A REMARK ON THE THIRD COEFFICIENT OF MEROMORPHIC UNIVALENT FUNCTIONS

By Yoshihisa Kubota

1. Let G be a domain on the z-sphere containing the origin and let $S(G)$ denote the family of functions $f(z)$ regular and univalent in G with expansion at the origin

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} .
$$

Let D be a domain on the z-sphere containing the point at infinity and let $\Sigma^{\prime}(D)$ denote the family of functions $f(z)$ meromorphic and univalent in D with expansion at the point at infinity

$$
f(z)=z+\sum_{n=1}^{\infty} b_{n} z^{-n} .
$$

The following problem was considered by Schaeffer and Spencer [5]. Let \mathfrak{F} be the set of domains onto which E, the unit circle, is mapped by functions belonging to $S(E)$. For each domain G belonging to \mathbb{S} we write

$$
\alpha_{n}(G)=\sup _{f \in S(G)}\left|a_{n}\right| \quad(n=2,3, \cdots) .
$$

Find the precise values

$$
\gamma_{n}=\inf _{G \in \Theta} \alpha_{n}(G) \quad(n=2,3, \cdots)
$$

and

$$
\Gamma_{n}=\sup _{G \in \Theta} \alpha_{n}(G) \quad(n=2,3, \cdots) .
$$

Schaeffer and Spencer showed that $\gamma_{n}=\alpha_{n}(E)$ and that if the Bieberbach conjecture is true, then $\Gamma_{n}=4^{n-1}$.

In this paper we consider a similar problem for meromorphic univalent functions. Let \mathfrak{D} be the set of domains onto which \tilde{E}, the exterior of the unit circle, is mapped by functions belonging to $\Sigma^{\prime}(\tilde{E})$. For each domain D belonging to \mathfrak{D} we write

$$
\beta_{n}(D)=\sup _{f \in \Sigma^{\prime}(D)}\left|b_{n}\right| \quad(n=1,2, \cdots) .
$$

Further we write

$$
\lambda_{n}=\inf _{D \in \mathbb{D}} \beta_{n}(D) \quad(n=1,2, \cdots)
$$

and

$$
\Lambda_{n}=\sup _{D \in \mathscr{D}} \beta_{n}(D) \quad(n=1,2, \cdots)
$$

Let D be a domain belonging to \mathfrak{D} and let

$$
\tilde{g}(\zeta)=\zeta+\sum_{n=1}^{\infty} \tilde{c}_{n} \zeta^{-n}
$$

be the function belonging to $\Sigma^{\prime}(\tilde{E})$ which maps \tilde{E} onto D. If

$$
f(z)=z+\sum_{n=1}^{\infty} b_{n} z^{-n}
$$

is a function belonging to $\Sigma^{\prime}(D)$, then there is a function

$$
g(\zeta)=\zeta+\sum_{n=1}^{\infty} c_{n} \zeta^{-n}
$$

belonging to $\Sigma^{\prime}(\tilde{E})$ such that $f(z)=g_{\circ} \tilde{g}^{-1}(z)$, and we have

$$
\begin{aligned}
& b_{1}=c_{1}-\tilde{c}_{1}, \\
& b_{2}=c_{2}-\tilde{c}_{2}, \\
& b_{3}=c_{3}+c_{1} \tilde{c}_{1}-\tilde{c}_{3}-\tilde{c}_{1}{ }^{2} .
\end{aligned}
$$

Hence it follows that $\Lambda_{1}=2, \Lambda_{2}=4 / 3$. Further we can prove by the same method as in [5] that $\lambda_{1}=\beta_{1}(\tilde{E})=1, \lambda_{2}=\beta_{2}(\tilde{E})=2 / 3$ and $\lambda_{3}=\beta_{3}(\tilde{E})=1 / 2+e^{-6}$. The purpose of this paper is to find the precise value Λ_{3}. We shall prove the following

Theorem.

$$
\Lambda_{3}=\left(1+e^{-\tau}\right)^{2} \approx 2.111,
$$

where τ is the root of $e^{\tau}+\tau-3=0$.
Since $\Sigma^{\prime}(\tilde{E})$ is compact, there are extremal functions $g(\zeta)$ and $\tilde{g}(\zeta)$ belonging to $\Sigma^{\prime}(\tilde{E})$ such that $g_{\circ} \tilde{g}^{-1}$ attains the value Λ_{3}. In $\S 2$ we shall show by using Jenkins General Coefficient Theorem that extremal functions $g(\zeta)$ and $\tilde{g}(\zeta)$ are odd. In $\S 3$ we shall prove by Löwner's method that if

$$
g(\zeta)=\zeta+\sum_{n=1}^{\infty} c_{n} \zeta^{-n}
$$

and

$$
\tilde{g}(\zeta)=\zeta+\sum_{n=1}^{\infty} \tilde{c}_{n} \zeta^{-n}
$$

are odd functions belonging to $\Sigma^{\prime}(\tilde{E})$, then

$$
\left|c_{3}+c_{1} \tilde{c}_{1}-\tilde{c}_{3}-\tilde{c}_{1}{ }^{2}\right| \leqq\left(1+e^{-\tau}\right)^{2}, \quad e^{\tau}+\tau-3=0,
$$

and that equality is possible.
2. The following two lemmas were given by Jenkins [1].

Lemma 1. Let $Q(z) d z^{2}=e^{\imath \rho}\left(z^{2}+\alpha\right) d z^{2}$ be a quadratic differential on the z sphere and let

$$
g^{*}(\zeta)=\zeta+\sum_{n=1}^{\infty} c_{n}^{*} \zeta^{-n}
$$

be a function belonging to $\Sigma^{\prime}(\tilde{E})$ which maps \tilde{E} onto a domain admissible with respect to $Q(z) d z^{2}$. Let

$$
g(\zeta)=\zeta+\sum_{n=1}^{\infty} c_{n} \zeta^{-n}
$$

be a function belonging to $\Sigma^{\prime}(\tilde{E})$ with $c_{1}=c_{1}^{*}$. Then

$$
\operatorname{Re}\left\{e^{\imath \phi} c_{3}\right\} \leqq \operatorname{Re}\left\{e^{\imath \phi} c_{3}^{*}\right\}
$$

Equality occurs only for $g(\zeta) \equiv g^{*}(\zeta)$.
Lemma 2. Let s, t and φ be real parameters with $0 \leqq t \leqq 1,-\sqrt{1-t^{2}}+t \cos ^{-1} t$ $\leqq s \leqq \sqrt{1-t^{2}}-t \cos ^{-1} t$ and $-\pi<\varphi \leqq \pi$. Then there is an odd function $h(\zeta: s, t, \varphi)$ belonging to $\Sigma^{\prime}(\widetilde{E})$ which maps Ento a domain admissible with respect to $e^{i 2 \varphi}$ $\left(z^{2}-4 i e^{-2 \varphi} t\right) d z^{2}$ and which has the expansion at the point at infinity

$$
\begin{aligned}
h(\zeta: s, t, \varphi)= & \zeta+e^{-2 \varphi}[s+\imath t(1-\log t)] \zeta^{-1} \\
+ & e^{-i थ \varphi}\left[\frac{1}{2}-\frac{1}{2} s^{2}-\frac{1}{2} t^{2}+t^{2} \log t+\frac{1}{2} t^{2}(\log t)^{2}\right. \\
& +i s t(1+\log t)] \zeta^{-3}+\cdots \quad(0<t \leqq 1) \\
= & \zeta+e^{-2 \varphi} s \zeta^{-1}+\frac{1}{2} e^{-i 2 \varphi}\left(1-s^{2}\right) \zeta^{-3}+\cdots \quad(t=0)
\end{aligned}
$$

By a similar argument as in [6, Chapter XIII] we can prove the following lemma.

Lemma 3. Let ρ, θ and φ be real parameters with $0<\rho<1,-\pi<\theta \leqq \pi, \theta$ $\neq \frac{\pi}{2},-\frac{\pi}{2}$ and $-\pi<\varphi \leqq \pi$. Then there is an odd function $g(\zeta: \rho, \theta, \varphi)$ belonging to $\Sigma^{\prime}(\tilde{E})$ which maps \tilde{E} onto a domain admissible with respect to $e^{i 2 \varphi}\left(z^{2}-\right.$ $\left.e^{-2 \varphi} a\right) d z^{2}, a=2 e^{i \theta}-\left(\rho+\rho^{-1}\right) e^{-i \theta}$ and which has the expansion at the point at in finity

$$
g(\zeta: \rho, \theta, \varphi)=\zeta+c_{1}^{*} \zeta^{-1}+c_{3}^{*} \zeta^{-3}+\cdots
$$

where

$$
\begin{aligned}
c_{1}^{*}=e^{-i \varphi}\left[e^{i \theta}-\right. & \frac{1}{2}\left(e^{-i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{i \theta}\right) \log \frac{1+\rho}{1-\rho} \\
& \left.-\frac{1}{2}\left(e^{i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{-i \theta}\right) \log \frac{1-2 \rho e^{i 2 \theta}+\rho^{2}}{1-\rho^{2}}\right]
\end{aligned}
$$

and

$$
2 e^{i 2 \varphi} c_{3}^{*}+e^{i 2 \varphi} c_{1}^{* 2}-e^{i \varphi} a c_{1}^{*}=-\cos 2 \theta+\frac{1+\rho^{2}}{\rho} .
$$

Here the logarithms have their principal values.
Proof. Let a be a complex number such that $\mathscr{R}_{e} a \neq 0$. We consider the quadratic differential

$$
Q(w: a) d w^{2}=\frac{w-a}{w} d w^{2} .
$$

Formal integration gives

$$
W=\int\left(\frac{w-a}{w}\right)^{1 / 2} d w=\frac{1}{2} a \log \frac{w^{1 / 2}-(w-a)^{1 / 2}}{w^{1 / 2}}+(w-a)^{1 / 2}+w^{1 / 2}(w-a)^{1 / 2} .
$$

Since $\operatorname{Re} a \neq 0, \operatorname{Im}\{W(a)-W(0)\} \neq 0$, and so there is a trajectory γ of $Q(w: a) d w^{2}$ having limiting end points at $w=0$ and the point at infinity. Let g be a function belonging to $\Sigma(\tilde{E})$ which maps \tilde{E} onto a domain bounded by an arc on γ and not containing the origin. The function g is uniquely defined. We show that $\left[e^{-\imath \varphi} g\left(e^{2 \varphi} \zeta^{2}\right)\right]^{1 / 2}$ is the desired function.

The function $w=g(\eta)$ satisfies a differential equation of the form

$$
\begin{align*}
\eta^{2}\left(\frac{d w}{d \eta}\right)^{2} \frac{w-a}{w} & =\eta^{-2}\left(\eta-e^{i \theta}\right)^{2}\left(\eta-\rho e^{i \phi}\right)\left(\eta-\frac{1}{\rho} e^{i \phi}\right) \\
& =\eta^{2}+B_{1} \eta+B_{0}+\bar{B}_{1} \eta^{-1}+\eta^{-2} \tag{1}
\end{align*}
$$

where

$$
\begin{aligned}
& B_{0}=e^{i 2 \theta}+e^{i 2 \dot{\phi}}+2\left(\rho+\frac{1}{\rho}\right) e^{i(\theta+\dot{\rho})}, \\
& B_{1}=-2 e^{i \theta}-\left(\rho+\frac{1}{\rho}\right) e^{i \phi}
\end{aligned}
$$

and $0<\rho<1,-\pi<\theta \leqq \pi, \phi=-\theta+n \pi$ ($n=0$ or 1). Since $B_{0} \leqq 0$, we must take $n=1$ and then

$$
\begin{aligned}
& B_{0}=2 \cos 2 \theta-2\left(\rho+\frac{1}{\rho}\right), \\
& B_{1}=-2 e^{i \theta}+\left(\rho+\frac{1}{\rho}\right) e^{-i \theta} .
\end{aligned}
$$

Setting

$$
w=g(\eta)=\eta+b_{0}+b_{1} \eta^{-1}+\cdots
$$

we have

$$
\eta^{2}\left(\frac{d w}{d \eta}\right)^{2} \frac{w-a}{w}=\eta^{2}-a \eta-\left(2 b_{1}-a b_{0}\right)-\cdots .
$$

Hence we obtain

$$
\begin{align*}
& a=2 e^{\imath \theta}-\left(\rho+\frac{1}{\rho}\right) e^{-i \theta} \tag{2}\\
& 2 b_{1}-a b_{0}=-2 \cos 2 \theta+2\left(\rho+\frac{1}{\rho}\right)
\end{align*}
$$

Here we remark that ρ and θ are uniquely determined for a given a and that $\theta \neq \frac{\pi}{2},-\frac{\pi}{2}$.

Formal integration gives

$$
\begin{aligned}
W= & \int\left(\frac{w-a}{w}\right)^{1 / 2} d w=\frac{1}{2} a\left(\log \frac{1-u}{1+u}+\frac{2 u}{1-u^{2}}\right), \quad u^{2}=\frac{w-a}{w}, \\
Z= & \int \eta^{-2}\left(\eta-e^{i \theta}\right)\left(\eta+\rho e^{-i \theta}\right)^{1 / 2}\left(\eta+\frac{1}{\rho} e^{-i \theta}\right)^{1 / 2} d \eta \\
= & \frac{1}{2} a \log \frac{1-\xi}{1+\xi}+\frac{1}{2} \bar{a} \log \frac{1-\rho \xi}{1+\rho \xi}-\frac{1-\rho^{2}}{\rho} e^{-i \theta} \frac{\xi}{1-\xi^{2}} \\
& +\left(1-\rho^{2}\right) e^{i \theta} \frac{\xi}{1-\rho^{2} \xi^{2}}, \quad \xi^{2}=-\frac{\eta+\rho^{-1} e^{-i \theta}}{\eta+\rho e^{-i \theta}} .
\end{aligned}
$$

Here the logarithms have their principal values and so $W(a)=0, Z\left(-\rho^{-1} e^{-\imath \theta}\right)=0$. Since $w=g(\eta)$ satisfies (1) and $\eta=-\rho^{-1} e^{-i \theta}$ corresponds to $w=a$ by this function, therefore $w=g(\eta)$ satisfies the equation $W=Z$. As η tends to the point at infinity

$$
\begin{aligned}
& W=\eta-\frac{1}{2} a \log \eta+b_{0}-\frac{1}{2} a+\frac{1}{2} a \log \frac{a}{4}+o(1) \\
& \begin{aligned}
& Z=\eta-\frac{1}{2} a \log \eta+e^{i \theta}+\frac{1+\rho^{2}}{2 \rho} e^{-i \theta}+\frac{1}{2} \bar{a} \log \frac{1-\rho}{1+\rho} \\
&+\frac{1}{2} a \log \left(-\frac{1-\rho^{2}}{4 \rho} e^{-i \theta}\right)+o(1)
\end{aligned}
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
b_{0}= & 2 e^{i \theta}-\left(e^{-\imath \theta}-\frac{1+\rho^{2}}{2 \rho} e^{i \theta}\right) \log \frac{1+\rho}{1-\rho} \\
& -\left(e^{i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{-i \theta}\right) \log \frac{1-2 \rho e^{i 2 \theta}+\rho^{2}}{1-\rho^{2}}+\imath a k \pi,
\end{aligned}
$$

where the logarithms have their principal values and k is an integer. The function g depends on ρ, θ continuously in $0<\rho<1,-\pi<\theta \leqq \pi, \theta \neq \frac{\pi}{2},-\frac{\pi}{2}$, and sc b_{0} depends on ρ, θ continuously. Taking $\theta=0$, we have

$$
b_{0}=2+\imath a k \pi, \quad a=2-\left(\rho+\frac{1}{\rho}\right) .
$$

Since $\left|b_{0}\right| \leqq 2$, this is impossible unless $k=0$. Hence we have

$$
\begin{equation*}
b_{0}=2 e^{i \theta}-\left(e^{-i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{i \theta}\right) \log \frac{1+\rho}{1-\rho} \tag{3}
\end{equation*}
$$

$$
-\left(e^{i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{-i \theta}\right) \log \frac{1-2 \rho e^{i 2 \theta}+\rho^{2}}{1-\rho^{2}} .
$$

Now, setting $w=e^{2 \varphi} z^{2}, \eta=e^{2 \varphi} \zeta^{2}$ and using (2), (3) we obtain the desired result.
We set

$$
\begin{gathered}
\Delta_{0}=\left\{s+\imath \varepsilon t(1-\log t): 0<t \leqq 1,-\sqrt{1-t^{2}}+t \cos ^{-1} t \leqq s \leqq \sqrt{1-t^{2}}-t \cos ^{-1} t\right. \\
\varepsilon=\{ \pm 1\} \cup\{s:-1 \leqq s \leqq 1\} \\
\Delta_{1}=\left\{e^{2 \theta}-\frac{1}{2}\left(e^{-i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{i \theta}\right) \log -\frac{1 \pm \rho}{1-\rho}\right. \\
-\frac{1}{2}\left(e^{i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{-i \theta}\right) \log \frac{1-2 \rho e^{i 2 \theta}+\rho^{2}}{1-\rho^{2}} \\
\\
\left.: 0<\rho<1,-\pi<\theta \leqq \pi, \theta \neq \frac{\pi}{2},-\frac{\pi}{2}\right\} .
\end{gathered}
$$

Lemma 4.

$$
\left\{\left|c_{1}\right|<1\right\} \subset \Delta_{0} \cup \Delta_{1} .
$$

Proof. Set

$$
\begin{aligned}
\Psi(\rho, \theta)= & e^{i \theta}-\frac{1}{2}\left(e^{-i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{i \theta}\right) \log \frac{1+\rho}{1-\rho} \\
& -\frac{1}{2}\left(e^{i \theta}-\frac{1+\rho^{2}}{2 \rho} e^{-i \theta}\right) \log \frac{1-2 \rho e^{i 2 \theta}+\rho^{2}}{1-\rho^{2}} .
\end{aligned}
$$

Here we remark that

$$
-\frac{\pi}{2}<\arg \frac{1-2 \rho e^{i 2 \theta}+\rho^{2}}{1-\rho^{2}}<\frac{\pi}{2}
$$

Then we have

$$
\lim _{\theta \rightarrow 0} \Psi(\rho, \theta)=1, \lim _{\theta \rightarrow \pm \pi} \Psi(\rho, \theta)=-1, \lim _{\theta \rightarrow \pm \pi / 2} \Psi(\rho, \theta)= \pm \imath
$$

for $0<\rho<1$. Further we have that $\Psi(\rho, \theta) \rightarrow e^{i \theta}$ as $\rho \rightarrow 0$, uniformly for $0<|\theta|$ $<\frac{\pi}{2}, \frac{\pi}{2}<|\theta|<\pi$, and that $\Psi(\rho, \theta) \rightarrow e^{i \theta}-\imath \sin \theta \log \left\{\left(1-e^{i 2 \theta}\right) / 2\right\} \equiv c(\theta)$ as $\rho \rightarrow 1$, uniformly for $0<|\theta|<\frac{\pi}{2}, \frac{\pi}{2}<|\theta|<\pi$. In the case $\frac{\pi}{2}<\theta<\pi$ we have

$$
\log \frac{1-e^{i 2 \theta}}{2}=\log \sin \theta+\imath\left(\theta-\frac{\pi}{2}\right)
$$

and so we have, setting $t=\sin \theta$,

$$
c(\theta)=-\sqrt{1-t^{2}}+t \cos ^{-1} t+i t(1-\log t) \quad\left(t=\sin \theta, \frac{\pi}{2}<\theta<\pi\right) .
$$

Similarly in the other cases we have

$$
c(\theta)= \begin{cases}\sqrt{1-t^{2}}-t \cos ^{-1} t+\imath t(1-\log t) & \left(t=\sin \theta, 0<\theta<\frac{\pi}{2}\right) \\ \sqrt{1-t^{2}}-t \cos ^{-1} t-\imath t(1-\log t) & \left(t=-\sin \theta,-\frac{\pi}{2}<\theta<0\right) \\ -\sqrt{1-t^{2}}+t \cos ^{-1} t-\imath t(1-\log t) & \left(t=-\sin \theta,-\pi<\theta<-\frac{\pi}{2}\right)\end{cases}
$$

Hence it follows that $\left\{\left|c_{1}\right|<1\right\}-\Delta_{1} \subset \Delta_{0}$. This implies that $\left\{\left|c_{1}\right|<1\right\} \subset \Delta_{0} \cup \Delta_{1}$.
We can now prove that if $g(\zeta)$ and $\tilde{g}(\zeta)$ are extremal functions belonging to $\Sigma^{\prime}(\tilde{E})$ such that $g \circ \tilde{g}^{-1}(z)$ attains the value Λ_{3}, then $g(\zeta)$ and $\tilde{g}(\zeta)$ are odd functions.

We write

$$
\begin{aligned}
& g(\zeta)=\zeta+\sum_{n=1}^{\infty} c_{n} \zeta^{-n} \\
& \tilde{g}(\zeta)=\zeta+\sum_{n=1}^{\infty} \tilde{c}_{n} \zeta^{-n}
\end{aligned}
$$

We may assume that $\operatorname{Re}\left\{c_{3}+c_{1} \tilde{c}_{1}-\tilde{c}_{3}-\tilde{c}_{1}^{2}\right\}=\Lambda_{3}$. If $\left|\tilde{c}_{1}\right|=1$, obviously $\tilde{g}(\zeta)$ is odd. If $\left|\tilde{c}_{1}\right|<1$, then from the above four lemmas it follows that there is an odd function

$$
g^{*}(\zeta)=\zeta+\sum_{n=1}^{\infty} c_{n}^{*} \zeta^{-n}
$$

belonging to $\Sigma^{\prime}(\tilde{E})$ such that $c_{1}^{*}=\tilde{c}_{1}$ and $-\operatorname{Re} c_{3}^{*} \geqq-\operatorname{Re} \tilde{c}_{3}$. Since

$$
\Lambda_{3}=\operatorname{Re}\left\{c_{3}+c_{1} \tilde{c}_{1}-\tilde{c}_{3}-\tilde{c}_{1}^{2}\right\} \leqq \operatorname{Re}_{e}\left\{c_{3}+c_{1} c_{1}^{*}-c_{3}^{*}-c_{1}^{* 2}\right\} \leqq \Lambda_{3},
$$

we have

$$
-\operatorname{Re}_{2}=-\operatorname{Rec}_{3}^{*} .
$$

Hence by Lemma 1 we have that $\tilde{g}(\zeta) \equiv g^{*}(\zeta)$. Similarly we can conclude that $g(\zeta)$ is odd.
3. Now it is sufficient to prove the following

Lemma. If
and

$$
g(\zeta)=\zeta+\sum_{n=1}^{\infty} c_{n} \zeta^{-n}
$$

$$
\tilde{g}(\zeta)=\zeta+\sum_{n=1}^{\infty} \tilde{c}_{n} \zeta^{-n}
$$

are odd functions belonging to $\Sigma^{\prime}(\tilde{E})$, then

$$
\mathscr{R e}\left\{c_{3}+c_{1} \tilde{c}_{1}-\tilde{c}_{3}-\tilde{c}_{1}^{2}\right\} \leqq\left(1+e^{-\tau}\right)^{2}, \quad e^{-}+\tau-3=0 .
$$

Equality is possible.
If

$$
g(\zeta)=\zeta+\sum_{n=1}^{\infty} c_{n} \zeta^{-n}
$$

is an odd function belonging to $\Sigma^{\prime}(\tilde{E})$, then the function

$$
g\left(\frac{1}{\sqrt{z}}\right)^{-2}=z-2 c_{1} z^{2}+\left(-2 c_{3}+3 c_{1}^{2}\right) z^{3}+\cdots
$$

belongs to $S(E)$. Then following Löwner [4] we may confine ourselves to odd functions belonging to $\Sigma^{\prime}(\tilde{E})$ whose coefficients are represented as

$$
\begin{aligned}
& c_{1}=\int_{0}^{t_{0}} e^{-t} k(t) d t, \\
& c_{3}=\int_{0}^{t_{0}} e^{-2 t} k(t)^{2} d t-\frac{1}{2}\left(\int_{0}^{t_{0}} e^{-t} k(t) d t\right)^{2},
\end{aligned}
$$

where $t_{0} \geqq 0$ and $k(t)$ is a continuous function in $0 \leqq t \leqq t_{0}$, satisfying $|k(t)|=1$.
Thus to prove Lemma we start from the representation

$$
\begin{aligned}
b_{3}= & c_{3}+c_{1} \tilde{c}_{1}-\tilde{c}_{3}-\tilde{c}_{1}{ }^{2} \\
= & \int_{0}^{t_{0}} e^{-2 t} k(t)^{2} d t-\frac{1}{2}\left(\int_{0}^{t_{0}} e^{-t} k(t) d t\right)^{2} \\
& +\left(\int_{0}^{t_{0}} e^{-t} k(t) d t\right)\left(\int_{0}^{\tilde{\tau}_{0}} e^{-t} \tilde{k}(t) d t\right) \\
& -\int_{0}^{\tilde{t}_{0}} e^{-2 t} \tilde{k}(t)^{2} d t-\frac{1}{2}\left(\int_{0}^{\tilde{t}_{0}} e^{-t} \tilde{k}(t) d t\right)^{2},
\end{aligned}
$$

where $k(t)$ and $\tilde{k}(t)$ are continuous functions satisfying $|k(t)|=1, \quad|\tilde{k}(t)|=1$. Writing $k(t)=u(t)+i v(t), \tilde{k}(t)=\tilde{u}(t)+i \tilde{v}(t)$, we have

$$
\begin{align*}
\mathscr{R e}_{3}= & \int_{0}^{t_{0}} e^{-2 t}\left\{u(t)^{2}-v(t)^{2}\right\} d t-\int_{0}^{\tilde{t}_{0}} e^{-2 t}\left\{\tilde{u}(t)^{2}-\tilde{v}(t)^{2}\right\} d t \\
& -\frac{1}{2}\left(\int_{0}^{t_{0}} e^{-t} u(t) d t\right)^{2}+\left(\int_{0}^{t_{0}} e^{-t} u(t) d t\right)\left(\int_{0}^{\tilde{t}_{0}} e^{-t} \tilde{u}(t) d t\right) \\
& -\frac{1}{2}\left(\int_{0}^{\tilde{\tau}_{0}} e^{-t} \tilde{u}(t) d t\right)^{2}+\frac{1}{2}\left(\int_{0}^{t_{0}} e^{-t} v(t) d t\right)^{2} \tag{4}\\
& -\left(\int_{0}^{t_{0}} e^{-t} v(t) d t\right)\left(\int_{0}^{\tilde{\tau}_{0}} e^{-t} \tilde{v}(t) d t\right)+\frac{1}{2}\left(\int_{0}^{\tilde{t}_{0}} e^{-t} \tilde{v}(t) d t\right)^{2} .
\end{align*}
$$

Since $|k(t)|=1$ and $|\tilde{k}(t)|=1$, we have

$$
\int_{0}^{t_{0}} e^{-2 t}\left\{u(t)^{2}-v(t)^{2}\right\} d t=\int_{0}^{t_{0}} e^{-2 t}\left\{1-2 v(t)^{2}\right\} d t
$$

$$
\begin{aligned}
&<\frac{1}{2}-2 \int_{0}^{t_{0}} e^{-2 t} v(t)^{2} d t \\
&-\int_{0}^{\tilde{t}_{0}} e^{-2 t}\left\{\tilde{u}(t)^{2}-\tilde{v}(t)^{2}\right\} d t= \int_{0}^{\tilde{t}_{0}} e^{-2 t}\left\{1-2 \tilde{u}(t)^{2}\right\} d t<\frac{1}{2},
\end{aligned}
$$

and

$$
\left|\int_{0}^{\tilde{t}_{0}} e^{-t} \tilde{v}(t) d t\right| \leqq \int_{0}^{\tilde{t}_{0}} e^{-t} d t<1
$$

Further obviously

$$
\begin{aligned}
-\frac{1}{2}\left(\int_{0}^{t_{0}} e^{-t} u(t) d t\right)^{2} & +\left(\int_{0}^{t_{0}} e^{-t} u(t) d t\right)\left(\int_{0}^{\tau_{0}} e^{-t} \tilde{u}(t) d t\right) \\
& -\frac{1}{2}\left(\int_{0}^{\tilde{t}_{0}} e^{-t} \tilde{u}(t) d t\right)^{2} \leqq 0
\end{aligned}
$$

Thus from (4) we obtain

$$
\begin{gather*}
\mathscr{R e}_{e} b_{3}<\frac{3}{2}-2 \int_{0}^{t_{0}} e^{-2 t} v(t)^{2} d t+\frac{1}{2}\left(\int_{0}^{t_{0}} e^{-t} v(t) d t\right)^{2} \tag{5}\\
+\left|\int_{0}^{t_{0}} e^{-t} v(t) d t\right|
\end{gather*}
$$

If $\int_{0}^{t_{0}} e^{-2 t} v(t)^{2} d t=0$, then $v(t) \equiv 0$ and so (5) implies that $\mathscr{R e}_{e} b_{3}<\frac{3}{2}$. Otherwise let x be the non-negative real root of the equation

$$
\left(x+\frac{1}{2}\right) e^{-2 x}=\int_{0}^{t_{0}} e^{-2 t} v(t)^{2} d t
$$

Then, by the theorem of Valiron-Landau [3], we have

$$
\left|\int_{0}^{t_{0}} e^{-t} v(t) d t\right| \leqq(x+1) e^{-x}
$$

Hence from (5) we have

$$
\mathscr{R e}_{e} b_{3}<\frac{3}{2}+(x+1) e^{-x}+\frac{1}{2}\left(x^{2}-2 x-1\right) e^{-2 x} .
$$

We define

$$
\Phi(x)=\frac{3}{2}+(x+1) e^{-x}+\frac{1}{2}\left(x^{2}-2 x-1\right) e^{-2 x} \quad(0 \leqq x<\infty) .
$$

Since $\Phi^{\prime}(x)=-x\left(e^{x}+x-3\right) e^{-2 x}$, the maximum of $\Phi(x)$ occurs for the root τ of the equation $e^{x}+x-3=0$, and

$$
\Phi(\tau)=\left(1+e^{-\tau}\right)^{2}>\frac{3}{2} .
$$

Hence we have the desired inequality.
Finally we take

$$
\begin{aligned}
\tilde{g}(\zeta)= & \zeta-i \zeta^{-1} \\
g(\zeta)=h\left(\zeta: 0, e^{-\tau}, 0\right)= & \zeta+i(\tau+1) e^{-\tau} \zeta^{-1} \\
& +\frac{1}{2}\left\{\left(\tau^{2}-2 \tau-1\right) e^{-2 \tau}+1\right\} \zeta^{-3}+\cdots
\end{aligned}
$$

where τ is the root of $e^{x}+x-3=0$. Then the third coefficient of $g \circ \tilde{g}^{-1}$ is equal to $\Phi(\tau)=\left(1+e^{-\tau}\right)^{2}$. Thus equality is possible.

References

[1] Jenkins, J. A., On certain coefficients of univalent functions. Analytic functions. Princeton Univ. Press. (1960) 159-194.
[2] Jenkins, J. A., Univalent functions and conformal mapping. 2nd ed. SpringerVerlag, Berlin (1965).
[3] Landau, E., Über die Blochsche Konstante und zwei verwandte Weltkonstanten. Math. Z. 30 (1929), 608-634.
[4] Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I. Math. Ann. 89 (1923) 103-121.
[5] Schaeffer, A. C. and D. C. Spencer, The coefficients of schlicht functions. Duke Math. J. 10 (1943), 611-635.
[6] Schaeffer, A. C. and D. C. Spencer, Coefficient regions for schlicht functions Amer. Math. Soc. Collog. Publ. vol. 35, New York (1950).

