By Yukiyosi KAWADA

(Communicated by Y.Komatu)

This note consists of two independent parts. In §1 we concern with the paper: H.Weyl, Almost periodic invariant vector sets in a metric vector space, Amer. J. Math., 71 (1949) (W. I). In this paper the whole theory was established upon 4 axioms. First the Parseval equation was proved by assuming Axioms I, II, III and then the approximation theorem was proved by assuming a further Axiom IV. We shall prove mere first the approximation theorem without Axiom IV and then we shall obtain the Parseval equation. In §2 we shall give a simple proof of Lemma 2 of the paper: H.Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940) (W.II).

§1. We start from the following axioms:

Axiom I (W.I, p.178) Let \sum be a complex vector space and $\sigma = \{s\}$ be a group of linear transformations on $\sum : f \to f' = sf$.

Axiom III (W.I, p.180) \sum is a Banach space w.r.t. the norm |f|, and $s \in \sigma$ is an isometric transformation on \sum : |f| = |sf|.

 $f \in \sum$ is called almost periodic (a.p.) if { sf; s $\in \sigma$ } is a totally bounded subset of \sum . We denote by \sum_{f} the smallest invariant closed subspace of \sum which contains f. Clearly \sum_{f}° is the closure of all the elements $\int_{f}^{\circ} \sum_{f} \xi_{i}(s_{i}f)$ (finite sum).

Let $\sigma \ni s \longrightarrow \Omega(s) = \|\omega_{\cdot j}(s)\|$ be a matric representation of σ with degree h. We call $g = (g_1, \dots, g_k)$ $(g_1 \in \Sigma)$ an Ω -row if

(1) $s(g_1, \ldots, g_k) = (g_1, \ldots, g_k) \Omega(s), s \in \sigma$

Especially $q_{\rm c}$ is called a primitive row if $\sqrt{2}$ is a unitary irreducible representation of σ .

Theorem 1. (Theorem of strong approximation, W.I, p.199) "Let $f \in \sum$ be a.p. Then f can be approximated w.r.t. the norm with arbitrary accuracy by finite sums of the elements of primitive rows." We shall first notice that the function $\mathbf{F}_{f}(\mathbf{s}) = \mathbf{s}\mathbf{f}$ with domain σ and with range in \sum is a.p. in the sense of Bochner-Neumann [1] (B.N.) if and only if $\mathbf{f} \in \sum$ is a.p. We denote its mean value by $\int_{\mathbf{s}}\mathbf{f}$. It is easily proved (W.I, p.182) that every $\mathbf{f}' \in \sum_{f}$ is also a.p. if f is a.p.

Now let $f \in \Sigma$ be a.p. and $\Omega^{\lambda}(s)$ be a unitary irreducible representation of σ with degree n_{λ} . We call g_{ii}^{λ} defined by

(2)
$$g_{ij}^{\lambda} = \int_{t} \overline{\omega_{ji}^{\lambda}(t)}(tf)$$

= $\int_{t} \omega_{ij}^{\lambda}(t^{-1})(tf)$ (1, j = 1,...,n _{λ})

the primitive expansion coefficient (p.e.c.) of f. g_{ij}° belongs to \sum_{f}° . Theorem 1 follows then from Lemma 1, 2:

Lemma 1. "Let $f \in \sum$ be a.p. and $g_{\cdot j}^{\star}$ be p.e.c. of f. Then

(3)
$$g_i^{\lambda} = (g_{i1}^{\lambda}, \dots, g_{in_{\lambda}}^{\lambda})$$
 (i=1,...,n_{\lambda})

are primitive rows."

Proof. Let F(s) and $\mathcal{G}(s)$ be a.p. functions taking values in \sum and complex numbers respectively. We define $F \times \mathcal{G}(s) = \int_t \mathcal{G}(t)F(st^{-1}) = \int_t \mathcal{G}(t^{-1}s)F(t)$. We have then

$$g_{ij}^{\lambda} = \int_{t} \omega_{ij}^{\lambda}(t) (t^{-1} f) = \bar{F}_{f} \times \omega_{ij}^{\lambda}(1)^{\circ}$$

Hence we have

$$sg_{ij}^{\lambda} = \int_{t} \omega_{ij}^{\lambda}(t)(st^{-1}f) = F_{f} \times \omega_{ij}^{\lambda}(s)$$
$$= \int_{t} \omega_{ij}^{\lambda}(t^{-1}s)(tf)$$
$$= \sum_{k=1}^{n_{\lambda}} (\int_{t} \omega_{ik}^{\lambda}(t^{-1})(tf)) \omega_{kj}^{\lambda}(s)$$
$$= \sum_{k=1}^{n_{\lambda}} g_{ik}^{\lambda} \omega_{kj}^{\lambda}(s), \quad q.e.d.$$

Lemma 2. "Let $f \in \Sigma$ be a.p. Then f can be approximated w.r.t. the norm with arbitrary accuracy by finite sums of p.e.c. of f."

Proof. By Theorem 22 of B.N. we can find for any assigned $\mathcal{E} > 0$ a special weight function $\mathcal{G} = \sum \mathcal{T}_{ij}^{\mathcal{L}} \omega_{ij}^{\mathcal{L}}(s)$ such that $|sf - F_f \times \mathcal{G}(s)| < \mathcal{E} (s \in \sigma)$. If we put s=1, then $F_f \times \mathcal{G}(1)$ $= \sum \mathcal{T}_{ij}^{\mathcal{L}} F_i \times \omega_{ij}^{\mathcal{L}}(1) = \sum \mathcal{T}_{ij}^{\mathcal{L}} g_{ij}^{\mathcal{L}}$ Hence we have $|f - \sum \mathcal{T}_{ij}^{\mathcal{L}} g_{ij}^{\mathcal{L}}| < \mathcal{E}$, q.e.d. We add now

Lemma 3. "The p.e.c. $\widetilde{g}_{i}^{\lambda}$ of sf is a linear combination of the p.e.c. $\{g_{i}^{\lambda}\}$ of f."

$$\begin{aligned} Proof \cdot \quad \widetilde{g}_{ij}^{\lambda} &= \int_{t} \omega_{ij}^{\lambda} (t^{-i})(tsf) = \int_{t} \omega_{ij}^{\lambda}(st^{-i})(tf) \\ &= \sum_{\mathbf{R}} \omega_{i\mathbf{R}}^{\lambda}(s) \int_{t} \omega_{\mathbf{R}j}^{\lambda} (t^{-i})(tf) \\ &= \sum_{\mathbf{R}} \omega_{i\mathbf{R}}^{\lambda}(s) g_{\mathbf{R}j}^{\lambda}, \quad q \cdot e \cdot d \cdot \end{aligned}$$

Since any $f' \in \sum_{f}^{\circ}$ can be approximated by $\sum_{i} \mathcal{T}_{i}(s_{i} f)$, we can prove the following theorem from Lemma 3:

Theorem 2. "Any $f' \in \sum_{f}^{o}$ can be approximated with arbitrary accuracy by linear combinations of p.e.c. of f."

Now we assume further

Axiom II (W.I, p.179) With any two f,g $\in \Sigma$ there is associated a complex number (f,g) with the usual properties of the inner product, and

$$(sf, sg)=(f,g), \text{ and } \|f\|=\sqrt{(f,f)} \leq |f|$$

We don't assume the completeness of \sum w.r.t. $\| f \|_{L}$

Let
$$g_{a}^{\lambda} = (g_{a1}^{\lambda}, \dots, g_{an_{\lambda}}^{\lambda})$$
 and g_{β}^{μ}
= $(g_{\beta 1}^{\mu}, \dots, g_{\beta n_{\mu}}^{\mu})$ be two primitive
rows. Then from the Schur's lemma
follows that

$$(g_{\lambda i}^{\lambda}, g_{\beta j}^{\mu}) = 0$$
 for $\lambda \neq \mu$

and

$$(g_{\alpha i}^{\lambda}, g_{\beta j}^{\lambda}) = \mathcal{J}_{\alpha \beta}^{\lambda} \delta_{ij}$$

(i,j = 1,...,n₂).

(Cf. W.I, p.194). Hence we can define the inner product of two primitive rows g_{α}^{λ} , g_{β}^{λ} by

(4)
$$(q^{\lambda}_{\alpha}, q^{\lambda}_{\beta}) = \gamma^{\lambda}_{\alpha\beta}$$

We consider now the primitive rows g_{i}^{λ} in Lemma 1, and we define

(5)
$$f_{z}^{\lambda} = \left\{ \sum_{i=1}^{n_{\lambda}} \gamma_{i} g_{i}^{\lambda} \right\}.$$

Let m_{λ} be the rank of ξ^{λ} , then $m_{\lambda} \leq n_{\lambda}$. We can take then

$$\int_{\mathbf{k}}^{\lambda} = \sum_{j=1}^{m_{\lambda}} \alpha_{k_j} g_j^{\lambda} \qquad (\mathbf{k} = 1, \cdots, m_{\lambda})$$

in f_{j}^{λ} such that

$$(f_k^{\lambda}, f_j^{\lambda}) = \delta_{kj}$$
 (k, j=1,..., m _{λ}).

Theorem 3. (W.I, p.196) Let $f \in \Sigma$ be a.p. There are at most a countable infinite set of p.e.c. $g^{\lambda} \neq 0$. From each f_{λ}^{λ} take

$$f_{k}^{\lambda} = (h_{k1}^{\lambda}, \dots, h_{kn_{\lambda}}^{\lambda}) \qquad (k=1,\dots,m_{\lambda})$$

as above. Then the countable system

$$\mathbf{h}_{k_1}^{\lambda}$$
 (k=l,..., \mathbf{m}_{λ} , j=l,..., \mathbf{n}_{λ})

forms a orthonormal system of \sum_{f}° , i.e. for any $f' \in \sum_{f}^{\circ}$ the Parseval equation

(6)
$$\|f'\|^2 = \sum_{\lambda \in j} |(h_{\lambda j}^{\lambda}, f')|^2$$

holds.

Proof. From the inequality of Bessel follows $\alpha = \| f' \|^2 - \sum | (\lambda_{kj}^{\lambda}, f')|^2 \ge 0$ If $\alpha > 0$, we can apply Theorem 2 for $\sqrt{\alpha}$ so that we can choose a linear combination

of p.e.c.
$$g = \sum \gamma_{ij}^{\lambda} g_{ij}^{\lambda} = \sum \beta_{kj}^{\lambda} h_{kj}^{\lambda}$$
 with
 $| \mathbf{f}' - g | < \sqrt{\alpha}$. Hence we have $\alpha \leq \|f' - g\|^2$
 $\leq |f' - g|^2 < \alpha$, which is a contradic-
tion. gased.

We shall consider then the characterization of k_0^{λ} in W.I. In the following we fix an irreducible unitary representation $\int 2^{\lambda}$ with degree $\mathbf{r} = n_{\lambda}$ and omit the index λ . We correspond now to every primitive row g_{λ} a vector

(7)
$$a_{\alpha} = ((g_{\alpha 1}, f), \cdots, (g_{\alpha 1}, f)).$$

 g_{α} is called a hidden row if $\alpha_{\alpha} = 0$ and g_{ρ} is called upright if (g_{α}, g_{ρ}) = 0 for every hidden row g_{α} (W.I.p.194). We define

(8)
$$\mathcal{Y}^{\lambda} = \{g_{d} = (g_{\alpha i_{j}}, \cdots, g_{\alpha x}); g_{\alpha i} \in \sum_{f}^{o}, i = 1, \cdots, r\}.$$

Clearly we have

(9)
$$f_{y}^{*} \subset U_{z}^{*}$$

Lemma 4. "A necessary and sufficient condition for a primitive row \mathcal{T}_{a} be hidden is that $(g_{ai}, f') = 0$ $(f_{a} = 1, \cdots, r)$ for every $f' \in \sum_{f}^{\circ}$."

Proof.

 $\alpha_{d} = 0$

$$\approx (g_{\alpha i}, f)=0, \quad i=1,..., T$$

$$\approx (g_{\alpha i}, sf)=(s^{-1}g_{\alpha i}, f)$$

$$= \sum_{j} \omega_{ji}(s) (g_{\alpha i}, f)=0$$

$$\approx (g_{\alpha i}, f')=0 \quad \text{for every } f' \in \sum_{f}^{\circ}$$

$$(i=1,...,T), q_{0}e \cdot d$$

From Lemma 4 follows immediately

Lemma 5. "If $g_{\alpha} \in \mathcal{Y}^{\lambda}$, then g_{α} is upright."

Lemma 6. "If g_{λ} is upright, then $g_{\lambda} \in f_{\lambda}^{\lambda}$."

Proof. If $g_a \notin h_p^{\wedge}$, we can decompose g_a such that

$$\begin{split} g_{\alpha} &= g_{\beta} + g_{\gamma}, \quad g_{\beta} \neq 0, \quad g_{\gamma} \in f_{\gamma}^{\lambda} \\ (g_{\beta}, g_{i}^{\lambda}) = 0, \quad 1 = 1, \dots, r \end{split}$$

Since g_{λ} and g_{λ} are upright, so is g_{λ} . Hence $a_{\lambda} \neq 0$ and so $(g_{\lambda i}, f) \neq 0$ for some i. Now take $\|g_{\beta i}\| = 1$ and $|(g_{\beta i}, f)| > \varepsilon > 0$. By Theorem 1 we can choose $h = \sum \overline{\partial_{ij}^{2} g_{ij}^{2}} \in F_{\lambda}^{2}$ so that $|f - h| < \varepsilon$. Then

 $0 < \varepsilon < |(g_{\mu,j},f)|$

$$\leq |(g_{\beta\iota}, f-h)| + |(g_{\beta\iota}, h)| \leq \varepsilon \|g_{\beta\iota}\| = \varepsilon$$

which is a contradiction. Hence we have $g_{\alpha} \in h^{2}$, q.e.d.

From (9), Lemma 5, Lemma 6 we have

Theorem 4. "We can characterize \int_{y}^{λ} in Theorem 3 as \int_{z}^{λ} or as the set of all the upright Ω^{λ} -rows."

§2. We shall give here a simple proof of the following Lemma of W.II. Let G be an open set in 3-space. A function $\mathcal{G}(\mathbf{x})$ is called of class $\Gamma_{\mathbf{x}}$ if $\mathcal{G}(\mathbf{x})$ vanishes outside some compact subset G^{*} of G and continuous with its derivatives up to the second order.

Weyl s Lemma. "Let $\eta(x)$ be a measurable function on G with $\int_{G} |\eta(x)|^2 < \infty$. If $\eta(x)$ satisfies the equation

(10)
$$\int \eta(x) \Delta \zeta(x) = 0$$

for every $\zeta(x)$ of class Γ_{2} , then there is a harmonic function $\eta^{*}(x)$ which is equal to $\eta(x)$ almost everywhere on G." **Proof.** If $\eta(\mathbf{x})$ is of class \Im^{z} , i.e. continuous with its derivatives up to the second order, then $\Delta \eta = 0$ follows from (10) by the Green's formula.

Now let $\mathcal{G}(\mathbf{x})$ be any measurable function which is integrable on every closed sphere $S(\mathbf{x},\mathbf{r})$ with centre \mathbf{x} and with radius \mathbf{r} (S \subset G). Let $G_{\mathbf{r}}$ be the set of all the points $\mathbf{x} \in G$ such that $S(\mathbf{x},\mathbf{r})$ \subset G. Then we define

(11)
$$M_r \varphi(x) = \frac{1}{|S_r|} \int_{S'(x,x)} \varphi(y) dy \left(|S_r| = \frac{4}{3} \pi x^3 \right)$$

for $\mathbf{x} \in \mathbb{G}_{\mathbf{x}}$. It is well known that if $\mathcal{G}(\mathbf{x})$ is measurable, then $\mathbb{M}_{\mathbf{x}} \mathcal{G}$ is continuous; if $\mathcal{G}(\mathbf{x})$ is continuous then $\mathbb{M}_{\mathbf{x}} \mathcal{G}$ is of class 0 and if $\mathcal{G}(\mathbf{x})$ is of class 0 then $\mathbb{M}_{\mathbf{x}} \mathcal{G}$ is of class 0 then $\mathbb{M}_{\mathbf{x}} \mathcal{G}$ is of class 0 to \mathbb{C}^* .

If S(x)=0 on $G - G^*(G^* \text{dompact})$, take $r < P(G^*, G^c)$. Since $\eta(x + y)$ is measurable w.r.t. two variables x,y we can apply Fubini's theorem:

$$\begin{split} &\int_{G^*} M_x \eta(x) \Delta \zeta(x) dx = \frac{1}{|S_x|} \int_{G^*} \eta(x,y) \Delta \zeta(x) dx dy \\ &= \frac{1}{|S_x|} \int \left(\int_{G^*} \eta(x,y) \Delta \zeta(x) dx \right) dy \\ &= \frac{1}{|S_x|} \int \left(\int_{G^*} \eta(x) \Delta \zeta(x,y) dx \right) dy = 0. \end{split}$$

Hence $\mathbb{M}_{\mathbf{x}} \eta(\mathbf{x})$ satisfies also the equation (11). Repeating this process we can conclude that

$$(12) \quad \eta^*(\mathbf{x}) = M_{\mathbf{x}} M_{\mathbf{s}} M_{\mathbf{t}} \eta(\mathbf{x})$$

also satisfies the equation (11) in G_{x+s+t} Since $\eta^*(x)$ is of class \mathbb{C}^* , $\eta^*(x)$ is a harmonic function on G_{x+s+t} .

Now we fix s and t. Let us write $\eta_z(\mathbf{x}) = \mathbb{N}_{\mathbb{N}_{\mathbf{x}}} \eta(\mathbf{x})$ and $\eta_z^*(\mathbf{x}) = \mathbb{N}_{\mathbf{x}} \eta_z(\mathbf{x})$. By a well known theorem on the derivative of the indefinite integral we have

(13)
$$\eta_2(\kappa) = \lim_{x \to 0} M_x \eta_z(\kappa) = \lim_{x \to 0} \eta_1^*(\kappa)$$

almost everywhere.

On the other hand the harmonic function $\dot{\eta}_{_{\mathcal{I}}}^{*}\left(\mathbf{x}\right)$ satisfies the relation

$$extbf{M}_{s}$$
 $\eta_{ extsf{x}}^{*}$ (x)= $\eta_{ extsf{x}}^{*}$ (x) for every s>0,

i.e. $M_s M_T \eta_2(\mathbf{x}) = M_T \eta_2(\mathbf{x})$. Since $M_s M_T \eta_2(\mathbf{x}) = \frac{1}{|S_T|} \frac{1}{|S_S|} \int_{|y| < T} \int_{|z| < S} \eta_1(x+y+z) dy dz$ $= M_T M_S \eta_2(\mathbf{x})$

follows from Fubini's theorem, we have

$$\eta_{\mathbf{x}}^{*}(\mathbf{x}) = \mathbb{X}_{\mathbf{x}} \eta_{\mathbf{z}}(\mathbf{x}) = \mathbb{X}_{s} \eta_{z}(\mathbf{x}) = \eta_{s}^{*}(\mathbf{x})$$

for every r > 0, s > 0. Hence we can write $\eta^*(x) = \eta^*_T(x)$ without index rand of course $\eta^*(x) = \lim_{x \to 0} \eta^*_T(x)$. Thus we have

$$\eta^*(\mathbf{x}) = \eta_{\mathbf{x}}(\mathbf{x})$$

almost everywhere on G_{r+s+t} .

Since $\eta_z(x)$ is continuous, $\eta^*(x) = \eta_z(x)$ everywhere on G_{x+s+t} . Repeating this method we have $\eta^*(x) = \eta_1(x) = M_+ \eta(x)$ on G_{x+s+t} and $\eta^*(x) = \eta(x)$ almost everywhere on $G_{\eta+s+t}$. Since we can take r+s+t arbitrarily small, lemma 2 is completely proved.

(*) Received June 4, 1949.

S.Bochner-J. von Neumann [1], Almost periodic functions in a group II, Trans. Amer. Math. Soc., 37 (1935).

Tokyo Bunrika Daigaku.