 0 d
i =egtpe (g4 5-e) dy

—_1_ 1-¢& 1. 1—p& 1—p® s &
=—-alog _,[_E-l—zalog 1Fpé PR -

oy & 2 Ntp e
+(1—p*e 1—p%e 3 ptpe i

Here the logarithms have their principal values and so W(a)=0, Z(—p~'e*?)=0.
Since w=g(7) satisfies (1) and y=—p~'e"* corresponds to w=a by this func-
tion, therefore w=g(y) satisfies the equation W=Z. As 7 tends to the point
at infinity

W=y9— %alog v+b0——%—a+%alog—z—+o(l),
Z=n— % alog 77+e“’+—+'0—e'”’+ % alog };5—
-l—-*alog(———i '“")4—0(1)
Thus we obtain
b0=2e“9—(e"0 l—l—p e”’)log i+,ﬁ
(e“’ = e w)log 1— le_el:ig__l_mkﬂ

where the logarithms have their principal values and % is an integer. The
function g depends on p, € continuously in 0<p<1, —T<f=m, ﬁq&—g—, ——%,

and 8¢ b, depends on p, € continuously. Taking =0, we have
_ _ 1
b, =2+1akr, a—2—<p+7).

Since |b,| =2, this is impossible unless #=0. Hence we have
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bo 10 (e—w ]- B ezﬂ)log 1+“Z

3
(0 ‘|‘B -4 1—2,0€i20+22
(ei 20 ¢ ") log—— 2 .

Now, setting w=e'2? p=¢*{* and using (2), (3) we obtain the desired result.

We set
d,={s+1et(l—log t): 0<t=1, —vVI—F+tcos t<s<+/I—f—tcos™'t,
e:{il}U{S: —1=s=1} ’

4,= {ew—-%— (e““’—— —3~1_2‘“p : e“’) log'lip—

1—p
1 /o 140 i 1—2p0e"*+p*
——2—(8 - 2p ¢ )IOg ]__pz
. T L
. O<|0<1) —77:<0§7f, 0?&—27, ) }_
LEMMA 4.
{le,l <1} cd, U d,.
Proof. Set

_ w01 7 i 1+0* i 1+p
U(p, 0)=e""— 2 (e Y e >log 1=p

. 2 ) . i20 2
— %(ew_%‘?)&_ e~w> logl_zio_i?{t&_ .

Here we remark that

T 1-2pe*+p* =«
—— <arg 1—p? <~2 .
Then we have

%igl U(p, 6)=1, 01_1,13, Y(p, 0)=—1, 012%211’(‘0, 0)==+1
for O< p<1 Further we have that ¥(p, §)—¢? as p—0, uniformly for 0<|8|
<5 2 , 2 <|6| <=, and that ¥(p, §)— e —1sin 0 log{(1—e*?)/2} = c(6) as p—1,
uniformly for O<i0l<—2-, T<|0l<ﬂ'. In the case—2~<t9<n' we have

l_eizﬂ

. T
log—————2 =log sin 0+z<0——-2 )
and so we have, setting t=sin 6,

c()=—~T=F+tcos t+it(l—logt)  (t=sinb, 5-<f<x).
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Similarly in the other cases we have

[ V1—t*—tcos 't-+it(l1—logt) (t=sin6’, 0<0<%),
c(ﬁ)=[ VI=F—tcos t—it(l—logt)  (t=—sinf, — - <0<0),

— VI=Fttcost—ut(1—logt)  (t=—sinf, —r<<—5).
Hence it follows that {|c;| <1} —4,C4,. This implies that {|c¢;| <1} C4,U4,.

We can now prove that if g({) and Z({) are extremal functions belonging
to X’(F) such that gog~'(z) attains the value 4,, then g({) and () are odd
functions.

We write

gO=C+Zel ™,

HO=C+ Zal™.

We may assume that Re{c;+c,&,—&—% =4, If |&]=1, obviously (&) is odd.
If |¢,]<1, then from the above four lemmas it follows that there is an odd
function

HO=C+ S
belonging to E’(E) such that ¢f=¢, and —Rec¥=—R.¢;. Since
Ay = Re{cy+¢,8,—8—8,% £ Re{cstcrcF—cF—c = 4,

we have
—Rely= —Rec¥.

Hence by Lemma 1 we have that g({)=g*({). Similarly we can conclude that
2(0) is odd.

3. Now it is sufficient to prove the following

LEMMA. [If
gO=C+ Zeal™
and
HO=C+ 2L
are odd functions belonging to Z’(E), then
Re{cst+c,f—8,—C <(1+e77)?, e+7—-3=0.
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Equality is possible.
If
g=C+ X,
n=1
is an odd function belonging to Z‘,’(E), then the function
1 \°2
g(v?— =2z—2¢,2*+(—2¢,+3¢,))z°+ -+

belongs to S(E). Then following Lowner [4] we may confine ourselves to odd
functions belonging to X)(E) whose coefficients are represented as

o= :Oe“k(t)dt,

o= [ e uerdt——p(J e ko).

where #,=0 and k(¢) is a continuous function in 0=t=t,, satisfying |k(¢)|=1.
Thus to prove Lemma we start from the representation

bs - C3+6151—33—512

={ : e p(tydi——5(f 0: "o ietyat)
+(f e trenar) ([ o)
_fjoe'”l%(t)zdt— _zL(f:oe_tE (t)dt>2’

where E(t) and E(f) are _continuous functions satisfying [k(t)| =1, [E(t)| =1.
Writing k() =wu(t)+iv(8), E(t)=a(f)-+ii(s), we have

b= [ o o) d— e (0P o)
—h ([ na) s (] e una)(f e o)
5 (J ey + ([ e wioar)
~(JLreoa)([ Feaar) ([ eoou)”
Since |k(#)|=1 and |k(#)|=1, we have

f (:”e-m{u(t)z—v(ty} dt= :Oe‘z‘{1—2v(t)2} dt
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<L —af ey,
0

—f :"e-ﬂ e —a(t? de = | ;"e-?t{l—za(t)Z} dt <5,
and

U"’e-tﬁ(t)dt)gjt"e“dt <1.
0 0

Further obviously

~5( Ot "ttt + ([ :Oe“u(t)dt>< f:"e-ta(t)dt)

- —%—(ffe"ﬁ(t)dt)zgo.

Thus from (4) we obtain

t t, 2
(5) Reby< —g’- —2f Ooe'“v(t)zdt—{——%—( { ooe“v(t)dt>

-I-U(:Oe“v(t)dt‘.

205

It f:"e‘“v(t)zdt:O, then v(1)=0 and so (5) implies that .%b3<—§—- Otherwise

let x be the non-negative real root of the equation
U PO L P 2
(x-i— 2 >e —fo e y(t)tdt.

Then, by the theorem of Valiron-Landau [3], we have

[ O’°e-tv<t)dt| <(x+1)e>.
Hence from (5) we have
Re by <3+ e (725 —De7*
We define
O(x) =5 +(r+De "+ (' —2x—1)e* (0= x<co).

Since @/(x)=—x(e*+x—3)e"?*, the maximum of @(x) occurs for the root z of

the equation e®-+x—3=0, and
O()=(1+e)> -

Hence we have the desired inequality.
Finally we take
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&O=¢—i(,
gQ)=hC: 0, e, 0)=C+i(c+1)e¢?
+%{(72—-27—1)e'2’+1} L3 e

where 7 is the root of ¢*+x—3=0. Then the third coefficient of gog™* is equal
to @(z)=(1+e7)%. Thus equality is possible.

(1]
£2]
[3]
[4]
(5]
(6]
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