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UNBOUNDED DOMAINS
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Abstract

In the paper the problem of the form of proper holomorphic mappings between
elementary Remnhardt domains of the rational type in C? 1s solved. The pluricomplex
Green function with many poles 1s used 1 the solution of the problem. Additionally,
we solve the holomorphic equivalence problem of elementary Reinhardt domains of the
arbitrary type in C" The results In the paper are generalizations of those from two
papers of S. Shimizu.

Let D be a domain in C". Fix a finite set § # P = D and a function
v:P— (0,00). Denote by App, the family of functions satisfying the fol-
lowing conditions:

ue PSH(D), u<0 and for any pe P,u(z) — v(p)log|z — p||
is bounded above for z near p

(we allow a plurisubharmanic function to be identically —c0). Let us define the
pluricomplex Green function with poles in P and the weights v (see [Lel]) ‘as
follows:
gp(P;v;w) = sup{u(w) :ue App,}, weD.

If v=1, then we denote gp(P;w) :=gp(P;v;w). In the special case P = {p},
v(p) =1 we denote gp(p;w) := gp(P;v;w) — it is a pluricomplex Green function
with logarithmic pole at p defined by M. Klimek (see [Kli]).

The following inequalities are easy to verify:
(1) min{v(p)gn(p;w) : p € P} > gp(P;viw) = Y v(P)gn(p;w).

peP

It is also well-known that gp(P;v;-) € Ap,p,y.

Put 7, = {Z= (21,...,Zn)€Cn221'--Z,, ———0}.

Let « = (ay,...,%,) € (Ry)", where n > 1 (R stands for positive numbers).
Define

Dy = {Z= (Zl,...,Z,,) eC": |21|ml "'IZn|a" < 1}
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The domains D, are called elementary Reinhardt domains.

For we D,, denote #(w):={je{l,...,n}:w; =0} ={j;(w),..., (W)}

Put D,:={z€Dy:z -z, # 0} = D,\ V.

Let o be of rational type, i.e. o = (foy,...,Bn,), where f> 0 and «;’s are
relatively prime natural numbers. In this case we always assume f =1, and for
any ue E:={leC: |1 <1} define

V::={zeDa:z“:,u},

where z% :=z{'---z#. Note that V§ = V4.
For we D, and « of rational type put r,(w) := ord,,(z* — w*). Note that

() u|y. = const.
u

for any bounded above plurisubharmonic function u on D,.

The theory of the Green function with many poles suffers from lack of
examples of domains for which the effective formulas of the Green function are
known. We give below formulas for the function in the domains that we have
just defined. The formulas for the Green function of elementary Reinhardt
domains with one pole were obtained in [Jar-Pfl] (in the rational case) and in
[Pfl-Zwo] (in the irrational case). Let us recall these formulas.

THEOREM 1 (see [Jar-Pfl], [Pfl-Zwo]). If a is of rational type, then

) _ wa — pa
g9p,(p;w) = (1/ra(p))log 1—_;—0%7 .
If a is of irrational type, then
—a0 if peDy

gp,(p;w) = 1

log(wi|* -+ [wal), if pe VoD
%y (p) T T Hy(p) ! ’

In our paper, utilizing the formulas from Theorem 1 we obtain the formulas
for the Green function in elementary Reinhardt domains with many poles.

THEOREM 2. Let o be of rational type. Then the following formula holds:

w*—pu
P;v;w) = max (v r lo ——|.
90, (P w) ”EE:;VM(},EW( )/ a(p») S
If a is of irrational type then
9o, (P;v;w)
oo, if PNDy+0
- v(p) ) a 4 . N
max, p< log(|wi|™ -+ [wal™), if PNDy=0.
P\ )+ ) !
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Let 7: D — D be a proper holomorphic mapping (with multiplicity m) and
let P=:{p,...,py} be a set of poles in D such that z~!(P)N{detn’ =0} = ¢
and let v;:=v(p;),j=1,...,N. Define

N
0= Ul m) sk =1,m)
Jj=

where n~ (pj)—{p], ., pi'} for j=1,...,N. We shall use the following
theorem, whose proof is to be found in [Lar—Slg] and [Edi-Zwo].

THEOREM 3. Under the assumptions as above, for any W € D the following
Sformula holds:

gﬁ(n_l(P; v); w) = gp(P;v; m(W)).

In [Shil] and [Shi2] the problem of holomorphic equivalence of domains D,
was considered. Below we shall extend the results from the first of Shimizu’s
paper to proper mappings between the domains of the rational type and we will
give a full description of such mappings (still in C?). We also extend the results
of [Shi2] (the solution of the holomorphic equivalence problem of elementary
Reinhardt domains in C?) to an arbitrary dimension. To be more precise, using
Theorem 3 we shall prove the following result:

THEOREM 4. Let F : Dy — Dpg, where both o and f are of rational type and
n =2, be a proper holomorphic mapping. Then F is one of the following forms:

{F(Zl,ZZ) = (a'/h (2 ZZZ)Zkl ey Z/al/ﬂl(z“'zaz)) or
F(z1,22) = (tll/ﬂ (Z 222)22 e zll/al/ﬁz( az))’

where a is any holomorphic function defined on E omitting 0, 0 € R, ki, k», 11,15 are
positive integers satisfying the following relations:

wpiki = i frkr, a1 fili = afyls.

Our next result states that two domains under consideration (in arbitrary
dimension) are biholomorphic only when they are linearly biholomorphic. As
already mentioned, this result extends the theorem from [Shi2] (where the same
result, but with other methods, was obtained in dimension 2).

THEOREM 5. If F:D,— Dg is a biholomorphic mapping, then there is a
permutation ¢ of {1,...,n} and t >0 such that o; = t, ;.

Proof of Theorem 2. Note that the functions on the right hand-sides of the
formulas in Theorem 2 are from Xp,_ p,, which gives us the inequalities ‘>’.
Consider now the rational case. Define P to be a subset of P such that all
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g* (g€ P) are different and for any g e P the following relation holds:

va) _ max{rv((l;)) :p*=q%pe P}.

Define #: P— (0,00) by #:=v|;. Note that because of (2) we have that

r«(q)

ue XD“,P,V iff ue '){Du,f’,ﬁ’
Consequently,

gp.(P;v;) = gp,(P;7; ).

This allows us to consider only such P that for all p € P the numbers p* are
different. Now proceeding exactly as in [Jar-Pfll we may prove for any ue
A, p,v there is ve Ag o, where Q:={p*:pe P}, u(p*) = v(p)/r«(p) such
that v(z*) = u(z). This implies that gp,(P;v;z) < gg(Q, u,z*), which finishes the
case (use the formula for gg(Q;u;z%)).

In the irrational case note that the desired formula equals
min, e p{v(p)gp,(p;w)} (see [Pfl-Zwo]). Therefore, the first inequality in (1)
finishes the proof. O

We show the results announced with the help of two Lemmas. In Lemmas
6 and 7 we consider only domains of rational type.

LeMMA 6. Let o and f§ be of rational type. If F : D, — Dg is holomorphic,
then for any A€ E there is ue E such that

(3) F(vy) Vi

Proof. 1In fact, we know that (see Theorem 1)

w — z¢% 1/re(w)
log 1T vize =gp,(w;z)
5 g |Vra(F ()
g POV TR
1 —(F(w))"(F(2))
Consequently, if w* = z% then (F(w))? = (F (z))? and we get (3). O

In view of Lemma 6 we may define a mapping ¢ : E — E by the equality
9(4) := .

What are the regularity properties of ¢ under the assumption that F is
holomorphic? First, note that ¢ is continuous on E.

For the proof of the fact that ¢ is holomorphic take any A9 # 0. Consider
now A close to Ap. Then taking a holomorphic root we have that ¢(1) =
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(Fi(1,..., 1, A=) (F(1,...,1,AY%))% is holomorphic for i close enough
to Ag. This implies (together with the continuity) that ¢ is holomorphic on E.
Our next lemma is the following

LeMMa 7. If F: D, Dg (« and f are of the rational type) is a proper
holomorphic mapping, then ¢ is proper. In particular, there are 1y, ..., A € E and
0 R such that (1) = e T/ ,(A—4)/(1 - 1,2),A € E.

Proof. To prove the lemma take any z e D,. Take any w e D, such that
F(w) ¢ F({detF' =0}) (such a w obviously exists because of the properties of

proper holomorphic mappings). Then Theorem 3 together with the formulas
from Theorem 2 gives us

( 1 ) ’ A=z
_max — | log -
ep(—py? PR FO=E R (B) ] — Az 1— (Fw)!(F(2))’

Taking now |z — 1 we get that |F (z)’| - 1, which finishes the proof. O

(Fw))’ - (F(2))”

= log

Now we can go on to the proof of Theorem 4.

Proof of Theorem 4. At first we consider the very special case a = f =
(1,1). Note that the mappings

C*BZHI’,(zé) eC.,, AeE\{A,..., 4,0}, j=1,2

are holomorphic and proper.
Consequently, because of the form of proper holomorphic self-mappings of
C, we get that

If}(z,é) =aj(A)z"W,  de E\{A,..., 4,0}, j=12, zeC,,

where a; € O(E\{4,...,%, 0}, C.) (a;(4) := F;(1,1/1)), rj(4) e Z\{0}, j=1,2,
i€ E\{A,...,4,0}. Tt is easy to see that there is an 7, such that r;(1) =r, for
any A€ E\{Ay,..., 4,0} (use the continuity of the mappings). Moreover, a; is
holomorphic on E (but it may happen that a;(4;) = 0).

First we shall prove that

4) M= =k=0.

Suppose that it does not hold. Without loss of generality we may assume that
a;(41) =0 and A; #0. Then by the properness of F the mapping y(z) :=
Fy(z,A1/z) : C, — C is proper. On the other hand we know that y(z) =
ay(A1)z™ — contradiction.

From Lemma 7 together with (4) we get a;(4)z"ax(4)z" = e®3*, so r+
ry=0, (write r:=r =—r,) and ay(i) = e2*/a;(1). Consequently, we have
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(take z:=z1,A:=z12;)
Fi(z1,22) = ai(z122)2],  Fa(z1,22) = (€72 25) /(z}a1(2122)).
We may write a;(4) = a(1)A’, where ae O(E,C. ) t>0,teZ, so
F(z1,22) = (a(z122) 228, €28 7125 Ja(212,)).

Certainly it must hold r+¢>0,k—¢t>0 and k—t—r>0. Properness
property may be preserved only if (r+¢=0 and k—¢=0) or (r=0 and
k —r—t=0), which gives us two possibilities

{F(zl,zz) = (a(z122)zF, €25 Ja(z12,)) or
F(z),27) = (a (zlzz)zz,e 2] kla(z12,)).

This finishes the proof in case a = f = (1,1).
Now consider the general two-dimensional case F : D, — Dg. Note that we
have the following proper holomorphic mapping:

G(z1,22) := (Fﬁ‘(z1 23, Ffz(zfz,zg‘)) : D1y = Dy
This, together with (5) gives us that

(5)

Flﬂ‘( 21%,2y') = a(zlzz)zl,Fzz(z1 zy) =é' zz/a(zlzz) or
Fﬂ‘ (z1%,2") = a(zlzz)zé‘,Fﬁz(zf‘z,zz"c ) = e?zf Ja(z12,).

Note that if we denote 1% :={y:j=0,...,00—1}, 1V :={y;: j=0,...,
ap — 1}, V@) .= {g:J —0,...,oc1cx2 -1} then
G(u,z1,vsz2) = G(z1,22) for any z e D, and r,s,

which implies that (we consider only the first of two possible forms of G, the
other form may be treated in exactly the same way)

a(z1z2) = a(,u,vszxzz),uf, a(zyz3) = a(i:skﬁz—?), for all possible r,s.

S

Consequently,
ajoy divides k and a(gid) = a(4) for any A€ E.

Therefore, the coefficients ¢; # 0 of the Taylor expansion of a at 0 are such that
ajop divides . From these pieces of information we easily conclude that F is of
the desired form. O

Proof of Theorem 5. First note that Theorem 1 implies that both o and g
are either of rational or of irrational type.
Below we prove that

(6) F(Vo) = Vo.
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If « and f are both of rational type, then (6) is a consequence of Lemma 7 and
the analytic structure of the set Vj, which must be preserved under biholomorphic
mappings (k must be 1 and A; must be 0).

Now we prove (6) if both o and f are of irrational type. Suppose that it
does not hold, then it is sufficient to exclude the case when for some w e V, we
have that F(w) ¢ V5. In that case (use the formula for the Green function from
Theorem 1)

—o0 # gp,(w;+) = gp,(F(w); F(-)) = — o0,

which is an obvious contradiction.

We know that Vj := Uj"le], where V= CF ! x {0} x C"*k=1,...n
Vo is an analytic set. Because the multiplicity of points of the analytic sets is
preserved (6) implies that there is a permutation ¢ such that

F(Vi) = Vo)
In particular, we get F(0) =0, so
(7)  log(|z1|™ - |za|™) O = log(|Fy (2)|Pr - - |Fy(z)|Pr) /Pt the),

The formula for the Green function with one pole gives the following
log(|z1|™ -+ |zu|*) "/ = gb,(¢j:2) = g, (5160 F(2))
=log(|Fi ()P - - |Fu(2)|P) P s, £ 0, j = 1,...,m,

where ¢; =(0,...,1,...,0). The last equalities together with (7) give the
following:

o+ oy o)

ﬂl+"'+ﬂn_ﬂa(j),

from which we easily finish the proof. O

Remark 8. The technique used in the proof of Theorem 4 cannot be used in
higher dimension. Nevertheless, Theorem 2 combined with Theorem 3 imply
that in arbitrary dimension if a proper holomorphic mapping between D, and Dy
exists, then D, and Dg must be of the same type (either rational or irrational).
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