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LOG BETTI COHOMOLOGY, LOG ETALE COHOMOLOGY, AND LOG
DE RHAM COHOMOLOGY OF LOG SCHEMES OVER C

KaAzuya KATO AND CHIKARA NAKAYAMA

§0. Introduction

The purpose of this paper is to extend the classical relationship between Betti
cohomology, étale cohomology and de Rham cohomology for varieties over the
complex number field C to the logarithmic geometry over C in the sense of
Fontaine-Illusie.

We state the main results Theorem (0.2) and Theorem (0.5) of this paper.

(0.1). For varieties over C, the above three cohomology theories are closely
related. We have:

(1) (etale vs. Betti) Let X be a scheme locally of finite type over C, and let
F be a constructible sheaf of (torsion) abelian groups on the étale site Xi. Then,
we have

H9(X4,F) ~ HY (X, Fan) forany ge Z,

where X,, is the analytic space associated to X and F,, is the inverse image of F
on X (Cf. [AGrV] XVI 4.1. See also the proof of Theorem (2.6).)
(2) (de Rham vs. Betti) Let X be a smooth scheme over C. Then, we have

HY(X,Qx/c) = HY(Xa,C) foranygeZ,

where QY /¢ is the de Rham complex of X ([Gr2]).

In this paper, we prove generalizations of these results to schemes over C
endowed with logarithmic structures in the sense of Fontaine-Illusie. .

Let X be an fs log scheme ([N1] (1.7)) over C whose underlying scheme X is
locally of finite type over C. Then the analytic space X,, associated to X is
endowed with the inverse image of the log structure of X. For an analytic space
Y over C endowed with an fs log structure (like Xap), we will define a topological
space Y'°¢ which is endowed with a continuous surjective map 7: Y8 — Y
((1.2)). We denote (X.n)'°® by X2, We prove:
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THEOREM (0.2). Let X be an fs log scheme over C whose underlying scheme
X is locally of finite type over C. Then:

(1) (log étale vs. log Betti) For any constructible (Deﬁmtzon (2.5.1)) sheaf of
(torsion) abelian groups F on the logarithmic étale site X, g (IN1] (2. )), we have
an isomorphism

H(Xy® F) = HY(X 8, F%) for any g€ Z,
where FI¢ is the inverse image of F on X1

(2) (log de Rham vs. log Betti) Assume that locally for the classical étale
topology of X, there exist an fs monoid P (Definition (1.1.2)), an ideal X (Definition
(4.1) (1)) of P, and a morphism

f: X — Spec(C[P]/(Z))

of log schemes over C (C[P] denotes the semi-group ring of P over C and ()
denotes the ideal of this ring generated by X) such that the underlying morphism of
schemes f of f is smooth and such that the log structure of X is associated to
P — Ox. Then we have a canonical isomorphism

HY(X,wy/c) = Hi(Xle C) foranyqeZ,

an ?

where the left hand side is the “logarithmic de Rham cohomology” of X, i.e. the
hyper-cohomology of the de Rham complex with log poles wy,c of X ([K] (1.7))

Thus, if we call the cohomology group H?(X%¢, Q) the log Betti cohomology
of X, Theorem (0.2) (1) shows that for a prime number p, the p-adic log

étale cohomology H?(X l°g, 0,)=0®Ilim Hi(Xy %8 Z/p"Z) of X is isomorphic

to 0,® the log Betti cohomology of X, and Theorem (0.2) (2) shows that under
the assumption of Theorem (0.2) (2), the log de Rham cohomology is isomorphic
to C® the log Betti cohomology of X.

(0.3). A new aspect in this log version Theorem (0.2) is that X% is no
longer an analytic space over C if the log structure of X is non-trivial. It
happens that X% is homeomorphic to S’ (the circle) for some X in Theorem
(0.2) (2). In general, for an fs log analytic space Y over C, the canonical map
7: Y Y is surjective and for y e ¥,77!(y) is homeomorphic to the product
of r copies of S' where r = rankz(M$ / 0y,,). For example, if Y is a Riemann
surface endowed with the log structure correspondmg to a ﬁmte subset E of Y,
Y'°e is obtained from Y by replacing each point of E by S

(0.4). We obtain the following ‘“logarithmic Riemann-Hilbert correspon-
dence”. Let now X be an fs log analytic space over C. Assume that there exist
an open covering (U,;), of X, fs monoids P;, and an ideal X, of P, for each 4,
such that U, is isomorphic to an open analytic subspace of Spec (C[P;|/(Z1))n
endowed with the log structure associated to P; — Oy,.
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Define the categories Dy (X )Oand Lynp(X log) as follows. Let D(X) be the
category of vector bundles ¥ on X endowed with an integrable connection with
log poles

V: V‘—>Q)}\//C®(9XV
and let L(X'°8) be the category of local systems of finite dimensional C-vector
spaces on X'°¢.  Let Dy, (X) (resp. Lump(X'°8)) be the full subcategory of D(X)
(resp. L(X'°8)) consisting of objects ¥ (resp. L) satisfying the following condition
locally on X: There exists a finite family of Ox-subsheaves (V,),.,., of V
satisfying V(V,) < o} /c ®o, Vi (resp. finite family of C-subsheaves (L,)y_,, of
L) such that
O=lVycVic. - cVy=V (tesp.0=LycLic--- =cL,=L),

and such that for each 1 <i<n, V,/V,_; is a vector bundle and the connection
induced on V,/V,_; does not have a pole (cf. Theorem (0.5) (1)) (resp. L,/L,_ is

isomorphic to the inverse image of a local system of finite dimensional C-vector
spaces on X).

THEOREM (0.5). Let the notation be as in (0.4). Then there exists an
equivalence of categories

@ : Dyitp(X) —= Lynip(X™°8)

such that:

(1) If V is an object of Dyip(X) whose connection does not have a pole, ®(V)
is the inverse image of Ker(V:V — a)X c ®o, V). Here we say that the con-
nection of V does not have a pole zf the image of V is contained in the image of
QX /c o,V — wX c e, V, with QX c the usual sheaf of differential forms.

(2) We have canomcal zsomorphzsms

0y/c oy V =R, ®(V) in the derived category D(X,C)
for objects V of Dpnip(X). In particular,
HY(X,wy/c ®g, V) = HY(X',®(V)) forall g,
and (take V = Ox with V=d, then ®(V) = C)
HY(X,wy,c) = HI(X",C).
The two categories Dipijp(X) and Lygp(X log) are abelian categories because

Lump(X °8) is clearly abelian. The functor @, being an equivalence of abelian
categories, preserves exact sequences.

(0 6). The functor @ is obtained as follows. Though X'°2 i is not an analytic
space in general, X'°¢ is still endowed with a nice sheaf of rings (9 ((3.2)) which
is locally generated over t~'(0y) by logarithms of local sectlons of the log
structure My of X. For an object V of D(X), the connection V of ¥ and the



164 KAZUYA KATO AND CHIKARA NAKAYAMA

canonical derivation ((3.5))

0.6.1 d: O%F — oy = OF @10y T (@/c)

induces a connection

0.6.2 ViV oy @ g V'8

on Vg = 0% ® 10y T (V). We define ®(V) as the kernel of the map 0.6.2.

(0.7). The authors do not know if the equivalence in Theorem (0.5) is
extended to larger categories including “perverse sheaves on X'°8”. (The authors
do not know the definitions of them). They have not yet obtained the func-
toriality of “Riemann-Hilbert correspondences” in Theorem (0.5).

(0.8). Finally in Remark (4.10), by using the results of this paper, we give a
new construction of integral structures of some mixed Hodge structures con-
sidered by Steenbrink [S].

(0.9). A part of this work was done while one of the authors (K. Kato) was
a visitor in Isaac Newton Institute whose hospitality is greatly appreciated.
K. Fuyjiwara pointed out an error in Theorem (0.2) (1) in an earlier version. T.
Kajiwara gave some advice on the presentation. The authors would like to
thank them. The authors also express their sincere gratitude to the referee for
various helpful advice. The second author would like to thank the first for his
invitation to the collaboration.

1. The topological space X'°¢

(1.1). Definition of fs log analytic spaces. See [Grl] for the definition of
analytic spaces. In particular the structure sheaf may have nilpotent elements.
The definition of (fs) log analytic spaces is analogous to that of (fs) log schemes
in [K] ([N1]) as follows:

DerFINITION (1.1.1).  Let X be an analytic space (or ringed topos). A pre-log
structure on X is a pair of a sheaf of monoids M on X and a homomorphism
o: M — Oy with respect to the multiplication on Oy. A pre-log structure (M, )
is said to be a log structure if «:a”'(0y) — Oy is an isomorphism. A log
analytic space is an analytic space endowed with a log structure. For a log
analytic space X, we denote by My the log structure of X.

A morphism of log analytic spaces, the log structure associated to a pre-log
structure and a chart for a log structure are defined similarly as in [K]. For a
survey, see also [I].

DeFINITION (1.1.2). A monoid M is called saturated if M is integral ([K]
(2.2)) and satisfies the following condition;
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if a is an element of M® and a" € M for some n =1, then ae M.

We call a finitely generated, saturated monoid an fs monoid.

A log analytic space X is said to be f5 if locally the log structure is associated
to a pre-log structure of the form (Py,a) where Py is a constant sheaf of
monoids for an fs monoid P.

In this §1, let X be an fs log analytic space over C.

(1.2). We define the topological space X'°¢ as follows. In §3, we will
endow X'°8 with a structure of a ringed space.

As a set, we define X'°¢ by
X'og = {(x,h) xeX heHom(MXx,Sl) h(f) = ij”E ;l for anyfe(OXx}

We have an evident map X'°8 — X;(x,h) — x which we will denote by «.
The set X'°¢ is defined also as follows: Let T be the analytic space Spec(C)
endowed with the log structure M7 given by:

[(T,M7) = Rs x S!

where
R.o={xeR;x >0}

S! = {xe C;|x| =1}
with the multiplicative semi-group laws, and where My — Or is given by
oar : Rso % s'— C;(x,y) — xy.

Note that this log structure on 7T is not fs.

As a set, X'°¢ is the set of all morphisms 7 — X of log analytic spaces over
C: We associate to (x,4) € X'°8 the morphism 7 — X defined by the homo-
morphism My , — Rso x S';a— (|(a(a))(x)], h(a)).

We define the topology of X'°2 as follows.

(1.2.1). Assume there exists a chart f: P — My with P fs. When fixing
such B, we can identify X' with a closed subset of X x Hom(P#,S') via the
map

X"°¢ — X x Hom(P®, s1)~ (x,h) — (x, hp)

where hp is the composite P& — Mgpx L 8! The image is closed because
(x,0) € X x Hom(P# S') is contained in the image if and only if for any p € P,
(B(p))(x) = a(p)|(B(p))(x)I.

We endow X' with the induced topology from X x Hom(P2 S'). Here
the topology of Hom(P#, ') is the evident one. This topology does not depend
on the choice of a chart P — My because for another f’' = fou with u: P’ — P,
the map Hom(P#,S') — Hom(P'®*,S!) is closed and continuous.
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ExaMpLE (1.2.1.1). In the above we see that points of X'°¢ are also given by
pairs of points x of X and commutative diagrams

P L rx, o)

”l lf'—*f(X)

RoxS' -2,

that is, pairs (x,u) € X x Hom(P, R»o x S"') such that (8(p))(x) = az o u(p) for
any p € P. From this we have that for X = (Spec C[P]),, with the canonical log
structure, X'°¢2 = Hom(P, R> x Sl).

(1.2.2). By definition, locally on X, the assumption in (1.2.1) is sat-
isfied. We define the topology of X'°¢ locally on X according to (1.2.1). Then
the local definitions glue together and give a well defined topology on X%,

(1.2.3). If the underlying analytic space X of X is smooth over C and the
log structure My is associated to a divisor D with normal crossings on X (that is,

My = {f € Oyx; f is invertible outside D}
< (OX),
X2 is the “real blowing up” of X along D (cf. [P], [M]).

(1.2.4). Y. Kawamata and Y. Namikawa [KN] independently constructed a
real analytic manifold with corner X* for a normal crossing variety X (endowed
with a log structure in their sense) whose underlying topological space coincides
with Xlog,

(1.2.5). A morphism of. fs log analytic spaces f: X — Y induces a con-
tinuous map f'°8 : X'°¢ — ylog by definition.

Lemma (1.3). (1) The map ©: X'°® — X is continuous. Furthermore it is
proper, that is, for any compact subset C of X, the subspace 17'(C) of X'°¢ is
compact.

(2) For x € X,7"'(x) is homeomorphic to the product of r copies of S' where r
is the rank of MY /0% ..

(3) Let f:X —>~Y’ be a C-morphism of fs log analytic spaces over
C. Assume f*My — Myx. Then, the diagram of topological spaces

f log
—_—

Xlog Ylog
X L Y

is cartesian.
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Proof. (1) The continuity is clear. The properness follows from the fact
that locally on X, X'°¢ is homeomorphic over X to a closed subset of X x (S')”
for some r >0 ((1.2.1)).

Next we prove (3). Since the problem is local on Y, we may suppose that
there exists a chart P — My with P fs. Then the diagram of topological spaces

Xlog Y]og

| I
X x Hom(P#® S') —— Y x Hom(P#,S!)

is cartesian so that the concerned diagram is also cartesian.
(2) By (3), we may assume that X = {x}. Take a chart P:= My /0% , —

My .. Then X'°& = Hom(P#,S"), which is the product of r copies of S'. [

(1.4). We define a sheaf % of abelian groups on X%
Consider the exact sequence

0—— 2miZ — Cont( ,iR) — Cont( ,S')—0

where for a topological space 4, Cont( ,A4) is the sheaf of continuous functions
on X'°8 with values in A.

Let ¢: 77! (M%) — Cont( ,S') be the homomorphism induced by the maps
M®(U) — Cont(U'"¢,S");a s ((x,h) — h(a,)) for open sets U of X.

We define % to be the fiber product of Cont( ,iR) and t~!}(M¥Y) over
Cont( ,S'), so that we have the commutative diagram with exact rows

0 — 2niZ —— & L, o MP) —— 0

J |

0 —— 2miZ —— Cont( ,iR) —2 Cont( ,S') —— 0.

We denote the projection & — t~!(M¥) by exp, and we call & “the sheaf of
logarithms of local sections of t~!'(ME)”.
Since there is the commutative diagram with exact rows

exp

0 2niZ ™ H(Ox) (o) —— 0
| |
0 2niZ Cont( ,iR) —2 Cont( ,S8') —— 0

a(f) = f —Re(f) where Re is the real part,
b(f) = cla™'(f)) = |f|_1f where | | is the absolute value,
the two “exponential sequences” are put in the following commutative diagram
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with exact rows

0 — 2miZ —— v H0y) =2 7 10F) — 0

|k

2, (MP) — 0.

(1)

0 —— 2niZ —— &

LemMma (1.5). For any sheaf F of abelian groups on X, we have a canonical
isomorphism

q
RiIt,T'F = F_y ®z )\ (MY /0%) forall q,
where F_,) denotes the Tate twist F ® 7 (2ni) *Z.

Proof. First we note that F — 7,77'F is an isomorphism because of
Lemma (1.3) (1) and the fact that each fiber of 7 is connected by Lemma (1.3)
(2). Since exp: Oy = 1.7 (Ox) — O3 = t.v71(O}) is sur_]ectlve the commu-
tative diagram (1.4) (1) gives a homomorphism M¥ /03 — R't,.Z(;). By cup
product, we have a canonical homomorphism from F ) ®2zR% Mgp /03) to
R, t*F. To see that this homomorphism induces the desired 1somorphlsm by
Lemma (1.3) (1) and by the proper base change theorem for locally compact
spaces ([V] 1.2 or [Go] 4.11.1), we are reduced to the case where the underlying
set of X is a point. In this case X'°¢ = (S')" for some r > 0 by Lemma (1.3) (2),
and Lemma (1.5) is reduced to the usual cohomology theory of (S')". O

Remark (1.5.1). In (1.2.3), let jo be the open immersion X’\DL—» X. Then it
is well known that

o q
1.5.1.1 RYZ=Z_ 5@z )\ (MP/0}).

This is related to Lemma (1.5) by the isomorphism R7,Z ~ R ;*Z which is shown
for more general X as follows.

Let X be a log smooth fs log analytic space gver C. Let j denote the open
immersion between log analytlc spaces U := {x e X | (Mx/0%), =1} — X. Then,
by [O] 5.12, any point in X'°¢ has a basis of neighbourhoods whose intersection
with U = U1°g is contractible. (Actually the theory of moment maps ([Ful] p. 81
Proposition) implies that X'°2 is a topological manifold with the boundary
X'8\U.) Hence

1.5.1.2 , Z S Rjlez.

Applying Rz,, we have R7,Z ~ R j*Z as desired.

Note that 1.5.1.1 and 1.5.1.2 are compared with Grothendieck-Gabber’s
purity theorem in /-adic étale cohomology and with its log version (see [FK] (3.1),
[N2] (2.0)) respectively.
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2. Logarithmic étale cohomology

(2.1). The aim of this section is to prove Theorem (0.2) (1),

In this section, let X be an fs log scheme over C such that X is locally of
finite type over C. Let X,, be the analytic space associated to X endowed with
the inverse image of the log structure of X. The following lemma implies that
Y + Y8 defines a continuous functor from the log étale site to the log Betti site,
which preserves fiber products, and hence by [AGrV] IV 4.9.2 a morphism of topoi

e (X9~ = (X5

(( )~ denotes the category of sheaves on a site) with &, given by (e.F)(Y) =
F(Y!%) for a sheaf F on X and an fs log scheme Y over X which is log étale
and of Kummer type over X. See [N1] (2.2) for the definition of log étale sites.

LeMMA (2.2). Let Y be an fs log scheme over X which is log étale and of
Kummer type. Then the induced map Y% — X1°¢ is étale. (A continuous map
7 : A — B between topological spaces A, B is said to be étale if for any a € A, there
exists an open neighbourhood U of a such that n(U) is open and the map U —
n(U) induced by n is a homeomorphism.)

Proof. Taking a chart, we reduce to the case that there is a cartesian
diagram of fs log schemes

Y —— Spec(C[Q])

l lSPCC(C (%)

X — Spec(C[P])

with horizontal arrows strict where 4 : P — Q is a homomorphism of fs monoids
of Kummer type, which means that 4 is injective and that there is a positive
integer n such that Q" is contained in A(P), with P torsionfree. In virtue of
Lemma (1.3) (3), (the above diagram)]‘,’ng is also cartesian, so that we further
assume X = Spec(C[P]). Then X8 — Hom(P,R5o x S') and Yh&=
Hom(Q,R5o x S') by Example (1.2.1.1). It suffices to show that both
Hom(Q,R>0) — Hom(P,R5o) and Hom(Q#, S') —» Hom(Pe S') are étale.
But the fact that 4 is of Kummer type implies that the former is in fact a
homeomorphism. The proof for the latter is reduced to the case that Q is also
torsionfree, and to the case where P& = QF = Z h®(q) = a™ for some m > 1
and any a, which is clear. O

To prove Theorem (0.2) (1), we first introduce the logarithmic version of the
“Kummer exact sequence” as follows. To avoid confusions, we denote by
M, the sheaf associated to the presheaf U+ I'(U, M§) on X%, and denote
simply by M5 the sheaf MY on Xi. (It can be proved that the above presheaf

on X% is indeed a sheaf, but we do not need it here.)
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ProPOSITION (2.3). Let X be an fs log scheme and let n bf an integer
invertible on X. Then we have an exact sequence of sheaves on X é:’g

0= (Z/nZ)(1) > MP,, > MF\,, — 0.

Proof.  Let x5 — X be a log geometric point ([N1](2.5)) of X. We must
show that (M3 log)xgey 15 M-divisible. Take a local section me My(U) with
U e ObX;®. It suffices to show that m is locally n-divisible. Take a morphism
of fs log schemes U — Spec(Z[N]) such that the image of 1 e N in Myx(U)
coincides with m. Then U’ := U Xgpee(zn)) Spec(Z[N /M) is log étale over U of
Kummer type, and the projection U’ — U is surjective. Clearly m is n-
divisible on U’. 0O

, In Proposition (2.3), denote by f the forgetting-log morphism (Xé:’g)~ —
(X,)~. Then the connecting map MY — R'f,(Z/nZ)(1) factors as

MP /0y — R f(Z/nZ)(1).
Next let F be an abelian étale sheaf on ()O(, trivial log structure) such that
F =), .overtible on x K€ (7 : F — F). Then the previous homomorphism induces

by cup product a homomorphism i: F(—q) ® ; R (M¥/0y) — RIf,f*F for
any g. Here (—g) means the Tate twist.

THEOREM (2.4). Let the notation and assumptions be as above. Then 1
induces an isomorphism

() F(~q)®7 \(MP0}) — RILfF for any q.

Proof. To prove that  induces (x) and that () is an isomorphism, we may
assume that X is the spectrum of a strict henselian local ring by [N1] (4.2), and it

is sufficient to prove that the stalk of the map : at the closed point x of X factors
into the isomorphism. Let

I = Hom((M%®/0}) ., Z'(1))

where Z'(1) = }iﬂn(l /nZ)(1) in which n ranges over all integers invertible on X.

Let x(1og) be a logarithmic geometric point lying over x. Then, by [N1] (4.1), we
have (Rf,f*F), = HY(XE, f*F) = HY(I,(f*F) 40p) = HI(I, Fy), where I acts
on F, trivially.

Further

x(log)

HY(I,F,) =~ F,®g /q\ (Hom(I, Z"))

— Fu(~q) ®7 A (MP/0),.

It is easily checked that the composite of these isomorphisms is compatible with
the stalk of the map 1. O
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DErINITION (2.5.1). Let X be an fs log scheme and A a ring. A sheaf F of
groups (resp. 4-modules) on X 7% is said to be constructible if for any open affine
U c X, there exists a finite decomposition (Ui);e; of U consisting of constructible
reduced subschemes such that the inverse image of F to U; is locally constant
whose local values are finite (resp. 4-modules of finite presentation), where the
log structure of U; is the restricted one from X.

LEMMA (2.5.2). Let X be an fs log scheme and A a ring. Let F be a
constructible sheaf of A-modules. Assume that X is of equi-characteristic. Then
F is log étale locally the inverse image of a constructible sheaf (in the sense of
[AGrV] IX) of A-modules on the classical étale site by the forgetting-log morphism.

Proof. We may and will assume that X is quasi-compact and quasi-
separated and that there is a chart X — Spec(ZP) for some fs monoid P with
P*=1. By [NI1] (3.3) 8, any constructible sheaf of 4-modules on X is the
cokernel of a homomorphlsm Ay x — Ay, x for some U,V e ObX, efg such that
both U — X and V — X are of finite presentatlon On the other hand by the
assumption, for any quasi-compact U e Ob X%, there is an integer n > 1 in-
vertible on X such that U xgpec(zp) Spec(ZPl/") — X' 1= X Xgpec(zp) Spec(Z Pl/")
is strict. Note here that X' — X is log étale. Thus we may assume that F is
the cokernel of a homomorphlsm e'Ad, ; —¢e"A, ; for some U,V e ObX such
that both U — X and V- X are of ﬁmte presentatlon Here ¢ is the forgettmg-
log morphism X log _, X Since &* is full, F is the inverse image of the cokernel
of a homomorphlsm A 5 AU 5 Wwhich is constructible. O

Theorem (0.2) (1) follows from

THEOREM (2.6). Let X and ¢: (X1%)~ — (X %)~ be as in (2.1). Then, we
have

F= Re,e*F

. . log
for any constructible torsion sheaf F on X.°.

Proof. We may assume that X is quasi-compact. Then F is a Z/nZ-
Module for some n. Applying Lemma (2.5.2), we may assume that F = f*G for
some constructible torsion sheaf G on X, > since the problem is log étale local on X.

Now consider the commutative diagram

~ & logy ~
(Xp8)™ —— (Xg®)
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It is sufficient to prove that
2.6.1 Rf.f*G— RfRee™f*G

is an isomorphism (the log étale localization of the isomorphism 2.6.1 gives
Theorem (2.6) because for each xe X, we have ( )oq =£n_1)X,fX,*( lx:)5
where ,(0g) — X is a log geometric point lying over x, X’ runs over the category
of X-morphisms y(og) — X’ with X’ € Ob X, e!fg,x’ is the image of o — X' and
fx is f for X7).
We know by Lemma (1.5) and Theorem (2.4) that the base change map
g'Rf. K — Rt.e*K (where K = f*G)

is an isomorphism because it is easy to see that it is compatible with the
: * * 2. * * : * %
composite #1(g*Rf,£*G) © g G ® \'(ME. /0%.) ) s#9(Rz,2*g* G) where
(- means the Tate twist. ’
On the other hand, by the classical comparison theorem for the étale co-
homology, the adjunction map id — Rg.g* is an isomorphism, which follows

easily from [AGrV] XVI 4.1. Hence

RG2S Rg.g*RS£7G

— Rg.R7,&" f*G

=Rf,Ree*f*G
is an isomorphism. O

Remark (2.7). Let f: X — Y be a morphism of fs log schemes over C such
that X and Y are of finite type over C. Consider the diagram

~ N
(X328)™ —— (Yo

(X8~ —= (7

et
Then it is not true that

2.7.1 e*Rf.F =5 Rf.e*F

for constructible torsion abelian sheaves F on X e}fg, though this isomorphism

should be a log version of [AGrV] XVI 4.1 (Theorem 0.2 (1) says that the 2.7.1 is
true in the case Y = Spec(C) with the trivial log structure). A counterexample
of 2.7.1 is the following. Let X = Spec(C) (resp. ¥ = Spec(C)) endowed with
the log structure associated to

N — C (resp. N> — C)
which sends x to 0 if x # 0 and sends 0 to 1. Let f: X — Y be the morphism
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induced by N> — N;(x,y) — x+y. Then X% = §! v = §' x §! and X%
— Yloe js the dlagonal embedding. Let n # 0 and con51der the constant sheaf
z /nZ on X[, Then the support of &*f,(Z /nZ) is the whole space. On the
other hand f* *(Z/nZ) is the zero extension of Z/nZ on the diagonal of
S xS,

3. The sheaf '
Let X be an fs log analytic space over C, and let 7: X% — X be the
canonical morphism.

(3 1). We define the sheaf O'¢® of rings on X'°¢. Roughly speaking, 0% is
~1(0x)-algebra generated by “logarithms” of local sections of t=!(M¥). The
pre01se definition of (%% is as follows.

(3.2). Recall that we defined in (1.4) a sheaf % of abelian groups on X'°¢
and a homomorphism of sheaves of abelian groups 4 : 7-1(0x) — £ which sit in
the exact sequence

321 0— v\ (0x) 25 2 22 o (MP/05) — 0.

Consider commutative 77! (Oy)-algebras .o/ on X'°¢ endowed with a homo-
morphism & — o/ of sheaves of abelian groups which commutes with 2. We
define (91°g to be the universal one among such /. More explicitly, (Ol°g i
defined by

(@?g (t™1(0x) ® z Sym, (L)) /a

where Sym, (%) is the symmetric algebra of ¥ over Z and a is the ideal of
17 1(0x) ® ; Sym,(#) generated locally by local sections of the form

f®1—-1Q®h(f) for f alocal section of 77!(0y).
Here 1 means the 1 € Z = Sym°(%), whereas h(f) belongs to ¥ = Sym'(%#).
LemMma (3.3). Let xe X, y a point of X'°% with image x in X, and let
(t.)1<,<n be a family of elements of the stalk &) whose image under exp is a

Z-basis of (M¥/0y),. Then, as an Oy, x-algebra @X *, is isomorphic to the
polynomial ring Ox x[Ti,...,T,] in n variables by

Ox x[Th,..., T, — (DX’y; T, —t,.

Proof. By 3.2.1, we have an isomorphism

ox), ®ZO" =5 Ly (f, ()1 <izn) = [+ D i,
=1
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This shows
0%, = v7!(Ox), ® 7z Symz(Z®")
= (0x),[Th,..., Thl. O

LemmMa (3.4). For reZ, let fil,(O5%) be the image of v'(0Uy)®yz
Py Symy(&Z) in 0%, where Symy( ) denotes the i-th symmetric power over Z.
Then

filo (0%%) = 77 (0x),

and the canonical map
T (MB)0}) = £/t (0x) < fil (058) /771 (0x) (3.2.1)

induces an isomorphism

1 (Ox) ® z 77 (Symy(MP/03)) = il (0F%) /fil,_1 (O%F)

for any r > 0.

Proof. This is checked on the stalks as follows. Let x and y be as in
Lemma (3.3). Then via the isomorphism in Lemma (3.3), the inverse image of
ﬁlr((Oi{,’g)y in t7(Ox),[Th,...,T,] coincides with the t~'(0x), -submodule con-
sisting of polynomials of degree =<r. O

(3.5). Now we consider differential forms on X"¢. Let ol =0} /¢ be the
sheaf of differential forms on the underlying analytic space X of X (that is, Q} is

the conormal sheaf of X embedded in X x X diagonally), and let ) = wyc be
the sheaf of differential forms with log poles on X (that is,

wy = (Qy ® (0x @z MP))/N

where N is the Oy-subsheaf of the direct sum generated locally by local sections
of the form (—dua(x),a(x)®x) with xe My). The map MY — wl;
x—(0,1®x) mod N is denoted by dlog, and its restriction to @y coincides
with f — f7df.
Let Qf (resp. w%) be the g-th exterior power of Q} (resp. w}) over Oy.
Let

g,log __ plog -1 q
wy ° =0y @10 T (@)

By the definition of ©'% as a quotient of 7! (0x) ® z Symy (%), we see that there
exists a unique derivation

d: (O?g — w;( log
which extends ¢! (0y) 1(Q)) — 7! (w}) and which satisfies

dx = dlog(exp(x)) forxe %,



LOG BETTI COHOMOLOGY 175

and that this d is extended to

d: 0% - 0l x@ydx A y+x®dy

(xe @;’g, yet Y (w})) satisfying dod = 0.
LEmMMaA (3.6). Let Y be an fs log analytic space and let X be a closed analytic
subspace of Y defined by an ideal I of Oy. Endow X with the inverse image of the

log structure of Y.
(1) We have an exact sequence

1/ 4 wy /oY, — o) — 0.

(2) Assume that for any y € Y, the ideal I, of Oy, is generated by the images

1 1 =1
of some elements of M,. Then, wy/lwy — wy.

Proof. (1) follows by standard arguments. To prove (2), it is sufficient to
show that the map 4 in (1) is the zero map. Indeed for f e My, such that

a(f) € I, da(f) = a(f)dlog(f) € Loy, ,. O

ProrosiTioN (3.7). Let X be an fs log analytic space satisfying the as-
sumption of Theorem (0.5). Then, the Ox-module w) is locally free of finite rank.

Proof. We may assume X = Spec(C[P]/(Z)),, for an ideal X (Definition
(4.1) (1)) of an fs monoid P. Let Y = Spec(C[P]),,. Then

Oy @z PP =5 0): x® yr xdlog(y)
and hence the Oy-module ! is free of finite rank. Now we apply Lemma (3.6)
(2) for these X,Y, and we have o} = Oy ®, ®}. 0O

THEOREM (3.8) (logarithmic Poincaré lemma). Let X be an fs log analytic

space satisfying the assumption of Theorem (0.5). Then,
.l
C — oy

is a quasi-isomorphism.

This theorem will be proved in (4.7).

4. Logarithmic Riemann-Hilbert correspondence

The aim of this section is to prove Theorem (0.2) (2), Theorem (0.5) and
Theorem (3.8).
We begin with preliminaries on monoids.

DEerFINITION (4.1). Let P be a monoid.
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(1) A subset ¥ of P is called an ideal of P if ax e X for any a € P and any
x e

(2) An ideal p of P is called a prime ideal of P if the complement P\p is a
submonoid of P.

(3) An ideal g of P is called a primary ideal of P if q # P and if one of the
following two conditions (i) and (ii) is satisfied by each element a of P:

(i) @" € q for some n>1.

(i) {x € P;axeq} = q.

Any prime ideal is primary.

LemMMA (4.2). Let P be a monoid and let q be a primary ideal of P.

(1) The set p = {a € P;a" € q for some n > 1} is a prime ideal of P, and P\p
coincides with the set of elements a of P satisfying the condition (3) (ii) in Definition
(4.1).

(2) Assume P is finitely generated. Then there exists an element a of P such

that
{xeP;axeq} =p.

Proof. The proof of (1) is easy and left to the reader. We prove (2). For
aeP\q, let £, = {x € P;axe q}. Then X, is an ideal of P. Since the ring Z|[P]
is Noetherian, there exists a maximal element in the set of these ideals
Y,. Assume X, is maximal. We prove X, =p. We show first £, = p. If
x €X, does not belong to p, ax e q implies (by (1)) a€q which is a contra-
diction. We next show p=X,. Let xep. Since a¢q and some power of x
belongs to g, we can find the largest integer » > 0 such that bd:f ax" does not

C
belong to q. Since ¥, = X, and X, is maximal, we have £, = X;. Since xe€ %,
we have x e X,. O

LemMA (4.3). Let P be a finitely generated monoid and let q be an ideal of P
satisfying the following conditions (i) and (ii).

(i) P#q.

(il) If £ and X' are ideals of P such that q =XNX', then q=X or q=1X'.

Then q is a primary ideal.

(Just as in the theory of commutative rings, we can deduce from Lemma
(4.3) that any ideal of P has a “primary decomposition”.)

Proof. Let aeP. For n>1, let £, ={xe€ P;a"xeq}. Then
q C 21 [ 22 C verees .

Since Z[P] is a Noetherian ring, there exists n>1 such that X, =%, =
Zp2=--. Let £'=a"PUq. (Note that the union of two ideals is an ideal.)
Then, g =X, NY. Infact, if xeZ;NX' and x ¢ q, then x = a"y for some y € P
(because x €X’) and a"*'y = ax € q (because x € £;). Hence yeZ,,; =2, and
this shows x € q, a contradiction. By (ii), g =2;NX’ implies g=2%; or q=X'.
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If g = %4, a has the property (ii) in Definition (4.1). If ¢ = X', a has the property
(i) in Definition (4.1). O

LEMMA (4.4). Let X be an fs log scheme (resp. an fs log analytic space) over
C. Assume we are given a chart P — My with P an f5 monoid. Let p be a
prime ideal of P which is sent to 0 € Ox under P — My — Ox. Let X' be the fs
log scheme (resp. fs log analytic space) whose underlying scheme (resp. analytic
space) is the same as X but whose log structure is associated to P\p — Ox.. For
q,r€ Z, let Fil,w} be the Ox-subsheaf of v} = v} /¢ defined by

0 ifr<o
Fil,o} = { Image(w} ® 0o} — 0}) if0<r<gq
o} ifg<r.

Let V be a vector bundle on X' endowed with an integrable connection with log
poles V:V — 0wk ®¢, V. Then:

(1) FiLoy ®g, V is a subcomplex of wy ®¢, V.

(2) For any re Z, we have an isomorphism of complexes

r ~
APP/(P\p)*) @z wy' ®o, V[-r] — (Fil,wy @, V)/(Fil,—10x @, V)
whose degree q part is given by

(1 A A y) Axdlog(y) A~ Adlog(y,) A x

xewl ®o, V,yi,...,y, € PP), where the differential of the left hand side is
X ¥, 1 r
(identity on )\"---) @ (V on wy' @ V).
(3) Let a € P® and assume a does not belong to (P\p)®¥. Then the complex
(0%),cz With the differential

dy: 0 — 0% x - dlog(a) A x +dx
is acyclic.

Proof. The proof of (1) is straightforward.
(2) follows from the exact sequence

4.4.1 0 — wh — oy — Oy @, PP/(P\p)® — 0

which is obtained as follows. When we regard P and P\p as constant sheaves
on X, the inverse image & of Oy in P under P — Cy is contained in P\p since p
is sent to 0 € Oy. Hence

(P\P)gp/ggpi, M@/(ﬂ}, PEP | 8P =, M/g{,p/@;,
and hence we have the exact sequence

442 0— MY — MP — P /(P\p)¥® — 0.



178 KAZUYA KATO AND CHIKARA NAKAYAMA
On the other hand,

0k = Q)@ (Ox ®z MP))/N, wk = Q)@ (Ox ®zMP))/N’

where N is as in (3.5) and N’ is defined similarly. We show N = N’. Indeed, if
x is a local section of My, locally x =au,ae P,ue Oy. If ae P\p, (—do(x),
a(x) ® x) belongs to N’. If aep,a(x) =0 and hence (—do(x),a(x) ® x) also
belongs to N'. Hence N = N’, and this shows

443 0— ok — o) — O0x @z MP /M, — 0 (exact).

Now 4.4.1 is obtained from 4.4.2 and 4.4.3.

We prove (3). We have d,(Fil.w%) = Fil,;j0% 1 It is sufficient to prove
that for each r e Z, the complex (Fil,y 0% /Fil,iq- 1a)X) gez With the differential
induced by d, is acyclic. But by (2), this complex is isomorphic to the complex
((/\'+qH) ®owy'),cz With the differential x® y — (@ A x) ® y where H =

(Pg"/(P\p)gp) ®z0. O

LeMMA (4.5). Let P be an fs monoid and let X = Spec(C|P)),, with the log
structure associated to the canonical map P — Ox. Let x € X and define a prime
ideal b of P to be the inverse image of the maximal ideal of Oy, . under P — Oy .
Let V be an object of D(X) (0.4) whose connection does not have a pole. For - any
ideal a of P, let X (a) = Spec(C[P]/(a)),q, V(a) = Ox( (@) ®g,V, and V(a V=0 =
Ker(V(a) — wX(a Ry V(@) Denote the complex wy ®o,V by C. Then

(1) The restriction of V(b V=0 10 some open neighbourhood of x in X(b) is a
local system, and Ox @) x ®c V(b )V =0 = — V(b),.

(2) For any q, the map

AMEB/03), ®7 V(5)I= = #4(C/bC),,

X

which is induced by dlog: MY — w), is bijective.
(3) For any ideal a of P such that a = b, the stalk at x of the canonical map
of complexes

45.1 C/aC — C/bC

is a quasi-isomorphism.

In the above, aC denotes the subcomplex of C whose degree q part is defined
to be the Ox-subsheaf of w} ®,,V generated by aw} ®p, V with aea. The
definition of bC is similar.

Proof. Note that the complex C/aC is isomorphic to the de Rham complex
Wx(a) @y, V(a) of V(a) by Lemma (3.6) (2).

We prove (1) and (2). The underlying analytic space of X(b) is
Spec(C[P\b]),,, and x belongs to the non-singular open analytic subspace
Spec(C[(P\b)*]),, of it. By the well known theory of integrable connections on
vector bundles on non- -singular analytic spaces ([D1]I, 2.17), the restriction of
V()= to the open neighbourhood Spec(C[(P\b)®]),. of x in X(b) is a local

an
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system, and the stalk at x of Oxp ®c V()"0 - ¥ (b) (resp. V(b)"" —
Qx () oy, V(b)) is an isomorphism (resp. a quasi-isomorphism). By Lemma
(4.4) (which we apply by taking X (b), P,b, as X, P, p and considering #¢ of both
sides of Lemma (44) (2), #*((Filwi ® V(b))/(Fil,_1wim ® V(B)), is
isomorphic to /\"PE/(P\B)* @ z #9"(Qxm) @ V(b)),, which is isomorphic to
NP /(P\D)® @, V(5)Y=" if ¢=r and is zero if ¢ #r. From this we have
that the stalk at x of

K(M,gfp/(o;;) Rz V®)" = #9(C/bC)

is an isomorphism.
We prove (3) in four steps.

Step 1. We show that to prove Lemma (4.5) (3), we may assume a is a
prime ideal. Assume there exists a for which 4.5.1 is not a quasi-isomorphism.
Since Z[P] is a Noetherian ring, the set of such a has a maximal element g.
We show that q is a prime ideal.

We first show that q satisfies the conditions in Lemma (4.3). Indeed,
assume X and X’ are ideals of P such that q =XNZX’. Then, we have an exact
sequence

0— C/qC — C/2C® C/E'C— C/2"C—0

where " =XUZX'. Since q has the maximal property, if q#X,q # X', then
C/EC — C/bC,C/Z'C — C/bC,C/Z"C — C/bC are quasi-isomorphisms. This
shows that C/qC — C/bC is a quasi-isomorphism, a contradiction. Hence by
Lemma (4.3), q is a primary ideal. Let p = {a e P;a" € q for some n > 1}. By
Lemma (4.2) (2), there exists a € P such that {x € P;axe q} =p. If a does not
belong to p, then q={xe€ P;axeq} =p, that is, q is a prime ideal. Now
assume a € p. Consider the exact sequence

0 — 'C/aC — C/aC — C/a'C — 0,

where C is as above and q’ = qU Pa. Since a does not belong to q,q’ 2 q and
hence C/q'C is quasi-isomorphic to C/bC. On the other hand, we show below
that q’C/qC is acyclic. This shows C/qC — C/bC is a quasi-isomorphism,
a contradiction. Now the proof of the acyclicity of ¢'C/qC is as follows.
The complex q'C/qC is isomorphic to the complex (wg,(p) ® 0y V(P))gez With
the differential x — dlog(a) A x+ V(x). (In fact the isomorphism is induced by
ol /pol @V — q'C1/qC% x — ax.) Now the acyclicity follows from Lemma
(4.4) (3). Thus we are reduced to the case a is a prime ideal.

Step 2. We show that to prove Lemma (4.5) (3) for the pair (P,a), it is
enough to prove Lemma (4.5) (3) for the pairs (P\p, ¢) for prime ideals p = b of
P. Here ¢ denotes the empty ideal of P\p.

By Step 1, we may assume a is a prime ideal of P. Let P’ = P\a, X' =
Spec(C[P']),, with the log structure associated to P’ — (Oy.. Then the under-
lying analytic space of X (a) (resp. X (b)) coincides with that of X' = X'(¢) (resp.
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that of X'(b’) where b’ = P'Nb). Assume that we have shown

452 Wx/(a) @y, V(@) = @x'(p) @0y, V(D)
is a quasi-isomorphism. Then for any re Z,
4'5'3" grr(w}((a) ®(9X(a) V(a)) - grr(w..Y(b) ®(9X(b) V(b))

is a quasi-isomorphism because

(4.5.3), = /\ P /(P\a)* ®7(4.5.2)[—r]
by Lemma (4.4) (2). This will show that
WX (a) ®C9xm V(a) — WX (v) ®@x(b) V(b)

is a quasi-isomorphism. Thus, to prove Lemma (4.5) (3), we may replace P,a,b
by P, ¢,b'".

Step 3. We prove Lemma (4.5) in the case P = N’ for some r > 0. In this
case, for any prime ideal p of P, P\p is isomorphic to N’ for some s <r. Thus
we may assume P = N" and a = ¢ by Step 2. We have X = C” as an analytic
space and wy is the well known de Rham complex with log poles [D2]. In this
case, since V" has no pole, V is locally isomorphic to ¢% with the connection d,
and hence we are reduced to [D2] 3.1.8.2.

Step 4. Now we complete the proof of Lemma (4.5) (3). By Step 2, we
may assume a = ¢. For a non-empty ideal I of P, we have the toric variety ¥ =
(Br(Spec(C[P]))),n as in [KKMS]JI, Theorem 10 which has a natural log structure
([K]J(3.7)(1)). Let f denote the morphism ¥ — X. We have

0} = Oy ® -1(q) VA3
and
Oy = Rf.0y

([KKMSJI, Corollary 1 ¢) to Theorem 12 and GAGA ([Gr3] XII Théoréme
4.2)). These isomorphisms give an isomorphism in the derived category

C = Rf.(Cy) where C=wy ®q,V, Cy=wy®q, [*V.

By [KKMS]JL, Theorem 11, there exists I such that for any y e Y, (My/0y),
is isomorphic to N") for some r(y) > 0. The left vertical arrow in the following
commutative diagram is an isomorphism.

Rf.(Cy) —— Rf,(Cy/bCy)

Since Lemma (4.5) (3) is already proved in the case P = N",r 20, the lower
horizontal arrow is an isomorphism at x, too. Hence #%(C), — #9(C/bC), is
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injective. Now we consider #°. By Lemma (4.5) (1), %O(C/bC)x—g» o/ My Vy
where m, is the maximal ideal of Oy .. Take a point ye Y lying over x.
Then we have maps #°(C/bC), — Jfo(Rf*(Cy/bCy)) — JKO(CY/bCy)y

= (f*V),/my(f*V),. Since Vi/m Vi (f*V),/m,(f*V,), we have that
%O(C/bC) —>%°(Rf(Cy/bCy)) is injective. By the above commutative

diagram, this shows %O(C)x #°(C/bC),. From this, we obtain Oy , ®c
#°(C), — V.. This shows that #°(C) is a local system on X and Oy ®¢
A#°(C) =5 V. Hence C=wy ®c#°(C). Now the composite

q
NMT[03), ®z #°(C), — #(C), — #(C/bC),
is an isomorphism by Lemma (4.5) (2). Hence #(C), — #9(C/bC), is

surjective, and it is bijective for we already know it is injective. O

PROPOSITION (4.6). Let X be an fs log analytic space satisfying the as-
sumption of Theorem (0.5). Then:
(1) (Generalization of [D2] 3.1.8.2) For all q€ Z, we have isomorphisms

C®s AMPI0Y) = #9(wh)

induced by dlog: MY — w}.

(2) Let V be a vector bundle on X endowed with an integrable connection with
log poles V: V — wk ®g, V which has no pole. Then the kernel VV=0 of V is a
local system on X and Oy ®¢ (VV=") = V.

Proof. The question being local, we may assume that
X = SpeC(C[P]/aC[P])an

where P is an fs monoid and a is an ideal of P. Let x€ X, and let b < P be the
inverse image of the maximal ideal of Oy .
We prove (1). By Lemma (4.5) (3),

H k), = #(0k [bo),.
By Lemma (4.5) (2),
H9 (@i /o), = COL \ ME, /05,
We prove (2). By Lemma (4.5) (3),
VY0 = #%wx @, V), = H0(w0k ®g, V/OV), = (V/BV)} .
By Lemma (4.5) (1),
Ox x/00x x ®c (V/BV)™" = (V[bV),.

These isomorphisms show that mod b0y ., of the Oy ,-homomorphism

4.6.1 mX,x ®c V::O — Vi
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is an isomorphism. Since Ox x ®¢ VY™ and V, are free Oy, ,-modules, this

implies that 4.6.1 is bijective. Hence Oy ® ¢ VV="— V. This shows that
V=0 is a local system. O

4.7). Now we prove the “log Poincar¢ lemma” Theorem (3.8). Fix xe X
and y € X'°¢ such that x is the image of y in X. Let (;),,, be a finite family
of elements of %, whose image under exp is a Z-basis of (MY /0%),. Let R=

C|Ty,...,T,] with T, independent indeterminates, and let R — (9;?,5; be the
C-homomorphism which sends T, to #;. Since C — Qp/c is a quasi-isomorphism
as is well known, it is enough to show that Qg — wXI"yg is a quasi-
isomorphism. For re Z, let Fil,(Qk/c) be the subcomplex of Qg whose
degree g part is the C-submodule of Q}’z /C generated by elements of the form
fn with f a polynomial of degree <r and 7 e Qj I On the other hand, let

Fil,(w}°®) be the subcomplex of w8 whose degree ¢ part is the image of

fil, (O%) ® vy, (Lemma (3.4)). Then by Lemma (3.4),
Fil, (0} %) /Fil,1(0}*%) 2 ! (Sym(MF /0F) ® 7 %),

and by Proposition (4.6) (1), #7 of the right hand side is isomorphic to
H(Symy(MF/03) @z N\ (MP/03)) ®2C. On the other hand, Fil,(Qk/c)/
Fil,_1(Qk/c) is the complex g Symy (P ,ZT.) ®z (NP, ZT,) ®,C =
Symy(M¥/03), ®z N\ (MF/0%), ®,C with zero differential. Hence we
have that
Fil, (Qk/c)/Fil—1 (Qk/c) — Fil (03'%) /Fil,_i (0}F)

is a quasi-isomorphism for any r. This shows that Qk/c — w}lf;g
isomorphism.

is a quasi-

(4.8). We prove Theorem (0.5).
For an object V of Dyip(X), let V18 = 0% ®-1(0y) T ' (V) and let DR(V)
(resp. DR(7'°2)) be the de Rham complex wy ®,, V' (resp. w38 @ jos V'°8). Let
X

®(V) = #°(DR(V'°¥)).

We show:

4.8.1 ®(V) is a local system of finite dimensional C-vector spaces on X%,
48.2 @®(V)— DR(V'¢) is a quasi-isomorphism.

483 OERcD(V) = Ve,

We first show #9(DR(V'°¢)) =0 for any ¢ #0. Let Dy(X) be the full
subcategory of Dy;p(X) consisting of objects whose connections do not have poles.
Then the proof of #7(DR(V'°¢)) =0 for q # 0 is reduced to the case where ¥
belongs to Dy(¥). In this case, by Proposition (4.6) (2), V' = Ox ® ¢ F for a local
system F of finite dimensional C-vector spaces on X, and hence we are reduced
to the case V' = Oy,V = d. In this case we are reduced to the log Poincaré lemma
Theorem (3.8). Thus #%(DR(V'°¢)) = 0 for ¢ # 0 and 4.8.2 has proved.



LOG BETTI COHOMOLOGY 183

For an exact sequence 0 — V' — V' — V" — 0 of objects of Dyjp(X),0 —
(V') - (V) - (V") - 0 is exact since #'(DR((V')°¥))=0. By this,
4.8.1 and 4.8.3 are reduced to the case ¥V belongs to D¢(X), and hence by
Proposition (4.6) (2), to the case V' = Oy with V=d. In this case ®(V) = C by
the log Poincaré lemma, so 4.8.1 and 4.8.3 follow.

By 4.8.3, we have
4.8.4 @ preserves tensor products and duals.

Now we prove
4.8.5 DR(V)— Rt,DR(V'°8) ~ Rz, ®(V) is an isomorphism for any object V'
of Dnilp(X)-

This is reduced to the case where V" belongs to Dy(X), and hence to the case
V =0y and V=4d. In this case, DR(V) = wy and ®(V) = C. For any g€ Z,
the composite C ®z \(M¥/03) — #9(wy) — Rit,C = C®z N\ (MT/03)
is the identity.

48.6 @ is fully faithful.

Proof. For objects ¥} and V5 of Dyjip(X),
Hom(Vy, V2) = HY(X,DR(V} ® V2)) (V} is the dual of V)

(because Hom(Vy, V>) is identified with the Oy-linear maps Oy — V;* ® V> which
are compatible with d),

Hom(®(V), ®(V3)) = HY (X8, ®(V} ® V3)) by 4.8.4
~ H'(X,Rt,®(V; ® V2)).
Hence 4.8.6 is reduced to 4.8.5. O

4.8.7 @ is essentially surjective.

Proof. Let L be an object of Lynp(X log)  To show that L comes from
Diip(X), since we may work locally on X, we may assume that there exist C-
subsheaves L, (0 <i<n) of L such that 0=Lg< L, = --- =« L, =L and such
that for 1 <i<mnm,L,/L,_; is the inverse image of a local system on X. We
prove that L comes from Dy;,(X) by induction on n. The case n =1 is clear
and we may assume n>2. Then, by induction, L; =~ ®(V,),L/L; = ®(V;)
for some objects V1, ¥V, of Dpj,(X). Since L corresponds to an element of
Ext!(L/Ly, L), it is sufficient to show that Ext!(Vy, V3) — Ext!(®(V}), ®(V2)) is
surjective. But

Ext!(V1, V2) ~ H' (X, DR(V} ® V1)),
Ext!/(®(V)),®(V2)) = H' (X8, ®(V} ® V1)) =~ H' (X, Rt,®(V} ® V2))

and hence we are reduced to 4.8.5. O
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(4.9). We prove Theorem (0.2) (2). Let g: Xa — X be the canonical
morphism. By Theorem (0.5) (2) for X,,, it remains to prove

49.1 wy — Rg,w,,.

We may assume that there exists a morphism f : X — Spec(C[P]/(Z)) for an fs
monoid P and an ideal ¥ of P, such that the log structure of X is associated to
P — Oy and such that the underlying morphism of f is smooth.

We reduce the proof of 4.9.1 to the case X = ¢, by the methods in Step 1 and
Step 2 in the proof of Lemma (4.5) (3). In fact if 4.9.1 does not hold, there
exists a maximal element in the set of ideals a > X for which 4.9.1 for X(a) =
X Xspec(cip)/(z)) Spec(C[P)/(a)) does not hold. By the same argument as in Step
1 in the proof of Lemma (4.5) (3), we see that such maximal element is a prime
ideal. By replacing the log structure of X(a) by the one associated to
P\a — Oxq), as in Step 2 in the proof of Lemma (4 5) (3), we are reduced to the
case £ =¢. Then, as in Step 4 there, we take Y = (B;(Spec C[P])),, — X for
some non-empty ideal 7 of P such that for any ye Y, (My/0y), =N 0) for
some r(y) > 0. Then wy — Rh.wy and wy,, — R(han),0Y,,. Hence we may
assume that P = N" for some r > 0 and X = ¢ In this case, wy — Rg.wy,, is
well known ([Gr2)).

Remark (4.10). By using the space X'°¢ in this paper, we obtain a new
construction of integral structures of some mixed Hodge structures considered by
Steenbrink [S].

First, as in [S] §4, let D be a complete complex algebraic variety with a log
structure satisfying the following condition: Locally on D, there exists a complex
smooth variety X and a reduced divisor D’ on X with normal crossings such that
D is isomorphic to D’ endowed with the pull back of the log structure of X
associated to D’ ((1.2.3)). Then we have the integral structure

Hm( Dlog Z)

an)?
in H"(D'%,Z) ® C = H™(D,wp) (Theorem (0.2) (2)).
Next, as in [S] §5, let D be as above and assume we are given a global

section ¢ of Mp satisfying the following condition: For any smooth point x of
D, the image of 7 in Mp /O , = N is 1. Let S be Spec(C) endowed with the
log structure associated to

N—-C; n—0"
(with the convention 0° = 1). Then we have a morphism
f:D—S
of log schemes which sends 1 e N to ¢. Consider the subsheaf
Z[%z-ilog(t)] < OpF
where log(s) is a local section of % on D!°® whose image under exp:.# —
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(M3 ) is t. The sheaf Z[(1/2mi)log(t)] is independent on the choice of
log(z). We have the integral structure
1
m log -
H (Dan,Z[zm,log(t)])
in
1

H” <D;<;,g, z [ZE log(t)]) ® C = H™(D, wpys).

Here the last equality is obtained as follows. For r>0, let L, =
P, Clog(t)' = Cllog(#)]. Then L, is an object of Lyy,(X'°¢) and the object
V, of Dyp(X) corresponding to L, is given by V, = @i’zo(%anei with
Ve; =dlog(t) ®ei_1 (1 =i=r),Veg=0. (In fact, let ¢ = (1/i)(log(r) ® 1 —
1 ®log(?))' € (9'[,’agn ®L,) It can be shown that lim V,® wp, is quasi-
isomorphic to (wp/s),, by ei—0 (1 Zi<r), e 1. -

From this we have

H™ (D%, Cliog(1)) = H™ (D lim L,

an? an>

= Hm(Dana (wb/S)an) = Hm(Da wb/S)
where the last isomorphism is by the compactness of D (GAGA).

Remark (4.11). T. Fujisawa [Fuj] studies integral structures of wy,y for log
smooth morphisms X — Y of fine log analytic spaces. (He does not use the
topological spaces X'°¢, Y18 of this paper.)

Remark (4.12). Y. Kawamata and Y. Namikawa [KN] also define an
integral structure of wp/s for such D/S as in Remark (4.10). They use a fiber of
f1°¢ regarded as a semi-analytic space.

REFERENCES

[AGrV] M. ARTIN, A. GROTHENDIECK AND J.-L. VERDIER, Théorie des topos et cohomologie étale
des schémas (SGA4), Lecture Notes in Math., 269, 270, 305, Springer, 1972-73.

[D1] P DeLIGNE, Equations différentielles a pomnts singuliers réguliers, Lecture Notes n
Math., 163, Springer, 1970.

[D2] P DeLIGNE, Théorie de Hodge, II, Inst. Hautes Etudes Sci. Publ. Math., 40 (1971),
pp. 5-58.

[Fuj] T. Funisawa, An Integral structure on a log de Rham complex, 1n preparation.

[Ful] W FurtoN, Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton
University Press, Princeton, 1993.

[FK] K. Funwara anp K. Kato, Logarnthmic etale topology theory, preprint.

[Go] R. GopeMENT, Topologie Algébriques et Théorie des Faisceaux, Hermann, Paris, 1958.

[Gr1) A. GROTHENDIECK, Séminaire Henr1 Cartan 1960/61, Ecole Normale Supérieure, Paris,

Exposé IX.



186
(Gr2]

[Gr3]

(1

(K]

[KKMS]

[KN]

M]

[N1]
(N2)

(0]
(P]
(8]

(V]

KAZUYA KATO AND CHIKARA NAKAYAMA

A. GROTHENDIECK, On the de Rham cohomology of algebraic varieties, Inst. Hautes
Etudes Sci. Publ. Math., 29 (1966), pp. 95-103.

A. GROTHENDIECK, Revétements étale et groupe fondamental (SGA1), Lecture Notes 1n
Math., 224, Springer, 1971.

L. IrLusie, Loganthmic spaces (according to K. Kato), n Barsoti Symposium 1n
Algebraic Geometry (Ed. V Cristante, W Messing), Perspect. Math., 15, Academic Press,
1994, pp. 183-203.

K. Karo, Logarithmic structures of Fontane-Illusie, Algebraic Analysis, Geometry,
and Number Theory (Igusa, J.-I, ed.), Johns Hopkins University Press, Baltimore, 1989,
pp. 191-224.

G. Kempr, F KnupseN, D. MuMFORD AND B. SaiNT-DoONAT, Toroidal embeddings,
I, Lecture Notes in Math., 339, Springer, 1973.

Y. KaAwAMATA AND Y. NaMikawa, Loganthmic deformations of normal crossing varieties
and smoothing of degenerate Calabi-Yau varieties, Invent. Math., 118 (1994), pp. 395-
409.

H. ManMma, Asymptotic analysis for integrable connections with irregular singular
pomnts, Lecture Notes in Math., 1075, Springer, 1984.

C. NAKAYAMA, Logarithmic étale cohomology, Math. Ann., 308 (1997), pp. 365-404.
C. Nakavyama, Nearby cycles for log smooth families, Compositio Math., 112 (1998),
pp. 45-75.

A. Ocus, Logarnithmic de Rham cohomology, preprint.

U. PerssoN, On Degeneration of Surfaces, Mem. Amer. Math. Soc., 189, 1977.

J. H. M. SteenBrRINK, Loganthmic embeddings of varieties with normal crossings and
mixed Hodge structures, Math. Ann., 301 (1995), pp. 105-118.

J.-L. VERDIER, Dualité dans la cohomologie des espaces localement compacts, Séminaire
Bourbak:1 1965/66 n° 300.

DEPARTMENT OF MATHEMATICAL SCIENCES
THE UNIVERSITY OF TOKYO
KomaBa, Tokyo 153-8914, JapaN

DEPARTMENT OF MATHEMATICS

Tokyo INSTITUTE OF TECHNOLOGY
OH-0KAYAMA, TokYyo 152-8551, JAPAN
e-mail: cnakayam@math.titech.acjp





