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ON A CHARACTERISTIC PROPERTY OF THE
EXPONENTIAL FUNCTION

BY TADASHI KOBAYASHI

1. Introduction. We say that a complex number w is a linearly distri-
buted value of the entire function f(z) if there is a straight line L of the com-
plex plane on which all the solutions of f(z)=w lie. Baker [1] has shown the
following characterization of the exponential function.

If f{z) is a transcendental entire function for which every value is linearly
distributed, then f(z) is a function of the form

c+^exp (az),
where a, c, d are constants.

The purpose of this note is to show some other characteristic properties
of the exponential function. We shall prove the following theorems.

THEOREM 1. Let f{z) be a transcendental entire function. Assume that there
are three distinct finite complex numbers a3 and three distinct straight lines L3 of
the complex plane on which all the solutions of f{z)—a3 lie 0 = 1,2,3). Assume
further that f(z) has a finite deficient value other than aly a2 and a3. Then f(z)
= P(exp Az) with a quadratic polynomial P(z) and a non-zero constant A.

THEOREM 2. Let f{z) be a transcendental entire function. Assume that there
are four distinct finite complex numbers b3 and four distinct straight lines Lj of
the complex plane on which all the solutions of f{z)—bj lie 0=1 ,2 ,3 ,4) . Then

/(z)=P(exp Az),

where P(z) is a quadratic polynomial and A is a non-zero constant.

Without much difficulty, we can restate this theorem in the following form.

THEOREM 3. Let f{z) be a transcendental entire function which has four
distinct finite linearly distributed values clf c2, cz and c4. / / no three of the four
values lie on any straight line of the complex plane, then /(;?)=P(exp Az) with
a quadratic polynomial P(z) and a non-zero constant A.

Combining a result of Edrei [2] and the above Theorem 2, we easily obtain
the following fact.
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COROLLARY. Let f{z) be a transcendental entire function. Assume that there
exists an unbounded sequence {wn} such that each wn is a linearly distributed
value of f(z). Then

f(z)=P(expAz),

where P(z) is a quadratic polynomial and A is a non-zero constant.

2. Statement of known results. We shall make use of the following theo-
rems.

THEOREM A. Let f(z) be a transcendental entire function having only real
zeros. Then f(z) has at most one finite deficient value. Further if f{z) has a
finite deficient value other than zero, then the order of f(z) is not greater than
one.

This interesting result was proved by Edrei and Fuchs [3].

THEOREM B. Let f(z) be an entire function of finite genus q (^1). // its
zeros {an} satisfy

lim arg an=0 (| arg an | ^π),
n—>oo

then f(z) has zero as a deficient value.

This Theorem B already appears in a weaker form in [4], and the argu-
ments developed there are sufficient to yield this result. Further from this
Theorem B, we easily have the following

THEOREM C. Let f(z) be an entire function whose genus is finite and at
least two. If zero is a linearly distributed value of f{z), then f{z) has zero as a
deficient value.

Next fact is an improvement of Lucas' theorem [6].

THEOREM D. Let f(z) be a non-constant entire function satisfying

liminf T ( r ? j r ) = 0 .
r-*oo r

Then the smallest convex set which contains the zeros of f{z) also contains the
zeros of f(z).

THEOREM E. // f(z) is regular in the unit disc and fails to take there 0 and
1, then

where A is a positive constant depending upon |/(0)| only.
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This is a well known result of Bohr and Landau.

3. Consequences of Bohr and Landau's theorem. Our starting point will
be the following fact.

THEOREM 4. Let f{z) be an entire function of finite lower order. If all the
zero-points and the one-points of f{z) lie in the strip

then f(z) has at most order one, mean type.

It should be remarked that the restriction "finite lower order" cannot be
omitted. In order to prove this theorem, we need some preliminary facts. The
first is a well known lemma of Borel.

LEMMA 1. Let V{r) be a continuous, increasing and unbounded function
defined for r^r*, and let η (>0) be given. Then

for all r^ir*, outside a set E whose logarithmic measure is finite.

LEMMA 2. Let f(z) be an entire function of infinite order whose zeros {an}
satisfy

lim arg an=0 (| arg an | <Ξ/

Then the lower order of f(z) is also infinite.

This lemma was proved in [5]. Using this fact, we have the following

LEMMA 3. Let the assumptions of Theorem 4 be satisfied. Then the order
of f(z) is finite.

Proof of Theorem 4. The linear transformation

z—X~+/Z~ 1 +

maps the unit disc onto the half plane Rez>h. Hence by the assumptions, the
function defined by

is regular and different from 0 and 1 in the unit disc. Therefore it follows
from Bohr and Landau's theorem that
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so that

(3.1) ^^f^^-^ί^hf^ (Rez=x>h)

with a positive constant A. Similarly, it follows that

(3.2) l o g i / ^ j i ^ ^ + ^ L W Z . ( R e ^ K - A ) .

On the other hand, by Lemma 3, it is possible to find a positive number η
such that

(3.3) lim ™n**nr) = 0 >

where T{r)—T{r,f). Using the well known relation

for 0<\z\—r<R, and the above Lemma 1, we have

(3.4) log+ \f{z) I ^(1+2 log T{r)){T{r))^ (| z| =r)

for all r^i?*, outside a set £ whose logarithmic measure is finite. Now let us
set for each r^h,

_ ^Jog+\f(reu)\dt,

where

Then for r^h not in the exceptional set E, (3.4) yields

L * ( r ) ^ J _ 5 r ( 1 + 2 log T{r))(J{r))^ .

Since rsr is bounded for r^h, (3.3) implies

L*{r)=o(T(r))

outside the set E. Thus for sufficiently large r not in E, we can choose vr so
that

(3.5) 0 < v r < s * = - | — s r

and

(3.6) T(r)=^
7
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Hence by means of (3.1) and (3.2), we find

ΛVJ= π J_ β r ~rcosf-λ Uί

(3.7)

= 2Λ r»r (l+/z+r)2

 d

πr Jo cosί—sinsr

From (3.5), an elementary calculation gives

cos t—sin s r=cos t—cos s*
(3.8)

^-zr(sf—t) sin-^->0

for 0^t^vr. Therefore it follows from (3.7) and (3.8) that

,„,(_£_).
Then for sufficiently large r not in E, we find

(3.9)

with a positive constant B. Further from (3.3), (3.4), (3.5) and (3.6),

log T(r

(3.10)
=(s*-v r )( l+2 log T(

for values of r not in E. Combining (3.9) and (3.10), we thus have

(3.11) 1+0(1)^(2+4 log 7 X r ) ) ( T ( r ) ) ' e x p ( — ^ - )

for sufficiently large r not in E. Hence by this inequality (3.11), we easily find

Since the logarithmic measure of the set E is finite, we conclude that

so that the order of f(z) is at most one.
It remains to prove that

(3.12) l i m s u p - ^

Since the genus of f(z) is at most one, we easily obtain
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/(z)/(-z)=Czf»
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where {αw} are the zeros of f{z). Evidently, for all rΐ̂ O,

=1+- cos

where α n=argα n . By the assumptions, \Rean\^h. Hence if \an\^2h, then
cos2ctn^0. Hereby

1 — 1 — K l
for all |α n |^2λ and all r^O. Therefore we obtain

log|/(r)/(-r)|^O(logr)+ Σ log 1 —

\an\ Sr
21og-

= O(logr)+2Mr,0,/).

Thus it follows from (3.1) and (3.2) that

r-h
, 0,

so that

(3.13)

Similarly, applying the above argument to 1-/(2), we also find

(3.14) limsup N(-r>l>fϊ <+oo.
r^oo r

Then by (3.13) and (3.14), the second main theorem yields the desired result
(3.12). The proof of Theorem 4 is now complete.

Minor modifications in the above proof lead to the following facts which
we state without proof.

THEOREM 5. Let f(z) be a transcendental entire function having only real
zeros. Assume that there exist two distinct finite values α, b (aφO, bφϋ) such
that all the solutions of f(z)=a and f(z)=b are contained in Imz^O and Imz^O,
respectively. Then the order of f{z) is at most one.

THEOREM 6. Let f(z) be a transcendental entire function which has three
distinct finite linearly distributed values. Then the order of f{z) is finite.
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4. A property of entire functions of genus at most one. First of all, we
remark the following

LEMMA 4. Let g(z) be an entire function of finite genus. Then the genus
of the entire function defined by

G{z)=g{az+b),

where a (ΦQ), b are constants, coincides with that of g(z).

This lemma is an immediate consequence of the well known result [7: p.
230].

Now, let f{z) be an entire function of genus less than two. Assume that
all the zeros {an} of f(z) lie on the imaginary axis. Then

(4.1) f(z)=zm exp (Az+B) Π E (-J-, q) ,
anψo \ an /

where q is either zero or one, and E(z, q) is the Weierstrass primary factor of
genus q. Since dn=—an, we find

7 W = ( - l ) m / ( - ^ ) exp (2Cz-2ιD),
(4.2)

ReA=C, Im B=D.

Further from the expression (4.1), we also obtain

(4 3) R e ^ f = R ^
To generalize these facts, we introduce a notation. Every straight line of the
complex plane can be expressed as

(4.4) {z\Re(eisz)=r}

with suitable real numbers s and r. In what follows, we denote the line (4.4)
by L(s, r).

LEMMA 5. Let f(z) be an entire function of genus at most one. If all the
zero-points {α*} of f{z) lie on the line L(s,r), then

(4.5) f(e-uz+e-ur)=f(-e-χ'z+e-%'r) exp (2Cz+ίC)

and

with suitable real constants C and (7.

Proof. Consider the function defined by
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F(z)=f(e-ιsz+e~ιsr).

Then by Lemma 4, the genus of F(z) is at most one. Further all the zeros of
F(z) are {etsa*— r}. So by the assumptions, Re (etsα* — r)=0. Therefore by
(4.2) and (4.3), we find

(4.7) F(7)=F(-z) exp (2Cz+iC)

and

with suitable real constants C and C From (4.7) and (4.8), we at once obtain
the desired (4.5) and (4.6).

In the above Lemma 5, we further assume that f(z) has at least one zero-
point. If the real constant C which appears in (4.5) and (4.6), is equal to zero,
then

for all Re(eιsz)>r and for all Re(eιsz)<r. In particular, f(z) fails to take the
value zero there. Hence all the zeros of f(z), if exist, must lie on the line
L{s,r).

Next let us assume that C>0. Then (4.6) implies

for Re(euz)^r. Thus we find

log|/(e-"6)|-log|/(e—α)| = f * R e ( - C ^ ζ ^ ) Λ

^C(b-a)

for r<a^b. From this inequality, f(e~ιst) tends to infinity as t does to infinity
along the positive real axis.

Similarly, if C<0, then f(e~ιst) tends to infinity as t does to infinity along
the negative real axis.

LEMMA 6. Let f{z) be a transcendental entire function. Assume that there
are three distinct finite complex numbers a3 and three distinct straight lines L3

of the complex plane on which all the solutions of f(z)=a3 lie (j=l, 2, 3). Assume
further that no two of the three lines L3 are parallel to each other. Then at least
one of the three values a3 is a radially distributed value of f(z).

Proof. By the assumptions, f{z) has three linearly distributed finite values.
So by virtue of Theorem 6, the order of f(z) must be finite. For a moment,
we assume that the genus of f(z)—a1 is greater than one. Clearly it is possible
to find a linear transformation L(z)=cz+d so that the function defined by
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F(z)=f(L(z))-a2

has only real zeros. Of course, the value ax—a2 0 0 ) is a linearly distributed
value of F(z) and the genus of F(z)—a1+a2 coincides with that of ftz)—ax. So
the order of F{z) must be at least two. Further by Theorem C, F{z) has the
value a1—a2 as a deficient value. However by means of Theorem A, the order
of F(z) is less than or equal to one. This is absurd. Therefore the genera of
f(z)~aJ (7=1,2,3) are at most one.

Let us set

L}=L(sJtr3)

with real numbers Sj and rs (7=1,2,3). Then by Lemma 5, denoting the ap-
points of f{z) by {a*,-}, we have

f{z)-a3

with suitable real constants C3 (7=1,2,3). Firstly, assume that d = C 2 = C 8 = 0 .
Then by what mentioned above, all the zeros of f{z) must lie on the three
distinct lines L3 simultaneously. Hence f(z) has at most one zero-point. Since
the genus of f{z)-aλ is at most one, T(r, f)=o(r2). So T(r,f)=o(r2). There-
fore f(z) can be expressed as

f(z)=(z-z*)nexp(Az+B),

where n is a non-negative integer and A, B are constants. Hereby

(4.9) f(z)=P(z)exp(Az)+D

with a suitable polynomial P{z) and a suitable constant D. From this repre-
sentation (4.9), using asymptotic properties of the exponential function, we thus
obtain the desired result.

Secondly, assume that Cx>i). Then/(«iO tends to infinity when t tends to
infinity along the positive real axis. On taking into account that L(s+π, r) —
L(s, —r), we may assume that

S 1 < S 2 < S 3 < S 1 + 7Γ.

There occur two cases. Either (I) s^Sχ+π/2, or (II) s1+7r/2<s3<s1+τr.

In the case (I), since s2—s1<sB—s1^π/2> tΰ1 must be contained in the angular

domain
A={z\Re(uίz)>r1 and Re(u22)>r2}

for sufficiently large real positive t. Observe that f(z) fails to take the two
values a± and a2 in this domain A. Then using Lindelof-Iversen-Gross' theorem
[8], we find for arbitrarily fixed tx and t2 (-s1-π/2<t1<t2<-s2+π/2),
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uniformly for t^t^tz. On the other hand, from s3—sx<7r, the intersection of
the line L3 and the domain A is a half straight line. Therefore f(z) tends to
infinity when z tends to infinity along the unbounded part of L3 which is con-
tained in A. Consequently, the value α3 is a radially distributed value of f{z).

Next in the case (II), for sufficiently large real positive t, tΰ1 must lie in
the angular domain

B={Z\RQ{U1Z)>T1 and Re(u3z)<r,}.

Hence using Lindelδf-Iversen-Gross' theorem again, we have for arbitrarily fixed
tx and t2 (-s

lim |/(rg")|=+oo

uniformly for t^t^t^. Further in this case, the intersection of the line L2 and
the domain B is a half straight line. By these facts, the value a2 must be a
radially distributed value of f(z).

All other cases, say C2<0, can be treated by the same fashion as above.
The proof of Lemma 6 is hereby complete.

5. Entire functions with two linearly distributed values. Let G(z) be a
transcendental entire function of finite lower order such that all the zero-points
{an} of G(z) lie on the line Re z=0, and all the one-points {bn} of G{z) lie on
the line Rez=l. Then by Theorem 4, G{z) has at most order one, mean type.
So the genera of G(z) andG(z)—1 are at most one. Hence by means of Lemma
5, we find

(5.1)

K e ΰ ^ ^ \z-bn

and

)=G(-z)exp(2Az+ιA'),
(5.2)

)-l)exp(2Bz+ιB/)

with suitable real constants A, A', B and Bf. The quantities A and B satisfy
the following

LEMMA 7. // AB<0, then A<0 and B>0. Further if AB=0, then either
A<0 or B>0.

Proof. Suppose that A>0 and B<0. Then by (5.1),
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for Rez>0, and

for Re^<l. In particular, G\z) has no zeros for Rez>0 and Rez<l. There-
fore G'iz) fails to take the value zero. Since the order of G'(z) is at most one,

σ(z)=exp(Cz+D)

with constants C and D. So we find

(5.3) G(z)=Eexp(Cz)+F

with suitable constants C, E and F. By this representation (5.3), using an ele-
mentary calculation, we easily arrive at a contradiction. Accordingly, Λ<0
and B>0.

Next we prove the latter statement. Suppose that Λ^O and B<,0. Then
using (5.1) again, we conclude that G\z) has no zeros. Thus we also arrive at
a contradiction. Hereby A<0 or B>0. This completes the proof of Lemma 7.

LEMMA 8. // AB^O, then G(z) has no finite deficient values.

Proof. Firstly, consider the case ΛB<0. Then by Lemma 7, Λ<0 and
B>0. Hence we find

(5.4) lim |G(*) |=+oo.
.r-+±oo

Since G{z) fails to take the values zero and one in the open half planes Re<ε>l
and Re2r<0, Lindelδf-Iversen-Gross' theorem and (5.4) imply

(5.5) lim \G(reu)\
r +

uniformly for | ί | ^ ί* and for \t—π\ <Ξί*, where ί* is an arbitrarily fixed number
in (0,7r/2). Now let w be an arbitrary finite complex number. Then by (5.5), it
is possible to find a positive number R so that

for r^R, |f| f̂* and for r^R, \t-π\^t*. Therefore on putting

_Lr{Z)-W\

we obtain

r, w, G^
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for each r^R. According to Petrenko's result [9], we thus have

,. . £ m(r,w,G) ^fΛ 2
h ™ i n f V-ΊΓ

for an arbitrarily fixed number t* (0<ί*<7r/2), so that δ(w,G)=0 for every
finite complex number w. Hereby we have the desired result.

Secondly, if AB=0, then either A<0 or B>0. Hence we find either

lim I G(jt) I = + 0 0 ,

or
lim | G W | = + o o .

X — + 0 0

On the other hand, by means of (5.2), .4=0 implies

and B—0 implies

By these facts, we at once obtain (5.4). Therefore we also have the desired
result by the same process as above. Lemma 8 is thus proved.

Next we consider the case AB>0. The following lemma plays an impor-
tant role in what follows.

LEMMA 9. Assume that A and B are both positive. If the curve {G(l+iy)\
— oo<j;<-|-co} meets the open half line {l<ί<+oo}, then G{z) approaches the
value one as z tends to infinity along the negative real axis.

Proof. Let .y* and X be real numbers such that C(l+z;y*)=Z, X>1. By

(5.1),

Re

and
Gd+ry*) _ oRe -y-j -B,

so that

Re G'(l+iy*)=B(X-i)^XA.

Since A and B are both positive,

(5.6) B-A>0.

Here we assume that G(2*)>1 for some z* with 0^Re^*^l. Then using (5.1)
again, we have



142 TADASHI KOBAYASHI

AG(z*)^Re
so that

1<S=

Consequently, if KG(z)<S for some z, then either Re*<0 or Rez>l. There-
fore we have the following two possibilities.

1) For every r ( l<r<S), G(z)φr in the closed half plane Rez^l .
2) There exists a real number r* ( l < r * < S ) such that G(z*)=r* for some

z* with Rez*<0.
Firstly, consider the case 2). By G~1(w), we denote the inverse function of

G(z). Of course, G~λ{w) is an infinitely many valued analytic function with
algebraic character. By E(w, r*), we also denote the element of G~\w) with
center r* and satisfying E(r*, r*)=z*. Now let us continue analytically E(w,r*)
along the segment I={l^t^Lr*} toward the point t=l. Then we have an
analytic continuation G~\Ih) with algebraic character along the segment / up
to some point t—h (l<^h<r*), with the possible exception of this end point.
Hereby from this continuation G~\Ih), we can define the simple path γ—{z(t)\
0^t<r*-h} such that ^(0)=^* and

(5.7) G(z(f))=r*-t (0^t<r*-h).

Clearly, by (5.7), this path γ must be contained in the open half plane Rez<0
and the continuation G~\Ih) does not continue to the point t—1. So we may
assume that this continuation G'\Ih) defines a transcendental singularity at the
point t=h. Therefore by Iversen's theorem [7], the path γ is an asymptotic
path of G(z) and as z tends to infinity along γ, G(z) tends to the real value h.
By this fact, using Lindelόf-Iversen-Gross' theorem, we obtain

(5.8) \im G(reu)=h
r-»+oo

uniformly for \t—π\ ̂ ί*<ττ/2. On the other hand, by means of (5.2), we have

(5.9) AxG{z-l) exp (2(B-Λ)z)

with non-zero constants Ax and Λ2. Combining (5.6), (5.8) and (5.9), we at once
conclude that

Λ(A-l)=0,

so that h=l. Consequently, G(z) tends to the value one when z does to infinity
along the negative real axis.

Secondly, consider the case 1). .By (5.1),
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for Rez>0. Hence G\z) omits the value zero there. Especially, G'g+iy*)Φθ.
Further we can claim that S<X. For if S—X, then

Ke ΆKe χ

Thus from (5.1), G(z) has no zero. So we obtain

G(z)=Dexp(Az),

where D is a suitable constant with \D\=e~A. This clearly contradicts the
assumptions.

Now by E{w, X), denote the regular element of G~\w) with center X and
satisfying E(X, X)=l+ιy*. In this case, we continue analytically E(w, X) along
the segment J={l^t^X} toward the point t=l. Then we have an analytic
continuation G"\JU) with algebraic character along the segment / up to some
point t—u g^u<X), with the possible exception of this end point. From this
continuation G~λ(Jv)> let us define the simple path β—{Z(t)\0^t<X—u} such
that Z(0)=l+iy* and

(5.10) G(Z(t))=X-t (0^t<X-u).

For a moment, we assume that the path β intersects the line Rez—1 at some
point Z(U) (0^t*<X-u). Then the function Z(t) is differentiate at U and
from (5.10), we find

G'(Z(t*))Z'(t*)=-l.
Since

ReG'(Z(U))=B(X-U-l)>0,

we thus conclude that

Consequently, if ReZ(ί*)=l for some U, then ReZ /(ί*)<0. By this fact, the
path β must be contained in the open half plane Rez<l save for the initial
point Z(0) and further the continuation G~λ(Jv) does not continue along the
segment / to the point S. Hereby we may assume that this continuation
G'XJu) defines a transcendental singularity at the point t—u (S^u<X). Ac-
cordingly, the path β must be an asymptotic path of G(z) and as z tends to
infinity along this path β, G{z) approaches the value u. Since G(z) fails to take
infinitely many values in the open half plane R e * < l , we thus find

(5.11) \imG(x)=u^S>l.

However in view of (5.6), (5.9) and (5.11), we arrive at a contradiction. There-
fore the case 1) never occurs. Lemma 9 is thus proved.

In addition to the above lemma, for the case AB>0, we further obtain the
following
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LEMMA 10. Assume that A and B are both positive. Then

provided that the curve {G(l+iy)\ — oo<j/<-f-oo} does not cut off the open halj
line { K K + oo}.

Proof. Using (5.1), we find

(5.12) Re-GG(z)' = Λ

for Rez>0 and

for Rez^l, provided G(2r)=£l. Hence for every real number t with O ^ ί ^ l ,

for R e 2 ^ 1 , provided G(z)Φl. Especially, the curve {G(l+ιy) | — oo<j/<+oo}
never intersects the segment 0 ^ ί < l . So by the assumptions, if G(l+ιj/*)^0 for
some real number y*> then G(l+ry*)=l. Further by (5.12),

arg G(l+iy2)—arg

for yx<y2. Thus as the real parameter y traverses the real axis increasingly,
this curve winds around the origin infinitely many times in the anti-clockwise
direction. Therefore G(z) must have infinitely many one-points. From (5.12),
all the one-points of G{z) are simple.

Now let us denote the set of all the one-points of G{z) by {l+*cn}. We
may assume, by what mentioned above, that

lim £ n =
n-»+oβ

and

In view of (5.12),

so that

(5.13)

for every integer n. Since G(l+ιt)—1 does not take any non-negative real
number for each open interval (cn, cn+1), we can define the function In(t) such
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that

(5.14) 0</ n(0=arg(G(l+ι0-l)<27r

for cn<t<cn+1. By means of (5.1), we thus find

/„(*)-/„(*)=£ Re -gβ^f^-dy=B(t-s),
so that

(5.15)

for cn<s<t<cn+1. On the other hand, from (5.14),

3 π<T (t) 3 - - a r g

for every real number t with cn<t<cn+1. Hence we have

Taking into account of (5.13), we conclude that

(5.16) lim (/ n (0--o-*r)=α n + 1 .

Similarly, it follows from (5.13) and (5.14) that

(5.17) lim (ln(s) —J-7r)=α n .

Accordingly, by (5.15), (5.16) and (5.17), we obtain

for each integer n. Therefore

am-an=B(cm-cn)-(m-n)π,

so that from (5.13),

(5.18) (m-n-ϊ)π^B(cm-cn)^(m-n+ϊ)π

for arbitrary integers m, n with n^rn. From these inequalities (5.18), using
the usual method, we have the desired result.

In the above Lemmas 9 and 10, we assume that A and B are both positive.
For the case where A and B are both negative, we can prove similar results.
Indeed, when A and B are both negative, we consider the function defined by

Clearly all the zero-points and all the one-points of F{z) lie on the lines
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and Rez=l, respectively. Further from (5.1),

R e JEL(*L=-B+ Σ ReZ

and
Re z-1

Therefore we can apply Lemmas 9 and 10 to this function F(z). Turning back
to G(z), we at once obtain the following.

LEMMA 10'. // A and B are both negative, then either G(z) approaches the
value zero as z tends to infinity along the positive real axis or

6. The case A=B. In this section, using the same notations as in the pre-
vious section 5, we consider the case A=B. Lemma 7 asserts that A=BφO.
In what follows, we assume that A=B>0. For this case, we make use of the
functional equations (5.2). By means of (5.2), we find

(2Az-2A-iA/),
(6.1)

So by the induction,

) - l ) - Σ S*
kk = 0

(6.2)
+exp (2Az-inA-2A-iA/)

for each non-negative integer n. Since A>0,

|S*|=exp(-2i4)<l.
Further

e x p ( - 4 ^ ) _ v tΛ , _ . .. _Q, i - *

Therefore from (6.2), we easily have

(6.3) lim G(x)=-
X-*— oβ

Since G{z) omits the values zero and one in the open half plane Re z<0, Lindelδf-
Iversen-Gross' theorem and (6.3) yield
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(6.4) lim G(reu)=
r—+00

uniformly for | ί-ττ | ^ ί
From now on let us consider the functions defined by

β J±— exp (2Az-iA>)
1o # — 1 o * — 1

and

F(z)=G(z)-H(z).

By an elementary calculation,

H(β)=H(-z) exp

and

i/(2r-l)=S*(ίί(2r+l)-l)+exp (2Az-2A-iA').

Se the entire function F(z) must satisfy

(6.5) F(F)=F(-z) exp

and

(β.β) F(z

Further by (6.4), the function F(z) also satisfies

(6.7) lim F(reu)=0

for each real number t with |ί—π\<π/2.
We now assume that F(z) has no zero-points. Since the order of F(z) is at

most one, F(z) can be written as

(6.8) F(z)=Kexp(Dz)

with suitable constants D and K. By means of (6.5), we thus find

ifexp (Dz)=Kexp (-Dz+2Az+iA'),

so that

On the other hand, from (6.7) and (6.8), the constant D must be real. Con-
sequently,

F(z)=Kexp(Az).

Therefore
G(z)=H(z)+Kexp(Az)

=P(expAz),

where
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P(z)= S* +Kz+ J* exp (-iA')z2.
S*—1 S*—1

Next we consider the case where F(z) has at least one zero-point. In this
case, by virtue of (6.6), F(z) must be identically equal to zero. On the con-
trary, we assume that F(z) is not constant zero. Then by (6.6), if F(z) has a
zero-point of order n at z*, all the points of the form z*+2m (m=0, ±1, ±2, •••)
are also zeros of F(z) of order exactly n. Further if zlf z2, •••, zk are zero-
points of F(z) such that each (zi—zJ)/2 is not integer (l^ι<j^k), then

lim sup ^ ^ l i m sup
r

k ,

Γ

where N*(r) is the counting function for the set

{z3+2m\ m=0, ±1, ±2, - ,7-1, 2, - , k} .
Here we observe that F(z) has at most order one, mean type. Then by these
facts, the function F(z) can be expressed as with suitable a finite number of
points zf,zf, -' ,z*,

Fiz^E^E^z) -. En(z) exp (Cz+D),

where C, D are constants and

l=exp (iπ(z-zf)) ( 7 =1, 2, - , n).
However using (6.7) and asymptotic properties of Ej(z), we easily arrive at a
contradiction. Therefore if F(z) has zero-points, then F{z) is identically equal
to zero. Consequently,

Giz^—^+^y exp(2Λz-ιΛ0.
1 1

Thus we obtain the following lemma.

LEMMA 11. Let G(z) be a transcendental entire function of finite lower order
such that all the zero-points and all the one-points of G(z) lie on the lines Rez
=0 and Rez— 1, respectively. If G(z) satisfies

G(F)=G(-z) exp (2Az+iA'),

G(z+l)-l=(G(-z+ΐ)-ΐ) exp {2Az+ιB')

with some real constants A (Φθ), A'and B', then

G(z)=P(exp Az),

where P(z) is a quadratic polynomial.

For the case A<0, as in the proof of Lemma 10', considering the function
defined by

G * ( ) G (
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we at once obtain the desired result.

7. Proof of Theorem 1. Now we are in a position to piece together the
foregoing lemmas and prove our Theorem 1.

Let f(z) be an entire function satisfying the assumptions of Theorem 1. By
Theorem 6, the order of f{z) must be finite. Further Theorem D asserts that
the characteristic function of f(z) must satisfy

(7.1) liminf T^r'^-Φθ.
T

For otherwise, all the zero-points of f{z) must lie on the three distinct lines
Lj simultaneously. Hence f\z) has at most one zero-point, so that f(z) reduces
to a polynomial.

To prove our theorem, it is sufficient to consider the following three cases.
1) No two of the three lines L3 are parallel to each other.
2) Lλ and L2 are parallel, but Lλ and L3 are not.
3) The three lines L3 are parallel to one another.
Firstly, we consider the case 1). By Lemma 6, at least one of the three

values, say au is a radially distributed value of f(z). Let us choose two complex
numbers c and d such that the function defined by

f*(z)=f(cz+d)-a2

has only real zeros. Then the value a1—a2{Φϋ) is a radially distributed value
of f*(z) and the genus of /*O)—a x ^a 2 is at least one by (7.1). Hence from
Theorem B, aλ—a2 is a deficient value of /*(*). So the order of /*(*) is at
most one by Theorem A. Thus from (7.1), the original function f(z) is of order
one and regular growth. By the assumptions, f(z) has a finite deficient value,
say a*, other than alf a2 and as. Since f(z) is of regular growth, the value
α*—α2 must be a deficient value of f*(z). Clearly, a1—a2 is different from α*—a2.
So the auxiliary function f*(z) has at least two finite deficient values. This is
absurd by Theorem A. Consequently, the case 1) never occurs.

Next we consider the case 2). In this case, using Theorem 4 and (7.1), we
at once conclude that f(z) is of order one and regular growth. So we may
assume, without loss of generality, that a1=0, a2—l, Lλ: Rez=0 and L2: R e z = l .
From Lemma 5, we find

(7.2)

R p / ' ( * ) . p . yΛ R e * - 1

where {«?} and {b%} denote the zero-points and the one-points of f(z), respec-
tively. By virtue of Lemma 8, A and B are both positive or both negative.
Thus by (7.2) and by Lindelδf-Iversen-Gross' theorem, either
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lim I/(re") I =+00

uniformly for |f|^£*<7r/2, or
lim |/(r*") |=+oo

uniformly for \t—π\ ̂ .t*<π/2. Therefore by the assumptions, the value a3

must be a radially distributed value of f(z). Hence using the same argument
as in the above case 1), we arrive at a contradiction. Consequently, this case
2) does not occur either.

Now let us discuss the case 3). By the same reason as in the case 2), we
may assume that Lλ: Rez=xu L2: Rez=x2 and L3:Rez=xs with x1<x2<x3.
From Lemma 5,

(7.3) Az+Xj)-aj={f{-z+xJ)'-a3) exp (2C3z+iC3)

with suitable real constants C3 and C3 (j=l, 2, 3). For each pair j and k with

Ifgy<£ίg3, consider the function defined by

4J (sikyZ) —

α̂ , —α^

Then all the zero-points and all the one-points of Gjk(z) lie on the lines Re^=0
and Rez— 1, respectively. Since the original function f(z) is of regular growth,
G3k(z) has also a finite deficient value other than the three values

^ = ^ - (m=l,2,3).
ak-a3

Further using (7.3) and (7.4), we easily obtain

(7.5) GJk(z)=Gjk(-z) exp {2{xk-x3)C3z+ιCf

jk)

and

(7.6) Gjk(z+l)-l=(Gjk(-z+l)-l) exp (&xk-x,)Ckz+ιC'k3)

with suitable real constants C'jk and C^.
From now on, applying the foregoing lemmas to these functions Gjk(z), we

prove that either Cx—C2 or C2=C3. Since Gjk(z) has a finite deficient value,
Lemma 8 asserts that the three real constants Clf C2 and C3 are positive or
negative simultaneously. For a moment we assume that Clf C2 and C3 are all
positive. Here recall that the auxiliary function Gjk(z) omits the two values
zero and one in the open half plane Re^<0. Then if Gjk{z) approaches the
value one when z tends to infinity along the negative real axis, by the same
fashion as in the proof of Lemma 8, Gjk(z) has no finite deficient values with
the possible exception of the value one. So by virtue of Lemma 10, we obtain

(7.7) lim W ' 1 / ^ =4-(*,-;c,)C,.
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Returning to the original function f(z), we thus find

(7.8) lim ^ f r ' β * / ) =^rCk (£=2,3).

In fact, by the definition of Gjk(z),

(7.9) n(f, 1,

and

(7.10) n(ί, at, / ) g

for each positive number ί, where n(f, α, F) denotes the number of α-points of

the function F(z) in \z\<t. Hence (7.9) implies

N(r, I, GJt)-Ws, 1, GJk)^( n{t,ah,f) t ,{
J (xk-xps+\xj\ τ τ—\xj\

^

for every positive numbers r and s with s^r, so that

l ί m i n f N(r,l,Gjk)
Γ

for every positive number 5. Since s can be chosen as large as we please,

hm inf — ^ — - — 3 — S (Xk—Xj) lim inf — v ' ky J -.

Similarly, (7.10) implies

(**-*,) lim sup ^ . f l * » / ) . ^Hm sup N^Λ,G}k)_ _

Therefore by means of (7.7), we have the desired (7.8).
On the other hand, by Theorem A and by the fact that f(z) is of regular

growth, f(z) has exactly one finite deficient value. Hence δ(aJf f)=0 0=1,2,3).
Thus from (7.8), we have

r . r T(r,f) 2 n 2 nhm inf —κ-irLJ- =—Cz=— C3,

so that C2=C3.
In the case where Cu C2 and C3 are all negative, in virtue of Lemma 1CΓ,

we conclude that Cλ—C2 by the same way as above.
Now return to G12{z) or G2S(z), again. Then from Lemma 11, either

or
G23(z)=P(exp (xs-x2)C2z)
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with a quadratic polynomial P(z). Turning back to the original function f(z)
once more, we have the desired result This completes the proof of Theorem 1.

8. Proof of Theorem 2. Let f(z) be a transcendental entire function which
satisfies the assumptions of Theorem 2. We may assume that the four straight
lines L'j run parallel with one another. For otherwise, by the same way as in
the proof of Lemma 6, at least one of the four values b3 must be a radially
distributed value of f(z). So fiz) has at least one finite deficient value, since
the characteristic function of f(z) satisfies (7.1). Hence by virtue of Theorem
1, we have nothing to prove. Further we may assume that L) : Rez=Xj (j =
1,2,3,4) with x1<x2<x3<xi, and that

(8.1) δ(bJ9f)=0 0-1,2,3,4).

Evidently, f(z) is a function of order one and regular growth. From Lemma 5,
with suitable real constants A, and BJf

(8.2) ΛZ+xJ-bj^Λ-z+xJ-bj) exp (2Aμ+ιB3)

and

p A / \z) _ A i V
υ3

where {cnj} are the ̂ ^-points of f(z) 0=1,2,3,4).
Hereafter, our proof is divided into the consideration of several cases.
The first step. As before, let us set

\oΛ) trjk\Z)trjk\Z)— τ τ
u k u j

for each pair j and k with \S]<k^L Clearly, all the zero-points and all the
one-points of G%(z) lie on the lines Rez=0 and Rtz=l, respectively. Further
(8.2) and (8.4) imply

(8.5) G%(ί)=Gfk(-z) exp (2(xk-Xj)AjZ+ιB'jk)

and

(8.6) G%(z+l)-l=(G%(-z+l)-l (exp (2(^-^)^

with suitable real constants B'jk and Bf

kJ.
In this step, we prove that AXΦQ and AάΦ0. If ^ = 0 , then applying Lemma

7 to the above functions Gfk(z), we find Ak>0 (ife=2, 3, 4). Hence

(8.7) lim |G? A (*) |=+oo.

By means of (8.5),
|Gf*(«l = |G&(-2r)|,

so that (8.7) implies
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(8.8) lim |G?*(x) |= + oo.
X-* — °o

Turning back to the original function f(z), we thus have

(8.9) l im|/(*) |=+oo.
X-*— oo

Therefore it follows from (8.4) and (8.9) that

(8.10) lim

for each function G%(z). Since Aj>0 0=2,3,4) , using Lemmas 9 and 10, w.
hence obtain

(8.11) lim N{r,l,G%) ^_2^
Tί

for each pair j and k with 2ίg;<&:g4. Return to f(z) again. Then from (8.11),

(8.12) Mm N(r>bk>f) = — Λk (6=3,4).
r->oo y* 7Γ

Therefore by making use of (8.1) and (8.12), we deduce

Urn*-?&£--§.„.-§.*,

so that A3=Ai. Hereby Lemma 11 asserts that

G3*4(^)=P(exp {Xι-x3)Asz)

with a quadratic polynomial P(z). However, since A3>0, we easily have

lim G3*4(x)

which contradicts (8.10). Consequently, Λ^O.
By the similar way as above, we can prove that Λ4φ0.
The second step. In this step, we prove that Λ2Φθ and ΛsΦθ. If Λ2=0,

then ^4i<0, ^43>0 and Λt>0 by Lemma 7. Hence as in the above step, we
find

(8.13) lim |/(x)|
,r-+±oo

Especially,

lim |GSWI
Or—• — oo

Therefore applying Lemmas 9 and 10 to this auxiliary function G*A(z), we obtain

lim ^ ' < * > = - § - ( * - * , ) * ,
r—>oo Λ 7t

so that
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(8.14) I i m JVfcft*A = J L Λ .

It thus follows from (8.1) and (8.14) that

(8.15) liminf T ( r > / ) = — Λ
r—oo Y 7ΐ

On the other hand, since f(z) fails to take the four values b3 for Rez<xx and
for Re^>x 4 , Lindelof-Iversen-Gross' theorem and (8.13) imply

Urn I/(re") I = + 0 0
r—+00

uniformly for | ί | ^ ί * and for \t—π\^t*, where ί* is an arbitrarily fixed num-
ber in (0, π/2). Hence it is possible to find a positive number R so that

\A-re-u+2xA)-bA^l

for r^R, \t\^t* and that

for r^R, \t-π\^t*. Thus by means of (8.2),

\f(reu)-b41 = \f(-re-u+2x,)-b, \ exp (2A4r cos t-2A,x4)

i 4 r cos ί—2ΛAxA)

for r^ i?, | ί | g ί * and

\f(reit)-b1\=\f(-re-u+2x1)-b1\exp(2A1rcost-2A1x1)

^exp (2-4^ cos ί—2A1x1)

for r^/?, | ί—ττ|^ί*. Therefore using these inequalities, we obtain

T(r, f) ̂  ̂  J ^ log+1 f(re«) | at + ̂ J J _ Λ o g + 1 /(re") | dt

^ { A + \ A \r { , \ ί \ ) c o s

for r^i?, so that

(8.16) lim inf T(χ^f) ^ - ^ - ( Λ + IΛI) sin t* .

Since (8.16) holds for every number t* with 0<^*<τr/2,

liminf T{r>f)-^^-{A,+ \Aι\).
r-*oo i Jί>

This is clearly absurd by (8.15). Consequently, A2Φθ.
Similarly, we can prove that AsΦθ.
The third step. By the above two steps and by Lemma 7, the following

five cases may occur.
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1) Alf A2, A3 and A4 are all positive.
2) Ax is negative and the other three are positive.
3) Au A2 are negative and A3, A4 are positive.
4) A4 is positive and the other three are negative.
5) The four are all negative.
However, we can easily prove the impossibility of the cases 2) and 4) by

the same arguments which are used in the first step. Further we can also
prove the impossibility of the case 3) using the arguments developed in the
second step.

The final step. Let us consider the case 1). Since the four real numbers
Aj are all positive, we can apply Lemmas 9 and 10 to the auxiliary functions
G%(z). If some Gfk(z), say G&(z), tends to the value one when z does to infinity
along the negative real axis, then by (8.4),

lim/(Λr)=ί>2.

Therefore G*B(z) and Gfί(z) never approach the value one as z tends to infinity
along the negative real axis. So Lemma 10 yields

lim N{r'1;™ =-^{xk-Xl)Ak (*=3,4>.

Turning back to the original function /(z), we thus find

(8.17) lim N(r>b* f> = -f-Λ» (fe=3.4).

Hence (8.1) and (8.17) imply

so that AZ=A±. By this consideration, we can claim that at least two of the
three numbers A2, A3 and A4 coincide with each other. Hereby Theorem 2
follows at once from Lemma 11.

For the case 5), by making use of Lemma 10', we can also conclude that
at least two of the three numbers Alf A2 and A3 must be equal to each other.
So by virtue of Lemma 11, Theorem 2 follows immediately. The proof of
Theorem 2 is now complete.
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