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DE RHAM COHOMOLOGY OF LOG SCHEMES OVER C

KAZUYA KATO AND CHIKARA NAKAYAMA

§0. Introduction

The purpose of this paper is to extend the classical relationship between Betti
cohomology, etale cohomology and de Rham cohomology for varieties over the
complex number field C to the logarithmic geometry over C in the sense of
Fontaine-Illusie.

We state the main results Theorem (0.2) and Theorem (0.5) of this paper.

(0.1). For varieties over C, the above three cohomology theories are closely
related. We have:

(1) (etale vs. Betti) Let I b e a scheme locally of finite type over C, and let
F be a constructible sheaf of (torsion) abelian groups on the etale site X&. Then,
we have

H<*(Xέu F) * ff*(*an, F a n) for any qeZ,

where Xan is the analytic space associated to X and Fan is the inverse image of F
on Xan. (Cf. [AGrV] XVI 4.1. See also the proof of Theorem (2.6).)

(2) (de Rham vs. Betti) Let X be a smooth scheme over C. Then, we have

H\X, ΩV/C) = tf^an, C) for anv qeZ,

where Ωχ/c is the de Rham complex of X ([Gr2]).

In this paper, we prove generalizations of these results to schemes over C
endowed with logarithmic structures in the sense of Fontaine-Illusie.

Let X be an fs log scheme ([Nl] (1.7)) over C whose underlying scheme X is
locally of finite type over C. Then the analytic space X^ associated to X is
endowed with the inverse image of the log structure of X. For an analytic space
Y over C endowed with an fs log structure (like Xan), we will define a topological
space F l o g which is endowed with a continuous surjective map τ : 7 l o g —> Y
((1.2)). We denote (Xan)

log by Z £ g . We prove:
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THEOREM (0.2). Let X be an fs log scheme over C whose underlying scheme
X is locally of finite type over C. Then:

(1) (log etale vs. log Betti) For any constructible {Definition (2.5.1)) sheaf of
[torsion) abelian groups F on the logarithmic etale site Xέ°

g ([Nl] (2.2)), we have
an isomorphism

H"{XX°\ F) s H«(X%, F%) far any q e Z,

where F^ is the inverse image of F on
(2) (log de Rham vs. log Betti) Assume that locally for the classical etale

topology of X, there exist an fs monoid P [Definition (1.1.2)), an ideal Σ [Definition
(4.1) (1)) of P, and a morphism

f : X - Spec(C[/>]/(Σ))

of log schemes over C [C[P] denotes the semi-group ring of P over C and (Σ)
denotes the ideal of this ring generated by Σ) such that the underlying morphism of
schemes f of f is smooth and such that the log structure of X is associated to
P —» Oχ. Then we have a canonical isomorphism

H*{X, ωx,c) = H«(X%, C) for any qeZ,

where the left hand side is the "logarithmic de Rham cohomology" of X, i.e. the
hyper-cohomology of the de Rham complex with log poles ω'x/c of X ([K] (1.7)).

Thus, if we call the cohomology group Hq(X^, Q) the log Betti cohomology
of X, Theorem (0.2) (1) shows that for a prime number p, the /?-adic log
etale cohomology Hq(Xι£g, Qp) = Q®lϊmnH

q[x£g,Z/pnZ) of X is isomorphic

to Qp® the log Betti cohomology of X, and Theorem (0.2) (2) shows that under
the assumption of Theorem (0.2) (2), the log de Rham cohomology is isomorphic
to C® the log Betti cohomology of X.

(0.3). A new aspect in this log version Theorem (0.2) is that Xι£& is no
longer an analytic space over C if the log structure of X is non-trivial. It
happens that X%* is homeomorphic to Sι (the circle) for some X in Theorem
(0.2) (2). In general, for an fs log analytic space Y over C, the canonical map
τ : y l o g —> Y is surjective and for y e Y,τ~ι(y) is homeomorphic to the product
of r copies of Sx where r = rankz{Mψy/Θγ ). For example, if Y is a Riemann
surface endowed with the log structure corresponding to a finite subset E of Y,
Γ l o g is obtained from Y by replacing each point of E by Sι.

(0.4). We obtain the following "logarithmic Riemann-Hilbert correspon-
dence". Let now X be an fs log analytic space over C. Assume that there exist
an open covering [Uχ)λ of X, fs monoids Pχ, and an ideal Σ^ of Pχ for each λ,
such that Uχ is isomorphic to an open analytic subspace of Spec
endowed with the log structure associated to Pχ —> Θjjr
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Define the categories Dnύp(X)oand Lump(Xι°z) as follows. Let D(X) be the
category of vector bundles F o n l endowed with an integrable connection with
log poles

V : V —» cθχ/C ®(9X V•>

and let L(Xlog) be the category of local systems of finite dimensional C-vector
spaces on X l o g. Let Dnύp(X) (resp. Lunψ(Xι°z)) be the full subcategory of D{X)
(resp. L(Xlog)) consisting of objects V (resp. L) satisfying the following condition
locally on X: There exists a finite family of 0χ-subsheaves (Vι)0<ι<n of V
satisfying V(F/) cz ωι

χ^c(S)oχVι (resp. finite family of C-subsheaves (Lι)0<ι<n of
L) such that

O=VoaVιa. czVn=V (resp. 0 - Lo c Lj cz . c Lw = L),

and such that for each 1 < / < n, VjVΊ-i is a vector bundle and the connection
induced on VjVΊ-i does not have a pole (cf. Theorem (0.5) (1)) (resp. Lz/L,_i is
isomorphic to the inverse image of a local system of finite dimensional C-vector
spaces on X).

THEOREM (0.5). Let the notation be as in (0.4). Then there exists an
equivalence of categories

Φ : AiilpW ^ Lump(Xloη

such that:
(1) If V is an object of Dnnp(X) whose connection does not have a pole, Φ(V)

is the inverse image of Ker(V : V ^ ωι

χ,c®&χV). Here we say that the con-
nection of V does not have a pole if the image of V is contained in the image of

&x V —* ωχ/c ®&x V> w^tn Ωχ/C

 t n e usual sheaf of differential forms.
(2) We have canonical isomorphisms

/ ®ΘX V = Rτ*Φ(F) in the derived category D(X, C)

for objects V of Dn[\p(X). In particular,

Hq(X,ωx/c ®ΘχV) ^ H«(Xl0^Φ(V)) for all q,

and {take V = Θx with V = d, then Φ(V) = C)

The two categories Aiiip(^) and L u m p (X l o g ) are abelian categories because
L u m p (X l o g ) is clearly abelian. The functor Φ, being an equivalence of abelian
categories, preserves exact sequences.

(0.6). The functor Φ is obtained as follows. Though Xlog is not an analytic
space in general, Xlog is still endowed with a nice sheaf of rings Θlχg ((3.2)) which
is locally generated over τ~x(Θχ) by logarithms of local sections of the log
structure Mx of X. For an object V of 'D(X), the connection V of V and the
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canonical derivation ((3.5))

0.6.1 d : Φ]P - ω]^ = d^ ®τ-H&x) τ~\ω\,c)

induces a connection

0.6.2 V :

on F l o g - $£ 8 ®τ-i(^) τ - 1 ^ ) - W e d e f i n e Φ(Ό a s t h e k e m e l o f t h e m a P ° 6 2

(0.7). The authors do not know if the equivalence in Theorem (0.5) is
extended to larger categories including "perverse sheaves on Xlog". (The authors
do not know the definitions of them). They have not yet obtained the func-
toriality of "Riemann-Hilbert correspondences" in Theorem (0.5).

(0.8). Finally in Remark (4.10), by using the results of this paper, we give a
new construction of integral structures of some mixed Hodge structures con-
sidered by Steenbrink [S].

(0.9). A part of this work was done while one of the authors (K. Kato) was
a visitor in Isaac Newton Institute whose hospitality is greatly appreciated.
K. Fujiwara pointed out an error in Theorem (0.2) (1) in an earlier version. T.
Kajiwara gave some advice on the presentation. The authors would like to
thank them. The authors also express their sincere gratitude to the referee for
various helpful advice. The second author would like to thank the first for his
invitation to the collaboration.

1. The topological space Xlog

(1.1). Definition of fs log analytic spaces. See [Grl] for the definition of
analytic spaces. In particular the structure sheaf may have nilpotent elements.
The definition of (fs) log analytic spaces is analogous to that of (fs) log schemes
in [K] ([Nl]) as follows:

DEFINITION (1.1.1). Let Xbε an analytic space (or ringed topos). Apre-log
structure on X is a pair of a sheaf of monoids M on X and a homomorphism
α : M —> Θx with respect to the multiplication on Gx. A pre-log structure (Λf, α)
is said to be a log structure if a.: or1 {Gχ)-± Θx is an isomorphism. A log
analytic space is an analytic space endowed with a log structure. For a log
analytic space X, we denote by Mx the log structure of X.

A morphism of log analytic spaces, the log structure associated to a pre-log
structure and a chart for a log structure are defined similarly as in [K]. For a
survey, see also [I].

DEFINITION (1.1.2). A monoid M is called saturated if M is integral ([K]
(2.2)) and satisfies the following condition;
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if a is an element of M^ and an e M for some n ^ 1, then ae M.
We call a finitely generated, saturated monoid an fs monoid.
A log analytic space X is said to be fs if locally the log structure is associated

to a pre-log structure of the form {Pχ,a) where Px is a constant sheaf of
monoids for an fs monoid P.

In this §1, let X be an fs log analytic space over C.

(1.2). We define the topological space Xlog as follows. In §3, we will
endow Xlog with a structure of a ringed space.

As a set, we define Xlog by

xeX,hcHom(Mf^Sι),h(f)=-Ά for any / e tf^ j .

We have an evident map XXog —•> X; (x, h) κ-> x which we will denote by τ.
The set X l o g is defined also as follows: Let T be the analytic space Spec(C)

endowed with the log structure Mj given by:

Γ(T,Mτ)=R>oxSι

where
R>0 = {χeR;x>0}

Sι ={xeC;\x\ = 1}

with the multiplicative semi-group laws, and where Mr —> &τ is given by

(XT : /?>o x 5 1 -^ C; (x, y) -• xj\

Note that this log structure on Γ is not fs.
As a set, Xlog is the set of all morphisms T —> X of log analytic spaces over

C: We associate to (x, A) e X1 0 8 the morphism T —> X defined by the homo-
moφhism M I ) X -> /?>0 X ^ Λ H (|(α(α))(x)|,A(α)).

We define the topology of Xlog as follows.

(1.2.1). Assume there exists a chart β : P —• Mx with P fs. When fixing
such /?, we can identify ^ l o g with a closed subset of X x Hom(P g p ,5' 1 ) via the
map

where hp is the composite Pgp —» Mfp

x —> 5 1 . The image is closed because
(x,σ) e X x Hom(P 8 P ,5 1 ) is contained in the image if and only if for any p e P,
{β(p)){x) = σ(p)\(β(p))(x)\.

We endow Z l o g with the induced topology from X x Hom(P g P 5 5 1 ). Here
the topology of Hom(i> 8 P, Sι) is the evident one. This topology does not depend
on the choice of a chart P —> Mx because for another β' = β o u with u : P ' —> P,
the map Hom(P g p ,S 1 ) -> H o m ^ P ^ , ^ 1 ) is closed and continuous.
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EXAMPLE (1.2.1.1). In the above we see that points of Xlog are also given by
pairs of points x of X and commutative diagrams

P -1^ Γ(X,GX)

R>0 x Sι ^-^ C,

that is, pairs (x,μ) e X x Hom(P, J?>o x S 1) such that (β(p))(x) = OLJ ° μ(p) for
any p e P. From this we have that for X = (Spec C[P])an with the canonical log
structure, Xlog = Hom(P,/?>0 x S 1 ) .

(1.2.2). By definition, locally on X, the assumption in (1.2.1) is sat-
isfied. We define the topology of Xlog locally on X according to (1.2.1). Then
the local definitions glue together and give a well defined topology on Xlog.

(1.2.3). If the underlying analytic space X of X is smooth over C and the
log structure Mx is associated to a divisor D with normal crossings on X (that is,

= {/ e Θχ\f is invertible outside D}

Xlog is the "real blowing up" of X along D (cf. [P], [M]).

(1.2.4). Y. Kawamata and Y. Namikawa [KN] independently constructed a
real analytic manifold with corner X* for a normal crossing variety X (endowed
with a log structure in their sense) whose underlying topological space coincides
with Xlog.

(1.2.5). A morphism of fs log analytic spaces / : X —> Y induces a con-
tinuous map / l o g : X]o* -> Ylo% by definition.

LEMMA (1.3). (1) The map τ : Xlog —> X is continuous. Furthermore it is
proper, that is, for any compact subset C of X, the subspace τ~ι(C) of Xlog is
compact.

(2) For x e X, τ~ι(x) is homeomorphic to the product of r copies of Sι where r
is the rank of Mψx/Θ*Xx.

(3) Let f: X ^Y be a C-morphίsm of fs log analytic spaces over
C. Assume f*Mγ -̂ -> Mx. Then, the diagram of topological spaces

Aog

is cartesian.
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Proof. (1) The continuity is clear. The properness follows from the fact
that locally on X, Xlog is homeomorphic over X to a closed subset of X x (Sι)r

for some r > 0 ((1.2.1)).
Next we prove (3). Since the problem is local on Y, we may suppose that

there exists a chart P —> Mγ with P fs. Then the diagram of topological spaces

γ\og

In

is cartesian so that the concerned diagram is also cartesian.
(2) By (3), we may assume that X = {x}. Take a chart P := Mx,x/Θ*Xx -+

MXjX. Then Xlo% = Hom(P^,Sι), which is the product of r copies of S 1 . Π

(1.4). We define a sheaf S£ of abelian groups on Xlog.
Consider the exact sequence

0 > 2πiZ > Cont( , iR) — Cont( , Sι) > 0

where for a topological space A, Cont( , A) is the sheaf of continuous functions
on XXog with values in A.

Let c : τ~ι(Mψ) —» Cont( jS 1 ) be the homomorphism induced by the maps

Mψ{U) -• ContίC/ 1 0 ^^ 1 );^ ^ ((χ,A) h-> A(ΛX)) for open sets U of X
We define & to be the fiber product of Cont( ,/Jf) and τ ^ M f P ) over

Cont( jS 1 ), so that we have the commutative diagram with exact rows

0 y 2πiZ v & ^ ^ τ-χ{Mf) > 0

0 > 2πiZ > Cont( ,/Λ) - ^ - > Cont( , S ! ) > 0.

We denote the projection S£ —• τ (ΛffP) by exp, and we call jSf "the sheaf of

logarithms of local sections of τ~ι(Mψ)".
Since there is the commutative diagram with exact rows

0 > 2πiZ > τ-χ(Θx) -^-> τ " 1 ^ ) > 0

0 > 2πiZ > Cont( ,ίΛ) - ^ > Cont( ,Sι) > 0

= f — Re(/) where Re is the real part,
= c(arι(f)) = I / Γ 1 / where | | is the absolute value,

the two "exponential sequences" are put in the following commutative diagram
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with exact rows

0 > 2πiZ

(1)

0 > 2πiZ

LEMMA (1.5). For any sheaf F of abelian groups on X, we have a canonical
isomorphism

K<>τ*τ*F s F(.q) ®z A (Mf/&*x) for all q,

where F^_q^ denotes the Tate twist F ®z (2πi)~qZ.

Proof First we note that F —> τ*τ~ιF is an isomorphism because of
Lemma (1.3) (I) and the fact that each fiber of τ is connected by Lemma (1.3)
(2). Since exp : Θx = τ*τ-{(Θx) -> Oχ = τ*τ~ι(Θχ) is surjective, the commu-
tative diagram (1.4) (I) gives a homomorphism Mψ/Θχ —> R l τ*Z( i ) . By cup
product, we have a canonical homomorphism from F^q) ®z®q(Mψ/Θχ) to
Rqτ*τ*F. To see that this homomorphism induces the desired isomorphism, by
Lemma (1.3) (I) and by the proper base change theorem for locally compact
spaces ([V] 1.2 or [Go] 4.11.1), we are reduced to the case where the underlying
set of X is a point. In this case Xlog ^ (Sι)r for some r > 0 by Lemma (1.3) (2),
and Lemma (1.5) is reduced to the usual cohomology theory of (Sι)r. •

o o o

Remark (1.5.1). In (1.2.3), let j be the open immersion X\D^*X. Then it
is well known that

1.5.1.1 R"lz s Z(_?) ®z A (Mψ/&*x).
o

This is related to Lemma (1.5) by the isomorphism Rτ*Z ^ Ry'*Z which is shown
for more general X as follows.

Let X be a log smooth fs log analytic space over C. Let j denote the open
immersion between log analytic spaces U := {x e X\ (Mχ/Θχ)x = 1} ̂ -> X. Then,
by [O] 5.12, any point in Xlog has a basis of neighbourhoods whose intersection
with U = Ulog is contractible. (Actually the theory of moment maps ([Ful] p. 81
Proposition) implies that Xlog is a topological manifold with the boundary
Xlog\U.) Hence

1.5.1.2 Z-^R/ogZ.

o

Applying Rτ*, we have Rτ*Z ^ Ry'^Z as desired.
Note that 1.5.1.1 and 1.5.1.2 are compared with Grothendieck-Gabber's

purity theorem in /-adic etale cohomology and with its log version (see [FK] (3.1),
[N2] (2.0)) respectively.
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2. Logarithmic etale cohomology

(2.1). The aim of this section is to prove Theorem (0.2) (1^.
In this section, let X be an fs log scheme over C such that X is locally of

finite type over C. Let XΆn be the analytic space associated to X endowed with
the inverse image of the log structure of X. The following lemma implies that
Y ι-> F]°g defines a continuous functor from the log etale site to the log Betti site,
which preserves fiber products, and hence by [AGrV] IV 4.9.2 a morphism of topoi

(( )~ denotes the category of sheaves on a site) with ε* given by (ε*F)(Y) =
F(Ylψ) for a sheaf F on Z[°g and an fs log scheme Y over X which is log etale
and of Kummer type over X. See [Nl] (2.2) for the definition of log etale sites.

LEMMA (2.2). Let Y be an fs log scheme over X which is log etale and of
Kummer type. Then the induced map Y^ —• Xι£% is etale. (A continuous map
π : A -* B between topological spaces A,B is said to be etale if for any ae A, there
exists an open neighbourhood U of a such that n(U) is open and the map U —»
n(U) induced by π is a homeomorphism.)

Proof Taking a chart, we reduce to the case that there is a cartesian
diagram of fs log schemes

Y > S p e c ( C [ ρ ] )

I Spec(C[Λ])

X > Spec(C[P])

with horizontal arrows strict where h : P —• Q is a homomorphism of fs monoids
of Kummer type, which means that h is injective and that there is a positive
integer n such that Q" is contained in Λ(P), with P torsionfree. In virtue of
Lemma (1.3) (3), (the above diagram)!^8 is also cartesian, so that we further
assume X = Spec(C[P]). Then X^ = Hom(Λ R>oxSι) and Y]o* =
Hom(Q,R^0xSι) by Example (1.2.1.1). It suffices to show that both
Hom(2,/?>o)->Hom(P,tf;>o) and H o m ^ S 1 ) -> H o m ^ ^ 1 ) are etale.
But the fact that h is of Kummer type implies that the former is in fact a
homeomorphism. The proof for the latter is reduced to the case that Q is also
torsionfree, and to the case where P& — Q®> = Z,hP{a) = am for some m > 1
and any α, which is clear. •

To prove Theorem (0.2) (1), we first introduce the logarithmic version of the
"Kummer exact sequence" as follows. To avoid confusions, we denote by
MfP l o g the sheaf associated to the presheaf U ι-> Γ(ί/, Afgf) on Z ^ 8 , and denote
simply by Mψ the sheaf Mψ on X&. (It can be proved that the above presheaf
on Xx^% is indeed a sheaf, but we do not need it here.)
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PROPOSITION (2.3). Let X be an fs log scheme and let n be an integer
inυertίble on X. Then we have an exact sequence of sheaves on X?χ

z

0 - (Z/«Z)(1) -+ M|P l o g A M|P l o g -+ 0.

Proof. Let X(\o%) - ^ I b e a log geometric point ([Nl](2.5)) of X. We must
show that (Mψ{ ) x is ^-divisible. Take a local section meMχ(U) with
U G O b ^ ° g . It suffices to show that m is locally ^-divisible. Take a morphism
of fs log schemes U —> Spec(Z[TV]) such that the image of leN in Mχ(U)
coincides with m. Then U1 := J7 Xspec(z[τv]) Spec(Z[7V1///ί]) is log etale over U of
Kummer type, and the projection U' —> [/ is surjective. Clearly m is «-
divisible on ί/'. •

In Proposition (2.3), denote by / the forgetting-log morphism (x\°B)~ —•
(Xέt)~. Then the connecting map Mψ -> Rιf^(Z/nZ)(l) factors as

Next let F be an abelian etale sheaf on (X, trivial log structure) such that
F = U« mvertibie on x ^ e r {n:F -^ F). Then the previous homomorphism induces
by cup product a homomorphism i : F{-q) ®z®\Mf/Θχ) -> Rqff*F for
any #. Here (—#) means the Tate twist.

THEOREM (2.4). Lei ί/*e notation and assumptions be as above. Then i
induces an isomorphism

(*) F{-q) ®z Λ {Mψ/ΘΪ) - R V J 7 for any ? .

To prove that ί induces (*) and that (*) is an isomorphism, we may
assume that X is the spectrum of a strict henselian local ring by [Nl] (4.2), and it

o

is sufficient to prove that the stalk of the map i at the closed point x of X factors
into the isomorphism. Let

where Z ' ( l ) = lim (Z/«Z)(1) in which n ranges over all integers invertible on X.
< n

Let X(iOg) be a logarithmic geometric point lying over x. Then, by [Nl] (4.1), we
have (RVJ*F)X = H<(X%*,f*F) = H«(I, (f*F)x(log)) = H«{I,FX), where / acts
on Fx trivially.

Further

, Fx) =Fx®z/\ (Hom(/, Z'))

It is easily checked that the composite of these isomoφhisms is compatible with
the stalk of the map i. •
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DEFINITION (2.5.1). Let X be an fs log scheme and A a ring. A sheaf F of
groups (resp. ,4-modules) on χl°g is said to be constructible if for any open affine
U c X, there exists a finite decomposition (Ui)ieI of U consisting of constructible
reduced subschemes such that the inverse image of F to £/,- is locally constant
whose local values are finite (resp. ^4-modules of finite presentation), where the
log structure of Uj is the restricted one from X.

LEMMA (2.5.2). Let X be an fs log scheme and A a ring. Let F be a
constructible sheaf of A-modules. Assume that X is of equi-characteristic. Then
F is log etale locally the inverse image of a constructible sheaf [in the sense of
[AGrV] IX) of A-modules on the classical etale site by the forgetting-log morphism.

Proof We may and will assume that X is quasi-compact and quasi-
separated and that there is a chart X —> Spec(ZP) for some fs monoid P with
Px = 1. By [Nl] (3.3) 8, any constructible sheaf of ^-modules on X is the
cokernel of a homomorphism A V) x —• A U} x for some {/, K e θ b l i ° g such that
both U —> X and V —» X are of finite presentation. On the other hand by the
assumption, for any quasi-compact UeObXl£g, there is an integer n>\ in-
vertible on X such that U xSpec(ZP) Spec(ZPι/n) -> X' := X xSpec(z/>) Spec(ZPχ/n)
is strict. Note here that X' —> X is log etale. Thus we may assume that F is
the cokernel of a homomorphism ε*AΊ, ° —> eM,, ^ for some C/,Ke O b i L such
that both U —• X and V ^> X are of finite presentation. Here β is the forgetting-
log morphism Z ^ g —> Xέv Since ε* is full, i 7 is the inverse image of the cokernel
of a homomorphism Ay ° -* A ° which is constructible. •

Theorem (0.2) (1) follows from

THEOREM (2.6). Let X and ε: (X$)~ -> ( ^ 8 Γ be as in (2.1). Then, we
have

F - ϊ * Rε*ε*F

for any constructible torsion sheaf F on

Proof We may assume that X is quasi-compact. Then F is a Z/nZ-
Module for some n. Applying Lemma (2.5.2), we may assume that F = f*G for
some constructible torsion sheaf G on Xέv since the problem is log etale local on X.

Now consider the commutative diagram
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It is sufficient to prove that

2.6.1 R/*/*<?

is an isomoφhism (the log etale localization of the isomorphism 2.6.1 gives

Theorem (2.6) because for each xeX, we have ( ) x ( l o g ) = lim /χ^{ \x>)^

where x(iog) —> X is a log geometric point lying over x, X' runs over the category

of X-morphisms x(iog) —> X' with X' e ObXι£g,xf is the image of x( l o g) -» JΓ; and

fχι i s / f o r ΛΓ').

We know by Lemma (1.5) and Theorem (2.4) that the base change map

g*Rf*K -> Rτ*ε*K (where K = f*G)

is an isomorphism because it is easy to see that it is compatible with the

composite *9(g*RfJ*G) {=] g*G{_q) ® /\q{MψJΘ*xJ
 {=} Jί?q(Rτ*τ*g*G) where

(_4) means the Tate twist.
On the other hand, by the classical comparison theorem for the etale co-

homology, the adjunction map id —» Rg*g* is an isomoφhism, which follows
easily from [AGrV] XVI 4.1. Hence

is an isomorphism. Π

Remark (2.7). Let / : X —» F b e a morphism of fs log schemes over C such
that X and Y are of finite type over C. Consider the diagram

Then it is not true that

2.7.1

for constructible torsion abelian sheaves F on Z ^ g , though this isomoφhism
should be a log version of [AGrV] XVI 4.1 (Theorem 0.2 (1) says that the 2.7.1 is
true in the case Y = Spec(C) with the trivial log structure). A counterexample
of 2.7.1 is the following. Let X = Spec(C) (resp. Y = Spec(C)) endowed with
the log structure associated to

N->C (resp. N2-+C)

which sends x to 0 if x φ 0 and sends 0 to 1. Let / : X —> Y be the moφhism
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induced by N2 -• Λf; (x, y)^x + y. Then Z£s = S 1 , Yι

af = Sι xS\ and
—> ykjg is the diagonal embedding. Let « ^ 0, and consider the constant sheaf
Z/nZ on JT]°g. Then the support of ε*f(Z/nZ) is the whole space. On the
other hand, f+ε*(Z/nZ) is the zero extension of Z/nZ on the diagonal of
S1 xS1.

3. The sheaf <ή*

Let X be an fs log analytic space over C, and let τ : A^08 —> X be the
canonical morphism.

(3.1). We define the sheaf fl#g of rings on XXo%. Roughly speaking, <ή* is
a τ" 1^^)-algebra generated by "logarithms" of local sections of τ~ι(Mψ). The
precise definition of Θι£g is as follows.

(3.2). Recall that we defined in (1.4) a sheaf i f of abelian groups on X l o g

and a homomorphism of sheaves of abelian groups h :τ~ι(Θχ) —> £f which sit in
the exact sequence

3.2.1 0 > τ-\Θx) -ί-> i f - ^ τ-^ΛffP/β^) > 0.

Consider commutative τ"^^)-algebras «β/ on Xlog endowed with a homo-
morphism i f —> j / of sheaves of abelian groups which commutes with h. We
define Θι£g to be the universal one among such si. More explicitly, Θι£g is
defined by

where Symz(if) is the symmetric algebra of 5£ over Z and α is the ideal of
τ~x{βx) ®zSym z(if) generated locally by local sections of the form

/ ® I - 1 ® /*(/) for / a local section of τ~ι (Θx).

Here I means the 1 e Z = Sym°(jSf), whereas A(/) belongs to if = Sym1 (if).

LEMMA (3.3). Let x e X, y a point of Xlog with image x in X, and let
(tι)ι<ι<n be a family of elements of the stalk £?y whose image under exp is a
Z-basis of (Mψ/Θχ)x. Then, as an Θχ,x-algebra, Θι£g

y is isomorphic to the
polynomial ring Θχ,x[T\,..., Tn] in n variables by

Proof By 3.2.1, we have an isomorphism

χ-\Θx)y ® Z®« -^ <?y; (/, {mt\^n) ~ f + Σm,t,.
ι = l
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This shows

= τ-1(Oχ)y[Tu...,TH]. D

r LEMMA (3.4). For reZ, let filr(θ£g) be the image of τ-\Θx)®z

φ[=0Sym^(j5f) in &x

x

%, where Sym^( ) denotes the i-th symmetric power over Z.
Then

and the canonical map

τ-\Mf/Θ*x) ^ Seiχ-\GX) cz fil,^)/^1^) (3.2.1)

induces an isomorphism

for any r > 0.

Proof. This is checked on the stalks as follows. Let x and y be as in
Lemma (3.3). Then via the isomorphism in Lemma (3.3), the inverse image of
Άr{<ήF)y in τ~ι(Θχ)y[Tu...,Tn] coincides with the τ-^dλ^-submodule con-
sisting of polynomials of degree ^r. •

(3.5). Now we consider differential forms on X log. Let Ω^ = Ω ^ c be the
sheaf of differential forms on the underlying analytic space X of X (that is, Ω^ is
the conormal sheaf of X embedded i n l x l diagonally), and let ωι

x = ω L c be
the sheaf of differential forms with log poles on X (that is,

ω\ = (Qι

χ © [φχ ® z Mf))/N

where N is the ̂ -subsheaf of the direct sum generated locally by local sections
of the form (—dac(x),oί(x)®x) with xeMx). The map Mψ —> ωι

x;
x ι-^(0, l ® x ) mod N is denoted by Jlog, and its restriction to Θx coincides
with f^f~ιdf.

Let Ωq

x (resp. ωq

x) be the r̂-th exterior power of Ω^ (resp. ωι

x) over Θx.
Let

By the definition of Θι

x

g as a quotient of τ~x{Θχ) ®z Symz(J5f), we see that there
exists a unique derivation

which extends τ~ι(Θχ) —> τ^^Ω^) —> τ~ι(ωι

x) and which satisfies

) for x e !£,
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and that this d is extended to

d : ωfog -* c 4 + M o g ; x® y *-+dx Λ y + x®dy

(xe Θx

x

g,y e τ'1 (ωq

x)) satisfying dod = 0.

LEMMA (3.6). Let Y be an fs log analytic space and let X be a closed analytic
subspace of Y defined by an ideal I of Θγ. Endow X with the inverse image of the
log structure of Y.

(1) We have an exact sequence

I/12 4 ω\llω\ -> ωx -> 0.

(2) Assume that for any y e Y, the ideal Iy of ΘYy is generated by the images

of some elements of My. Then, ωγ/Iωγ ——> ωx.

Proof (1) follows by standard arguments. To prove (2), it is sufficient to
show that the map d in (1) is the zero map. Indeed for f e My y such that
α(/) e Iy, da(f) = a(f)dlog(f) e Iyω\^y. ' D

PROPOSITION (3.7). Let X be an fs log analytic space satisfying the as-
sumption of Theorem (0.5). Then, the Θχ-module ωι

x is locally free of finite rank.

Proof We may assume X = Spec(C[P]/(Σ))an for an ideal Σ (Definition
(4.1) (1)) of an fs monoid P. Let Y = Spec(C[P])an. Then

Θγ ®z Pgp -^>coι

γ; x ® y >-> xdlog(y)

and hence the #y-module ωι

γ is free of finite rank. Now we apply Lemma (3.6)

(2) for these X, Y, and we have ωx = &χ ®Θγ ωγ. Π

THEOREM (3.8) (logarithmic Poincare lemma). Let X be an fs log analytic
space satisfying the assumption of Theorem (0.5). Then,

\*s —* CO y

is a quasί-isomorphίsm.

This theorem will be proved in (4.7).

4. Logarithmic Riemann-Hilbert correspondence

The aim of this section is to prove Theorem (0.2) (2), Theorem (0.5) and
Theorem (3.8).

We begin with preliminaries on monoids.

DEFINITION (4.1). Let P be a monoid.
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(1) A subset Σ of P is called an ideal of P if ax e Σ for any ae P and any
xeΣ.

(2) An ideal p of P is called a prime ideal of P if the complement P\p is a
submonoid of P.

(3) An ideal q of P is called a primary ideal of P if q / P and if one of the
following two conditions (i) and (ii) is satisfied by each element a of P:

(i) an e q for some « > 1.
(ii) {xeP;ί/xeq} = q.
Any prime ideal is primary.

LEMMA (4.2). Let P be a monoid and let q be a primary ideal of P.
(1) The set p = {a e P;an e qfor some n > 1} is a prime ideal of P, and P\p

coincides with the set of elements a of P satisfying the condition (3) (ii) in Definition
(4.1).

(2) Assume P is finitely generated. Then there exists an element a of P such
that

{x e P; ax e q} = p.

Proof The proof of (1) is easy and left to the reader. We prove (2). For
a E P\q, let Σa = {x e P; ax e q}. Then Σa is an ideal of P. Since the ring Z[P)
is Noetherian, there exists a maximal element in the set of these ideals
Σα., Assume Σa is maximal. We prove Σa = p. We show first Σa c p. If
xeΣa does not belong to p, ax e q implies (by (1)) aeq which is a contra-
diction. We next show p c Σa. Let x e p. Since a φ q and some power of x
belongs to q, we can find the largest integer n > 0 such that b — axn does not

belong to q. Since Σa a Σb and Σa is maximal, we have Σa = Σ&. Since x e Σ#
we have xeΣ f l . •

LEMMA (4.3). Let P be a finitely generated monoid and let q be an ideal of P
satisfying the following conditions (i) and (ii).

(i) PΦ<\
(ii) If Σ and Σ1 are ideals of P such that q = Σf)Σ', then q = Σ or q = Σ'.
Then q is a primary ideal.

(Just as in the theory of commutative rings, we can deduce from Lemma
(4.3) that any ideal of P has a "primary decomposition".)

Proof Let aeP. For n > 1, let Σn = {x e P; anx e q}. Then

q c: Σi cz Σ2 <=

Since Z[P] is a Noetherian ring, there exists n > 1 such that Σw = Σ w + i =

Σ r t + 2 = . Let Σ 7 = anPΌ q. (Note that the union of two ideals is an ideal.)

Then, q = Σi Π Σ' . In fact, if x e Σ-i Π Σ ; and x φ q, then x = any for some yeP

(because x e Σ') and an+ιy = ax e q (because x eΣ\). Hence y e Σn+\ — Σn and
this shows x e q, a contradiction. By (ii), q = Σi ΠΣ' implies q = Σi or q = Σ'.
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If q = Σi, a has the property (ii) in Definition (4.1). If q = Σ', a has the property
(i) in Definition (4.1). Π

LEMMA (4.4). Let X be an fs log scheme {resp. an fs log analytic space) over
C. Assume we are given a chart P —• Mχ with P an fs monoid. Let p be a
prime ideal of P which is sent to 0 e Θx under P —> Mx —• &χ. Let X' be the fs
log scheme {resp. fs log analytic space) whose underlying scheme {resp. analytic
space) is the same as X but whose log structure is associated to P\p —> Θχ>. For
q,r E Z, let Fil rω|- be the Θχ-subsheaf of ωx — coχ,c defined by

( 0 if r < 0

Image(ω^ ® ωq

xl
r -> ωx) if 0 < r < q

ωx if q < r.

Let V be a vector bundle on X' endowed with an integrable connection with log
poles V : V —>• ωχl ®&x V. Them

(1) Fil rωχ ®0χ V ^ a subcomplex of coχ ®&χV.
(2) For any r e Z, we have an isomorphism of complexes

) ®z ωx, ®&x V[-r] -^ (Filrωχ ®&x V)/{VAr^ωx ®Θχ V)

whose degree q part is given by

( J I Λ Λ J / J Λ X H d\og{yx) A Λ dlog(yr) Λ X

{x e ωx~
r ®(ox V, yx,..., yr e Pgp), where the differential of the left hand side is

{identity on /\ •) ® (V on ωx< ® V).
(3) Let a e Pgp and assume a does not belong to (P\p) s p . Then the complex

(ωx)qez wtih t n e differential

da : ωx —> cox

+l] x \-+ d\og{a) A X -f- dx

is acyclic.

Proof The proof of (1) is straightforward.
(2) follows from the exact sequence

4.4.1 0 -> ωχl -> ωι

x -> Θx ®z P 8 P / ( P \ p ) g p -* 0

which is obtained as follows. When we regard P and P\p as constant sheaves
on X, the inverse image £f of Θx in P under P —> (9χ is contained in P\p since p
is sent to 0 e &χ. Hence

^ Mψ,/Θx, pn/ysp - ^ Mf/Θx,

and hence we have the exact sequence

4.4.2 0 -> Mψ, -> Mψ -> P g p / ( P \ p ) g p ^ 0.
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On the other hand,

ωι

x = (Ωι

x Θ [Ox ®z Mψ))/N, ω\, = (Ωι

x © (Θx ®z Mf,))/Nf

where N is as in (3.5) and Nf is defined similarly. We show N — N'. Indeed, if
x is a local section of Mx, locally x = au,a e P,ue Θx. If ae P\p, (-dot(x),
oc(x)®x) belongs to N'. If a e p , a ( x ) = 0 and hence (—da(x),a(x)®x) also
belongs to Nf. Hence TV = N', and this shows

4.4.3 0 -> ωι

x, -» ω^ -> Θx ®z Mψ/Mf, -> 0 (exact).

Now 4.4.1 is obtained from 4.4.2 and 4.4.3.
We prove (3). We have da(Filrωx) c Fil r +iω|-+ 1. It is sufficient to prove

that for each r e Z, the complex (¥\\r+qω
q

x/Y\\r+q-\ωq

x)qeZ with the differential
induced by da is acyclic. But by (2), this complex is isomorphic to the complex

/\l+^ίf) ®Q(O~X,) z

 w ^ h the differential x®y\-^(aΛx)(g)y where H =
g p . D

LEMMA (4.5). Let P be an fs monoid and let X = Spec(C[P])an with the log
structure associated to the canonical map P —> Θx. Let xe X and define a prime
ideal b of P to be the inverse image of the maximal ideal of ΘXjX under P —> ΘχiX.
Let V be an object of D(X) (0.4) whose connection does not have a pole. For any
ideal a of P, let X(a) = Spec(C[P]/(α))an, F(α) = Ox(a) ®&χV, and V(a)v=° =
Ker( V(a) —> ωχ^ ®&x{a)V(a)). Denote the complex ωx ®ΘχV by C. Then:

(1) The restriction of F(b) v = = 0 to some open neighbourhood of x in X(b) is a

local system, and ®χ(b),x®c ^(^)l^° - ^ V$)x-
(2) For any q, the map

J\{Mf/Θ*x)x ®z V(b)l=° - 3f«(C/bC)x,

which is induced by dlog : Mψ —> ωx, is bijective.
(3) For any ideal a of P such that α c b, the stalk at x of the canonical map

of complexes

4.5.1 C/αC^C/bC

is a quasi-isomorphism.
In the above, aC denotes the subcomplex of C whose degree q part is defined

to be the Θx-subsheaf of ωx ®&χV generated by aωx ®@χV with aea. The
definition of bC is similar.

Proof Note that the complex C/aC is isomorphic to the de Rham complex
ω'x(a) ®Θx{a) V(a) of V(a) by Lemma (3.6) (2).

We prove (1) and (2). The underlying analytic space of X(b) is
Spec(C[P\b])an, and x belongs to the non-singular open analytic subspace
Spec(C[(/>\b)8P])an of it. By the well known theory of integrable connections on
vector bundles on non-singular analytic spaces ([D1]I, 2.17), the restriction of
F ( b ) v = 0 to the open neighbourhood Spec(C[(P\b)8 P])a n of x in X(b) is a local
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system, and the stalk at x of Θx{h) ®c V(b)w=0 -> V(b) (resp. F ( b ) v = 0 -»
Ωχ(b) ®ΘXιb) V(ty) is a n isomorphism (resp. a quasi-isomorphism). By Lemma
(4.4) (which we apply by taking X(b),P,b, as X,P,y and considering 2tfq of both
sides of Lemma (4.4) (2)), ^q{{¥i\rωx^®V{b))/(¥'ύr^ωx{h)®V{b)))x is
isomorphic to / \ r P g p / ( P \ b ) g p ®z 3tfq~r(ilx{h) ® V(b))x, which is isomorphic to
/VP g P/(P\b) g p ®z V(b)l=0 if q = r and is zero if q φ r. From this we have
that the stalk at x of

}\{Mψ/Θx) ®z F ( b ) v = 0 -> J f *(C/bC)

is an isomorphism.
We prove (3) in four steps.

STEP 1. We show that to prove Lemma (4.5) (3), we may assume α is a
prime ideal. Assume there exists α for which 4.5.1 is not a quasi-isomorphism.
Since Z[P] is a Noetherian ring, the set of such α has a maximal element q.
We show that q is a prime ideal.

We first show that q satisfies the conditions in Lemma (4.3). Indeed,
assume Σ and Σ' are ideals of P such that q = ΣΓ\Σf. Then, we have an exact
sequence

0 -> C/qC -> C/ΣC ® C/Σ'C -> C/Σ"C -> 0

where Σ" = Σ U Σ ' . Since q has the maximal property, if qΦΣ,qΦΣ', then
C/ΣC -> C/bC, C/Σ'C -• C/bC, C/Σ"C -> C/bC are quasi-isomorphisms. This
shows that C/qC —> C/bC is a quasi-isomorphism, a contradiction. Hence by
Lemma (4.3), q is a primary ideal. Let p = {ae P\an e q for some n>\}. By
Lemma (4.2) (2), there exists ae P such that {x e P\ axe q} = p. If a does not
belong to p, then q = {x e P; ax e q} = p, that is, q is a prime ideal. Now
assume α e p. Consider the exact sequence

0 -> q'C/qC -> C/qC -> C/q;C -> 0,

where C is as above and q' = q U Pβ. Since a does not belong to q,q' ^ q and
hence C/q'C is quasi-isomorphic to C/bC. On the other hand, we show below
that q'C/qC is acyclic. This shows C/qC —> C/bC is a quasi-isomorphism,
a contradiction. Now the proof of the acyclicity of q'C/qC is as follows.
The complex q'C/qC is isomorphic to the complex ( ω i , ®ox{v) V(P))qeZ w ^ n

the differential x H-» rflog(β) Λ x + V(x). (In fact the isomorphism is induced by
ωx/pωx ® V -^ q'Cq/qCq;χ\-+ ax.) Now the acyclicity follows from Lemma
(4.4) (3). Thus we are reduced to the case α is a prime ideal.

STEP 2. We show that to prove Lemma (4.5) (3) for the pair (P, α), it is
enough to prove Lemma (4.5) (3) for the pairs (P\p,φ) for prime ideals p c b o f
P. Here φ denotes the empty ideal of P\p.

By Step 1, we may assume α is a prime ideal of P. Let P' = P\a,X' =
Spec(C[P'])an with the log structure associated to Pr —> Θχ>. Then the under-
lying analytic space of X(ά) (resp. X(b)) coincides with that of X' = X'(φ) (resp.
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that of X'ib') where b' = PfΠb). Assume that we have shown

4.5.2 ωx>{a) ®Θχl{a) V(a) -> ωx,{h) ®Θχf{b) V(b)

is a quasi-isomorphism. Then for any r e Z,

4.5Λ gr r (ω> ( α ) ®Θχ{a) V(a)) -» gvr(ωx{h) ®Θχ{b) V(b))

is a quasi-isomorphism because

(4.5.3), = Λ^ g 7(Λα) g P ®z (4.5.2)[-r]
by Lemma (4.4) (2). This will show that

coχ{a) ®Θx{a) V(a) -> ωx{h) ®Θχ{b) V(b)

is a quasi-isomorphism. Thus, to prove Lemma (4.5) (3), we may replace P, α, b
by P',φ,b'.

STEP 3. We prove Lemma (4.5) in the case P = Nr for some r > 0. In this
case, for any prime ideal p of P, P\p is isomorphic to Ns for some s < r. Thus
we may assume P = Nr and α = ^ by Step 2. We have X = Cr as an analytic
space and ω^ is the well known de Rham complex with log poles [D2]. In this
case, since V has no pole, V is locally isomorphic to Θx with the connection d,
and hence we are reduced to [D2] 3.1.8.2.

STEP 4. Now we complete the proof of Lemma (4.5) (3). By Step 2, we
may assume α = φ. For a non-empty ideal / of P, we have the toric variety Y =
(5/(Sρec(C[P])))an as in [KKMSJI, Theorem 10 which has a natural log structure
([K](3.7)(l)). Let /denote the morphism Y-> X. We have

and

Ox ^

([KKMS]I, Corollary 1 c) to Theorem 12 and GAGA ([Gr3] XII Theoreme
4.2)). These isomoφhisms give an isomoφhism in the derived category

C - ϊ* R/*(Cy) where C = ωx ®&x V, Cγ = ωγ ®Θγ f* V.

By [KKMSJI, Theorem 11, there exists / such that for any yeY, (Mγ/Θγ)y

is isomoφhic to Nr^ for some r(y) > 0. The left vertical arrow in the following
commutative diagram is an isomoφhism.

C > C/bC

Since Lemma (4.5) (3) is already proved in the case P = Nr,r^0, the lower
horizontal arrow is an isomoφhism at x, too. Hence j^q(C)x —• J^q(C/bC)x is
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injective. Now we consider 3tf°. By Lemma (4.5) (1), JdT°(C/bC)x - ϊ * Vx/mx Vx

where mx is the maximal ideal of Θχ,x. Take a point y e Y lying over x.

Then we have maps J^°(C/bC)x -> ^°(Rf(Cγ/bCγ))x -> 3tf°(Cγ/bCγ)y

^{f*V)y/my(f*V)y. Since K . / m , ^ - ϊ * (f*V)y/my(f*Vy)9 we have that

^ ( C / b C ) ^ -> ̂ f ° (R/ + (C r /bCr)) x is injective. By the above commutative

diagram, this shows Jf°(C)JC -^U Jf°(C/bC)x. From this, we obtain Θχ,x®c

3tf°(C)x-^ Vx. This shows that J^°(C) is a local system on X and 0 * ® c

Jf°(C) -i> K. Hence C = ωx ® c j f °(C). Now the composite

/\(Mψ/Θx)x ®ZJ^°(C)X -> jr^ίc), -> JT ̂ (c/bc)^

is an isomorphism by Lemma (4.5) (2). Hence 3tfq{C)x -> J?q{C/bC)x is
surjective, and it is bijective for we already know it is injective. •

PROPOSITION (4.6). Let X be an fs log analytic space satisfying the as-
sumption of Theorem (0.5). Then:

(1) (Generalization of [Ό2] 3.1.8.2) For all qeZ, we have isomorphisms

induced by dlog : Mψ —• ω\.
(2) Let V be a vector bundle on X endowed with an ίntegrable connection with

log poles V : V —> ω\ ® Θχ V which has no pole. Then the kernel Vv=0 of V is a
local system on X and Oχ ® c (Kv==0) ^ ^ V.

Proof The question being local, we may assume that

X = Spcc(C[P}/aC[P])an

where P is an fs monoid and α is an ideal of P. Let xe X, and let b c P be the
inverse image of the maximal ideal of (9χtX.

We prove (1). By Lemma (4.5) (3), '

je9(ωχ)x = je"(ωx/bωx)x.

By Lemma (4.5) (2),

We prove (2). By Lemma (4.5) (3),

V™ = tf\ωx ®βχ V)x s *e\ωx ®φχ V/bV)x - (V/bV)v

x

=0.

By Lemma (4.5) (1),

&x,x/b&XtX®c(V/bV)v

x=° ^ (V/bV)x.

These isomorphisms show that modbCj^ t of the

4.6.1 &X,X®CV
V

X

=O ^Vx
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is an isomorphism. Since Θχ,x ®c F j = 0 and Vx are free 0χ)X-modules, this
implies that 4.6.1 is bijective. Hence 0χ ®c Vv=0 -=-• V. This shows that
F v = 0 is a local system. •

(4.7). Now we prove the "log Poincare lemma" Theorem (3.8). Fix xe X
and y e Xlog such that x is the image of y in X. Let {U)x^ι^n be a finite family
of elements of 5£y whose image under exp is a Z-basis of (Mψ/Θx)x. Let R =
C[Γi, . . . ,Γ n ] with Tt independent indeterminates, and let R^Θx

x

g

y be the
C-homomorphism which sends Tt to u. Since C —• ΏR/C is a quasi-isomorphism
as is well known, it is enough to show that ΩR/C —• ωχ°y is a quasi-
isomorphism. For r e Z, let Filr(Ω^/c) be the subcomplex of ΩR/C whose
degree q part is the C-submodule of Ωq

R/C generated by elements of the form
fη with / a polynomial of degree <r and ηeΩ^c. On the other hand, let
Fil r (ω^ o g ) be the subcomplex of ω'γg whose degree q part is the image of
filr(^g) ® ωq

χ/c (Lemma (3.4)). Then by Lemma (3.4),

FΆrίωj^yFύr-xίωj}0*) * τ-ι(Symr

z(Mψ/Θ*x) ®zωx),

and by Proposition (4.6) (1), 3tfq of the right hand side is isomorphic to
τ-ι(Symr

z{Mψ/Θx) ®z /\q(Mf/Θx)) ®ZC. On the other hand, FilΓ(Ωi/ c)/
FilΓ_i(Ωi/c) is the complex q -> Sym^(©^ZrO ®z{/\q®UZT>) ®zC =
Symr

z(Mψ/Θx)x®z f\q{Mf/ΘX)X®ZC with zero differential. Hence we
have that

is a quasi-isomoφhism for any r. This shows that €ϊR/C —»• cθχ°y is a quasi-
isomorphism.

(4.8). We prove Theorem (0.5).
For an object V of AiiipW, let F l o§ = Θx

g ®τ-ι{&χ) τ~\V) and let DR(F)
(resp. DR(K l o g )) be the de Rham complex ωx ®Θχ V (resp. ωx

Xog ®φιog F l o g ) . Let

We show:
4.8.1 Φ(V) is a local system of finite dimensional C-vector spaces on Xlog.
4.8.2 Φ(V) - ^ D R ( F l o g ) is a quasi-isomorphism.
4.8.3 Θx

g®cΦ{V)-^ F l o g .
We first show jf ^(DR(K l o g)) = 0 for any qΦO. Let D0(X) be the full

subcategory of Aiiip(^) consisting of objects whose connections do not have poles.
Then the proof of JtT^(DR(Flog)) - 0 for qφ 0 is reduced to the case where V
belongs to Do(V). In this case, by Proposition (4.6) (2), V = Θx ®CF for a local
system F of finite dimensional C-vector spaces on X, and hence we are reduced
to the case V — Θx, V = d. In this case we are reduced to the log Poincare lemma
Theorem (3.8). Thus J?q{ΌR( F l o g )) - 0 for q Φ 0 and 4.8.2 has proved.
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For an exact sequence 0 -> V -> V -> F " -> 0 of objects of Z>niip(J5r), 0 —̂
Φ(F') -> Φ(F) -> Φ ( F " ) ̂  0 is exact since ^ ( D R ^ F ' ) 1 0 8 ) ) - 0. By this,
4.8.1 and 4.8.3 are reduced to the case V belongs to Do(X), and hence by
Proposition (4.6) (2), to the case V = Θx with V = d. In this case Φ(F) = C by
the log Poincare lemma, so 4.8.1 and 4.8.3 follow.

By 4.8.3, we have
4.8.4 Φ preserves tensor products and duals.

Now we prove
4.8.5 DR(F) -• Rτ*DR(F l o g ) ^ Rτ*Φ(F) is an isomoφhism for any object V
Of ΰnflpW.

This is reduced to the case where V belongs to Do(X), and hence to the case
V = (9X and V = d. In this case, DR(F) = ωx and Φ(V) = C. For any q e Z,
the composite C®z/\q(Mψ/Θ*x) - ^ 3^q(ωx) -> R^τ*C £ C ®z/\q(Mψ/Θ^)
is the identity.
4.8.6 Φ is fully faithful.

/V00/ For objects Fi and V2 of Z)niip(lr),

Hom( Fj, F2) ^ £Γ°(Z, DR( V[ ® F2)) (F t* is the dual of Vλ)

(because Hom(Fi, Vj) is identified with the ^-l inear maps Θx -^ V{ ® F 2 which
are compatible with d),

Hom(Φ(Vι),Φ(r2))^H°(Xlog,Φ(Vf® F2)) by 4.8.4

Hence 4.8.6 is reduced to 4.8.5. •

4.8.7 Φ is essentially surjective.

Proof. Let L be an object of L u n i p (X l o g ). To show that L comes from
Dni\p(X), since we may work locally on X, we may assume that there exist C-
subsheaves Lt (0 < / < ή) of L such that 0 = Lo <= L\ c a Ln = L and such
that for 1 <ί Kn.LjL^x is the inverse image of a local system on X. We
prove that L comes from Z>niip(̂ 0 by induction on n. The case n = 1 is clear
and we may assume « > 2. Then, by induction, Li ^ Φ(F 2 ),L/Li ^ Φ(Fi)
for some objects F i , F 2 of Aύip(^) Since L corresponds to an element of
Extι(L/LuLx), it is sufficient to show that Ext^Fi , F2) -» Ext 1 (Φ(F 1 ),Φ(F 2 )) is
surjective. But

t 1 ^ , F2) ^ ^ 1 (Z,DR(F 1 * ® F2)),

^ Hι{Xlo^Φ(V* ® V2)) ^ Hι(X,R

and hence we are reduced to 4.8.5. •
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(4.9). We prove Theorem (0.2) (2). Let g : XΆn - > I be the canonical
morphism. By Theorem (0.5) (2) for Xan, it remains to prove

4.9.1 coχ ^-> Rg*ωmχm.

We may assume that there exists a morphism / : X —> Spec(C[P]/(Σ)) for an fs
monoid P and an ideal Σ of P, such that the log structure of X is associated to
P —• Θx and such that the underlying morphism of / is smooth.

We reduce the proof of 4.9.1 to the case Σ = φ, by the methods in Step 1 and
Step 2 in the proof of Lemma (4.5) (3). In fact if 4.9.1 does not hold, there
exists a maximal element in the set of ideals α => Σ for which 4.9.1 for X(a) =
X χSpec(C[p]/(Σ)) Spec(C[P]/(α)) does not hold. By the same argument as in Step
1 in the proof of Lemma (4.5) (3), we see that such maximal element is a prime
ideal. By replacing the log structure of X(a) by the one associated to
P\a —» (9χ(a)> as in Step 2 in the proof of Lemma (4.5) (3), we are reduced to the
case Σ = φ. Then, as in Step 4 there, we take Y = (£7(SpecC[P])) a n -> X for
some non-empty ideal I of P such that for any yeY, (Mγ/Θ*γ)y ^ Nr^ for

some r(y) > 0. Then ω'χ - ^ RA*ω*y and ωj a n -̂ -> R(Aan)*G>yan Hence we may
assume that P = Nr for some r > 0 and Σ = φ. In this case, ω'x -=^ Rg*ωχan is
well known ([Gr2]).

Remark (4.10). By using the space Xlog in this paper, we obtain a new
construction of integral structures of some mixed Hodge structures considered by
Steenbrink [S].

First, as in [S] §4, let D be a complete complex algebraic variety with a log
structure satisfying the following condition: Locally on D, there exists a complex
smooth variety X and a reduced divisor Df on X with normal crossings such that
D is isomorphic to D' endowed with the pull back of the log structure of X
associated to D1 ((1.2.3)). Then we have the integral structure

in Hm(Σ$,Z)® C s Hm(D,ωb) (Theorem (0.2) (2)).
Next, as in [S] §5, let D be as above and assume we are given a global

section t of MD satisfying the following condition: For any smooth point x of
D, the image of t in MD,X/Θ^X ^ N is 1. Let S be Spec(C) endowed with the
log structure associated to

(with the convention 0° = 1). Then we have a morphism

f:D->S

of log schemes which sends 1 e TV to t. Consider the subsheaf

where log(ί) is a local section of ££ on Dι°% whose image under exp : S£
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is t. The sheaf Z[(l/2πz)log(/)] is independent on the choice of

log(ί). We have the integral structure

m

Hm
 (D1°Z, Z ί-Llog(ί) 1 J (x) C = #w(2),c%s).

Here the last equality is obtained as follows. For r > 0, let L r =
0 ^ o C l o g ( » z c C[log(ί)]. Then Lr is an object of AiniP(^ l o g) and the object
Vr of Z>niip(^) corresponding to Lr is given by Vr = 0)r

ί=o®Danei with
Vet = dlog(t) ® ei-ι (1 ^ / S r), Ve0 = 0. (In fact, let et = (l//!)(log(ί) ® 1 -
1 ® log(ί))z e ^ g

n ® Lr.) It can be shown that lim Vr®w'Dm is quasi-
isomorphic to (coh/s)an by ^ ι-> 0 (1 ^ / ̂  r),^o »-> 1. ^

From this we have

2*, CPog(ί)]) = ^ " ( ^ a n 8 . Mm LΓ)

where the last isomorphism is by the compactness of D (GAGA).

Remark (4.11). T. Fujisawa [Fuj] studies integral structures of ω'x/γ for log
smooth morphisms X —> Y of fine log analytic spaces. (He does not use the
topological spaces Xlog, Ylog of this paper.)

Remark (4.12). Y. Kawamata and Y. Namikawa [KN] also define an
integral structure of ω'D/S for such D/S as in Remark (4.10). They use a fiber of
/ l o g regarded as a semi-analytic space.
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