TWO REMARKS ON H.WEYL'S THEORENS.

By Yukiyosi Kawada

(Communicated by Y.Komatu)

This note consists of two independent parts. In §lwe concern with the paper: HeNeyl, mimost periodic invariani vector sets ir a metric vector space, Amer。J. tatho, 71 (1349) (W. I). In this paper the whole theory was established upon 4 axioms. First the Parseval equation was eroved by asswing Axioms I, II, III and then the approxination theorem was proved by assuring a further Axiom IV. We shall prove iere first the approximation theorem Without Axiom IV and then we shall obtain the Parseval equation. In $\S 2$ we shall give a simple proof of Lemma 2 of the paper: H.Weyl, The method of orthogonal projectior in potential theory, Duke Math. Jos 7 (1940) (W.II).
§l. We start from the following axioms:

Axiom I (W.I, p.178) Let \sum be a complex vector space and $\sigma=\{s\}$ be a group of linear transformations on $\sum: f \rightarrow f^{\prime}=$ sf.

Axiom III (W.I, p.180) \sum is a Banach space wor.t. the norm $|f|$, and $s \in \sigma$ is amisometric transformation on \sum : $|f|=|s f|$.
$f \in \sum$ is calied almost periodic (a.p.) if $\{s f ; s \in \sigma\}$ is a totally bounded subset of \sum we denote by \sum_{f}° the smallest invariant closed subspace of \sum whic contains fe Clearly $\sum_{f}^{0} \sum_{i s} \xi_{i}\left(s_{i} f\right)$ closure of al
(finite sum).

Let $\sigma \ni s \rightarrow \Omega(s)=\left\|\omega_{-j}(s)\right\|$ be a matric representation of σ^{j} with degree h_{0} We call oy $=\left(g_{1}, \ldots, g_{R}\right)$ $\left(g_{i} \in \Sigma\right)$ an Ω row if

$$
\begin{equation*}
s\left(g_{1}, \ldots, g_{h}\right)=\left(g_{1}, \ldots, \delta_{\hbar}\right) \Omega(s), s \in \sigma \tag{1}
\end{equation*}
$$

Especially g is called a primitive row if Ω is a unitary irreducible representation of σ.

Theorem 1. (Theorem of strong approximation, W.I, p.199) "Let $f \in \sum$ be a.p. Then f can be approximated wer.t. the norm with arbitrary accuracy by finite sums of the elements of primitive rows."

We shall first notice that the function $\mathrm{F}_{f}(\mathrm{~s})=s f$ with domain σ and with range
in \sum is a.p. in the sense of Bochner-
Neumann $[1]\left(B, N_{0}\right)$ if and only if $f \in \sum$ is a.p. We denote its mean value by
$\int_{s} s f$. It, is easily proved (W.I, p.182) that severy $f^{\prime} \in \sum_{f}^{0}$ is also a.po if f is a.p.

Now let $f \in \sum$ be a.p. and $\Omega^{\lambda}(s)$ be a unitary irreducible representation of σ with degree n_{λ}. We call $g_{i j}^{\lambda}$ defined by

$$
\begin{align*}
& \mathrm{g}_{i j}^{\lambda}=\int_{t}^{\hat{\omega_{j i}^{\lambda}(t)}(t f)} \tag{2}\\
& \quad=\int_{t} \omega_{i j}^{\lambda}\left(t^{-1}\right)(t f) \quad\left(i, j=1, \ldots, n_{\lambda}\right)
\end{align*}
$$

the primitive expansion coefficient

be pemma lo "Let $f \in \sum$ be a.p. and $g_{\wedge j}^{\lambda}$

$$
\begin{equation*}
g_{i}^{\lambda}=\left(g_{i 1}^{\lambda}, \ldots, g_{i n_{\lambda}}^{\lambda}\right)\left(i=1, \ldots, n_{\lambda}\right) \tag{3}
\end{equation*}
$$

are primitive rows."
Proof. Let $F(s)$ and $\varphi(s)$ be a.po functions taking values in \sum and complex numbers respectively. We define $F \times \varphi(s)=\int_{t} \varphi(t) F\left(s t^{-1}\right)=\int_{t} \varphi\left(t^{-1} s\right) F(t)$. We have then

$$
g_{i j}^{\lambda}=\int_{t} \omega_{i j}^{\lambda}(t)\left(t^{-1} f\right)=\bar{r}_{f} \quad \times \quad \omega_{i j}^{\lambda}(I)_{0}^{\circ}
$$

Hence we have

$$
\begin{aligned}
s g_{i j}^{\lambda} & =\int_{t} \omega_{i j}^{\lambda}(t)\left(s t^{-1} f\right)=\mathrm{F}_{f} \times \omega_{i j}^{\lambda}(s) \\
& =\int_{i} \omega_{i j}^{\lambda}\left(t^{-1} s\right)(t f) \\
& =\sum_{k=1}^{n_{\lambda}}\left(\int_{t} \omega_{i k}^{\lambda}\left(t^{-1}\right)(t f)\right) \omega_{k j}^{\lambda}(s) \\
& =\sum_{k=1}^{n_{\lambda}} g_{i k}^{\lambda} \omega_{k j}^{\lambda}(s), \quad q \cdot e \cdot d .
\end{aligned}
$$

Lemma 2. "Let $f \in \sum$ be a.p. Then f can be approximated w.r.t. the norm with arbitrary accuracy by finite sums of poe.c. of f."

Proof. By Theorem 22 of B.N. we can find for any assigned $\mathcal{E}>0$ a special weight function $\varphi=\sum_{\text {such that }} \gamma_{i j}^{\lambda} \omega_{i j}^{\lambda}$ (s) suct that $\left|s f-F_{f} \times \varphi(s)\right| \sum_{i j} \varepsilon(s \in \sigma)$. If we put $s=1$, then $F_{f} \times \varphi(1)$

We add now

Lemma 3." The p.e.c. $\tilde{g}_{i j}^{\lambda}$ of sf is a linear combination of the $\hat{p}_{0} e_{0} c \cdot\left\{g_{-j}^{\lambda}\right\}$
of $f . "$

$$
\text { Proof. } \begin{aligned}
\tilde{g}_{i j}^{\lambda} & =\int_{t} \omega_{i j}^{\lambda}\left(t^{-1}\right)(t s f)=\int_{t} \omega_{i j}^{\lambda}\left(s t^{-1}\right)(t f) \\
& =\sum_{k} \omega_{i k}^{\lambda}(s) \int_{t} \omega_{k j}^{\lambda}\left(t^{-1}\right)(t f) \\
& =\sum_{k} \omega_{i k}^{\lambda}(s) g_{k j}^{\lambda}, \quad \text { q.e.d. }
\end{aligned}
$$

Since any $f^{\prime} \in \sum_{f}^{0}$ can be approximated by $\sum_{i} \gamma_{i}\left({ }^{(} s_{i} f\right)$, we can prove the following theorem from Lemma 3:

Theorem 2. "Any $f^{\prime} \in \sum_{f}^{o}$ can be approximated with arbitrary accuracy, by inear combinations of p.e.c. of f."

Now we assume further
Axiom II (W.Ig p.l79) With any two $f, g \in \sum$ there is associated a complex number (f, g) with the usual properties of the inner product, and
$(s f, s g)=(f, g)$, and $\|f\|=\sqrt{(f, f)} \leqq|f|$
We don't assume the completeness of \sum wor.t. $\|f\|$.

Let $g_{\alpha}^{\lambda}=\left(g_{\alpha 1}^{\lambda}, \cdots, g_{a n_{\lambda}}^{\lambda}\right)$ and g_{β}^{μ} $=\left(g_{\beta 1}^{\mu}, \cdots, g_{\beta n_{\mu}}^{\mu}\right)$ be two primitive rows. Then from the Schur's Iemma follows thau

$$
\left(g_{\alpha i}^{\lambda}, g_{\beta j}^{\mu}\right)=0 \quad \text { for } \quad \lambda \neq \mu
$$

and

$$
\begin{aligned}
&\left(g_{\alpha i}^{\lambda}, \delta_{\beta j}^{\lambda}\right.)=\gamma_{\alpha \beta}^{\lambda} \delta_{i j} \\
&\left(1, j=1, \ldots, n_{\lambda}\right)
\end{aligned}
$$

(Cf. W.I. p.194)。 Hence we can define the inner product of two primitive rows $g_{\alpha}^{\lambda}, g_{\beta}^{\lambda}$ by
(4)

$$
\left(g_{\alpha}^{\lambda}, \quad g_{\beta}^{\lambda}\right)=\gamma_{\alpha \beta}^{\lambda}
$$

We consider now the primitive rows g_{i}^{λ} in Lemma 1 , and we define

$$
\begin{equation*}
f^{\lambda}=\left\{\sum_{i=1}^{n_{\lambda}} \gamma_{i} g_{\Delta \lambda}^{\lambda}\right\} \tag{5}
\end{equation*}
$$

Let m_{λ} be the rank of f^{λ}, then $m_{\lambda} \leqq n_{\lambda}$. We can take then

$$
f_{k}^{\lambda}=\sum_{j=1}^{m_{\lambda}} \alpha_{k j} \mathcal{G}_{j}^{\lambda} \quad\left(k=1, \cdots, m_{\lambda}\right)
$$

in f^{λ} such that

$$
\left(f_{k}^{\lambda}, f_{j}^{\lambda}\right)=\delta_{k j} \quad\left(k, j=I, \ldots, m_{\lambda}\right)
$$

Theorem 3. (W.I, p. 196) Let fé be a.p. There are at most a countable infinite set of p.e.c. $g_{y}^{\lambda} \neq 0$. irom
each ${ }^{\lambda}$ take each f^{λ} take

$$
f_{k}^{\lambda}=\left(h_{k 1}^{\lambda}, \cdots, h_{k n_{\lambda}}^{\lambda}\right) \quad\left(x=1, \ldots, m_{\lambda}\right)
$$

as above. Then the countable sys jem
$h_{k j}^{\lambda} \quad\left(k=1, \ldots, m_{\lambda}, j=1, \ldots, n_{\lambda}\right)$
forms a orthonormal system of \sum_{f}^{0}, i.e. for any $f^{\prime} \in \sum_{f}^{0}$ the Parseval equation
(6)

$$
\left\|f^{\prime}\right\|^{2}=\sum_{\lambda \dot{k}_{j}} \mid\left(h_{k j}^{\lambda}, f^{\prime}\right)^{i^{2}}
$$

holds."
Proof. From the inequality of Bessel
follows $\alpha=\left\|f^{\prime}\right\|^{2}-\sum\left|\left(h_{k y} \lambda^{\prime}, f^{\prime}\right)\right|^{2} \geqq 0$ If $\alpha>0$, we can apply Theorem 2 for $\sqrt{\alpha}$ so that we can choose a linear combination of p.e.c. $g=\sum \gamma_{y j}^{\lambda} g_{i j}^{\lambda}=\sum \beta_{k_{j}}^{\lambda} h_{k_{j}}^{\lambda}$ with $\left|f^{\prime}-g\right|<\sqrt{\alpha}$; Hence we have $\alpha \leqq\left\|f^{\prime}-g\right\|^{2}$ tion, qoe $\left|f_{0}^{\prime}-\right|^{2}<\alpha$, which is a contradic-

We shall consider then the characterization of \hat{b}^{λ} in W.I. In the following we fix an irreducible unitary representation Ω^{λ} with degree $r=n_{\lambda}$ and omit the index λ. We corresponci now to every primitive row g_{α} a vector

$$
\begin{equation*}
a_{\alpha}=\left(\left(g_{\alpha 1}, f\right), \cdots,\left(g_{\alpha r}, f\right)\right) \tag{7}
\end{equation*}
$$

σ_{α} is called a hidden row if $a_{\alpha}=0$ and g_{β} is called uprisht if ($g_{\alpha}, \beta_{\beta}$)
 We define

$$
\begin{equation*}
f_{f}^{\lambda}=\left\{g_{\alpha}=\left(g_{\alpha 1}, \cdots, g_{\alpha x}\right) ; g_{\alpha \varepsilon} \in \sum_{f}^{0}, i=1, \cdots, r\right\} \tag{8}
\end{equation*}
$$

Clearly we have

$$
\begin{equation*}
f_{y}^{\lambda} \subset g^{\lambda} \tag{9}
\end{equation*}
$$

Lemma 4. "A necessary and suifficient condition for a primitive row g_{α} be hidden is that $\left(g_{\alpha i}, f_{l}^{\prime}\right)=0\left(g_{\alpha}=1, \cdots, r\right)$ for every $f^{\prime} \in \sum_{f}^{\alpha i}$. .

Proof.

$$
a_{\alpha}=0
$$

$\nRightarrow\left(g_{\alpha_{i}}, f\right)=0, \quad i=1, \ldots, r$
$\nLeftarrow\left(g_{\alpha l}\right.$, sf$)=\left(\mathrm{s}^{-1} g_{\alpha_{i}}, f\right)$

$$
=\sum_{j} \omega_{j i}(s)\left(\xi_{\alpha \lambda}, f\right)=0
$$

$\rightleftharpoons\left(g_{\alpha i}, f^{\prime}\right)=0$ for every $f^{\prime} \in \sum_{f}^{0}$

$$
(1=1, \ldots, r), q_{0} e \cdot a .
$$

From Lemma 4 follows immediately
Lemma 5. "If $g_{\alpha} \in g^{\lambda}$, then g_{α} is upright."

Lemma 6.0 "If $_{0} g_{\lambda}$ is upright, then
Proof. If $g_{\alpha} \notin f_{\gamma}{ }^{\lambda}$, we can decompose g_{α} such that

$$
\begin{aligned}
& g_{\alpha}=g_{\beta}+g_{\gamma}, \quad g_{\beta} \neq 0, \quad g_{\gamma} \in \operatorname{g}^{\lambda} \\
& \left(g_{\beta}, \quad g_{i}^{\lambda}\right)=0, \quad 1=1, \ldots, r .
\end{aligned}
$$

Since g_{α} and g_{γ} are upright, so is $0 \sigma_{\rho}$ Hence $a_{f} \neq \gamma_{0}$ and so ($\varepsilon_{\beta i}, f$ if $\left|\left(g_{A \mu}, f\right)\right|>\varepsilon>0$. BJ Theorem 1 we can choose $h=\sum \gamma_{i j}^{\lambda} g_{i j}^{\lambda} \in f_{j}^{\lambda}$ so that $|f-h|<\varepsilon$. Then

$$
\begin{aligned}
0 & <\varepsilon<\left|\left(g_{\beta_{u}}, f\right)\right| \\
& \leqq\left|\left(g_{\beta_{1}}, f-h\right)\right|+\left|\left(g_{\beta^{i}}, h\right)\right| \leqq \varepsilon\left\|g_{\beta_{i} i}\right\|=\varepsilon
\end{aligned}
$$

which is a contradiction. Hence we have $g_{\alpha} \in b^{\lambda} \quad, q_{0} e_{0} d_{0}$

From (9), Lemma 5, Lemma 6 we have
Theorem 4. "We can characterize f ${ }^{\lambda}$ in Theorem 3^{3} as Ω^{λ} frows.
§2. We shall give here a simple proof of the following Lemma of W.II. Let G be an open set in 3-space. A function $\varphi(x)$ is called of class Γ_{2} if $\varphi(x)$ vanishes outside some compact subset G^{*} of G and continuous with its derivatives up to the second order.

Weyl s Lemma. "Let $\eta(x)$ be a measurable function on G with $\int_{G}\left|\eta\left(x^{-}\right)\right|^{2}<\infty$. If $\eta(x)$ satisfies the equation

$$
\begin{equation*}
\int \eta(x) \Delta \zeta(x)=0 \tag{10}
\end{equation*}
$$

for every $\quad \zeta(x)$ of class Γ_{2}, then there is a harmonic function $\eta^{*}(x)$ which is "equal to $\eta(x)$ almost everywhere on

Proof. If $\eta(x)$ is of class S^{L}, ise. continuous with its derivatives up to the second orler, then $\Delta \eta=0$ follows from (10) by the oreen's formula.

Now let $\varphi(x)$ be any measurable function which is integrable on every closed sphere $S(x, r)$ with centre x and with radius $r(S \subset G)$. Let G_{r} be the set of all the points $x \in G$ such that $S(x, r)$ \in G. Then we derine
(11) $M_{x} \varphi(x)=\frac{1}{\left|S_{r}\right|} \int_{S^{\prime}(x, x)} \varphi(y) d y \quad\left(\left|S_{x}\right|=\frac{4}{3} \pi r^{3}\right)$
for $x \in i_{x}$. it is well known that if $\varphi(x)$ is measurable, then $k_{x} \varphi$ is continuous; if $\varphi(x)$ is continuous then $\#_{y} \varphi$ is of class 0^{1} anit if $\varphi(x)$ is of class C^{1} then $\mathbb{M}_{x} \varphi$ iz af ciass c^{x}.

$$
\text { If } S(x)=0 \text { on } G_{c}-G^{*}\left(G^{*}\right. \text { dompact), }
$$ take $r<\rho\left(G^{*}, G^{c}\right)$. Since $\eta(x+y)$ is measurable wor.t. two variables x, y we can apply Fubini's theorem:

$$
\begin{aligned}
& \int_{G^{*}} M_{x} \eta(x) \Delta \zeta(x) d x=\frac{1}{\left|S_{Y}\right|} \int_{G^{*}} \int_{|y|<r} \eta(x+y) \Delta \zeta(x) d x d y \\
& =\frac{1}{\left|S_{x}\right|} \int\left(\int_{G^{*}} \eta(x+y) \Delta \zeta(x) d x\right) d y \\
& =\frac{1}{\left|S_{x}\right|} \int\left(\int_{G^{*}-y} \eta(x) \Delta \zeta(x-y) d x\right) d y=0 .
\end{aligned}
$$

Hence $\eta x(x)$ satisfites also the equation (ll). Repeating tris process we can conclude that

$$
\begin{equation*}
\eta^{*}(x)=M_{x} \operatorname{lin}_{s} \operatorname{lin}_{t} \eta(x) \tag{12}
\end{equation*}
$$

also satisfies the equation (11) in G_{x+s+t} Since $\eta^{*}(x)$ is of class $\mathrm{c}^{*}, \eta^{*}(x)$ is a harmonic function on G_{x+s+t}

Now we fix s and to Let us wite $\eta_{2}(x)=N_{s} M_{t} \eta(x)$ and $\eta_{x}^{*}(x)=\mathrm{N}_{x} \eta_{2}(x)$, By a weil known theorem on the derivative of the indefinite integral we have

$$
\begin{equation*}
\eta_{2}(x)=\lim _{x \rightarrow 0} M_{x} \eta_{2}(x)=\lim _{x \rightarrow 0} \eta_{x}^{*}(x) \tag{13}
\end{equation*}
$$

almost everywhere.
On the other hand the harmonic function $\dot{\eta}_{x}^{*}(x)$ satisfies the relation

$$
M_{s} \eta_{x}^{*}(x)=\eta_{x}^{*}(x) \quad \text { for every } s>0,
$$

i.e. $M_{s} M_{r} \eta_{2}(x)=M_{x} \eta_{2}(x)$. Since $M_{s} M_{x} \eta_{2}(x)=\frac{1}{\left|S_{x}\right|\left|\frac{1}{S}\right|} \int_{1 y \mid<x} \int_{|z|<s} \eta_{2}(x+y+z) d y d z$ $=M_{r} M_{s} \eta_{2}(x)$
follows from rubini's theorem, we have

$$
\eta_{I}^{*}(x)=z_{x} \eta_{2}(x)=l_{s} \eta_{2}(x)=\eta_{s}^{*}(x)
$$

for every $r>0, s>c$. Hence we can write $\eta^{*}(x)=\eta_{x}^{*}(x)$ withQut inciex r and of course $\quad \eta^{*}(x)=1 \lim _{x \rightarrow 0} \eta_{x}^{*}(x)$ 。

$$
\eta^{*}(x)=\eta_{2}(x)
$$

almost everywhere on G_{r+s+t}. Tokyo Bunrika Daigaku.

