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ON THE BRENNAN CONJECTURE

ENRIQUE VILLAMOR AND FENG XIAO

Abstract

In this paper we study the conformal mappings of some symmetric simply
connected domains in the complex plane whose boundary are fractal trees.
In particular we present, based on the alternative simplified approach of Car-
leson and Makarov to the Brennan conjecture, see [CM], some evidence
towards the truth of this conjecture.

1. Introduction

Let Ω be a simply connected domain with at least two boundary points in
the extended complex plane, and let Φ be a conformal mapping of Ω onto the
open unit disk. Is

for 4/3</><4?
If p—2 this integral represents the area of the unit disk and therefore is

finite. If Ω is the plane slit along the negative real axis, then the integral
converges for 4/3<£<4 and diverges for £—4/3 and p=4. This follows
easily from a direct computation.

In [Br], Brennan proved that there exists a constant τ>0 which does not
depend on Ω such that

ss,
for 4/3</><3+r.

He also proved that for a large class of domains, including starlike and
close to convex domains, £—4 is the correct upper bound.

In [Po], Pommerenke proved that

SίΩ\Φ'\*dxdy<oo
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for 4/3<jί><3.399, which gives the best known lower bound for τ.
Recently Carleson and Makarov [CM] have reformulated Brennan's con-

jecture as follows.
Let D be a simply connected domain and oo, au ..., α m e3/λ Let Φ be a

conformal mapping of the upper half plane onto D satisfying Φ(z)^z2 as z—>oo.
Suppose the points Xj<=R are such that Φ{χj)=aJ} φ'(χj)=Q and Φ"(Xj) exists
for / = 1 , ... , m.

Then define β3 by

There are several equivalent definitions for these quantities. Carleson and
Makarov proved that the Brennan's conjecture is equivalent to prove that for
every configuration (D, oo, au ..., am) as above,

I/SKI.

Using Schiffer's variation method, Carleson and Makarov proved that the above
inequality holds for m—2.

They also showed in their paper that without loss of generality, we can
consider D to be a simply connected domain as in [V].

Namely, consider the domain Θ^C\{{~^, 0]U(\j£i[0, αj)}, where [0, α,]
is the line segment joining these two points. Let aj—RjeiθJ, where —π<θx<
θi< <θN<π and 0<Rj<oo} N>2. Consider the conformal mappings Fj(z),
7=1, ..., JV mapping θ onto the domain H — C\(—oo} 0], such that F/α,)=0,
and lim^oo I Fj(z)/z \ = 1 , j=1, ..., N. Then

=\F}(aj)\ for 7 = 1, ..., N.
Z u,

We are going to study the limsup^eo(S^ijS//VAO, since if this limit is
greater than 1 it follows by Schwarz's inequality that

,-χ N ~ M. VN VN

and hence

for N large enough, and thus, by the Carleson-Makarov's criterion, the Bren-
nan*s conjecture is false.
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From now on, we shall denote by C an absolute positive constant whose
value can change from line to line, and use the notation Λ^B to mean that

for some C.

Remark. Concerning the inequality *Σf=ιβj>VN, for N=2 and a1=ά2t it

appears that the largest βι—β2 occurs when arg α 2 ~ .22«π/13 and then /3i—

/32~2/3. Thus, /3i+j82«1.33, which is about six per cent less than VT.

2. Preliminaries and related results

Let Ω be a region in the complex plane, and Γ a set whose elements γ are
rectifiable curves in Ω. Then for a nonnegative Borel measurable function p,
every γ has a well-defined p length

which may be infinite, and Ω has a p area

A{Ω,p)=§QpHxdy.

If we introduce the minimum length of the whole set Γ as

L(Γ, p)=ML(γ, p),

then we can form the homogeneous expression

L(Γ, pY
A(Ω, p) '

The set of all these ratios is conformally invariant, thus so is the least upper
bound. Therefore, we define the extremal length of Γ in Ω as

where p is subject to the condition 0<^4(J2, p)<oo.
There are several alternative definitions for XΩ(Γ) obtained by using dif-

ferent normalizations. For instance, λo(Γ) is equal to supPL(Γ, ρ)2 when p is
subject to the condition 0<A(Ω, p)^l. Similarly, we say that p is admissible
if L(Γ, p)^l, and define the modulus of Γ with respect to Ω as MQ(Γ) —
mfpA{Ω, p) for admissible p, then XQ(Γ) is the reciprocal of the modulus
MΩ(Γ)={l/λΩ{Γ)).

The conformal in variance of both MQ(Γ) and XΩ(Γ) is an immediate con-
sequence of the definition.

Let Ω be an open set and let Elf E2 be two disjoint sets in the closure of
Ω. Take Γ to be the set of connected arcs in Ω which join Ex and E2. Then
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the extremal length XQ{Γ) is called the extremal distance between Eγ and E2

in Ω, and we denote it by do(Elt E2).
A quadrilateral is a Jordan region Q together with four points on its boun-

dary. These points divide the boundary into two pairs of opposite sides a, α'
and β, β'. We can choose a, a' as the base pair and determine the extremal
distance dQ(a, af).

Since the extremal distance is conformally invariant, we can replace Q by
a conformally equivalent rectangle R. We choose the mapping so that the a,
a' side of R lie on x=0, x = a and the β, β' sides lie on y—0, y—b.

It is well known, see [AH], that dQ(a, a')=a/b, and that dQ(β, βf)—bla.
Notice that dQ{a, a')xdQ{β, β')=l.

There are other extremal lengths that can be associated with the configura-
tion formed by Ω, Eλ and E2. We could let Γ* consist of all γ* in Ω which
separate Ex and E2, the corresponding conformal invariant λa(Γ*) is called the
conjugate extremal distance of Ex and E2 with respect to Ω, and is denoted by
d%Eu Et).

In the quadrilateral case, we have the conjugate extremal distance equal
to the reciprocal of the extremal distance. This is the case in all sufficiently
regular cases.

It is well known that every doubly connected region is conformally equiv-
alent to an annulus Rλ<\z\<R2. If d and C2 denote the two components of
the boundary of an annulus Ω, the extremal distance da(Clf C2) is equal
to (l/2τr) \n(R2/Ri). The conjugate extremal distance d%(Cu C2) is equal to
2π/\n(R2/Rί).

The importance of the extremal length in complex analysis derives not
only from its conformal invariance, but also from the fact that it is compara-
tively easy to find lower and upper bounds for it. By definition, any specific
choice of p gives a lower bound for λβ(Γ), namely,

We pass to list some of the properties of the extremal length that will be
used throughout this paper. For a proof of these properties we refer the reader
to the book "Conformal Invariants" [AH] by Ahlfors.

THEOREM 2.1 (The comparison law). // every γ^Γ contains ^ G Γ ' , then

As an immediate consequence of the comparison law we obtain the follow-
ing corollary.

COROLLARY 2.1.1. The extremal distance da(Eu E2) decreases when Ω, Eu E2

increase.

THEOREM 2.2 (The composition laws). Let Ωλ and Ω2 be disjoint open sets.
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Let /\ and Γ2 consist of rectifiable arcs in Ωx and Ω2, respectively, and let Γ be
a third set of rectifiable arcs.

1. // every γ^Γ contains ^ e ί Ί and γ2^Γ2f then

2. // every γι^Γι and every γ2^Γ2 contains γ^Γ, then

λ{Γ) = λ{Γλ) ^ λ(Γ2)

THEOREM 2.3 (An Integral Inequality). Let Ω be a region in the complex
plane between the lines x~a and x=b. Denote by θ(t) the length of the intercept
of Ω with the line x=t. Let Ex and E2 be those two boundary curves of Ω con-
necting the lines x — a and x=b. Then,

We pass to describe some related results.

DEFINITION 2.1. Let Ω be a simply connected domain and a, b a pair of
points such that b<=Ω and a^Ω. We define the reduced extremal length as
follows.

For ε>0 let Γ8 denote the family of all curves joining the ε-neighborhoods
of a and b in Ω, and Γε the corresponding family in C. Define,

β=β(Ω; a, b)=\imexp{2πtλ(Γε)-λ(fε)l},

where λ denotes the extremal length. The existence of the limit is a standard
property of λ.

Let us now fix one of the points, say b, and consider m distinct points au

..., am on dΩ. Denote by βj=β(Ω; aJy b). Carleson and Makarov in [CM]
showed that Brennan's conjecture is equivalent to the statement

for any m and any configuration (Ω {aj\, b).
It is important to remark here that the β's are Mδbius invariant, and they

can be expressed in terms of conformal mappings.
Suppose that b=oo and let fd be a conformal map from C\{JC: x^O} onto

Ω satisfying //oo)=oo and fj(0)=aj. Suppose also that f3 has angular deriva-
tives at 0 and <x>. Then,

PJ I/}(«>) Γ
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Let again fr=oo and let / map the upper half plane onto Ω satisfying

as z->oo. Suppose the points Xj<=R are such that

f(xj)=aJf / ' (x,)=0,

and the derivative fff(x3) exists. Then

Indeed, if ε is small, the preimage of {\w — a3\=ε} is like a semicircle of radius
\/2s/\f"(Xj)\ and the preimage of {|ιt;|=l/ε} is like a semicircle of radius
ε~1/2. Therefore, we have

\f"(xj)\

2

and

!/'(*,)!

Let Ωo be a simply connected domain such that oo e i2 0 and the boundary
Γo consists of a finite number of straight line segments. Let b, au ..., am be
the extreme points of Γo, that is, the points at which Ωo makes the full angle.
We assume that b=0, {x : x<0}dΩ0, and the segment L of Γo with endpoint
at b lies on the real axis. Then for every sufficiently small k>0 we can con-
struct a fractal set, a "dandelion", Γ(k) as follows.

For 7=1, ..., m let lj denote the segment of length k lying on Γo and end-
ing at dj. Define the polygon Γγ—Γγ(k) by replacing each l3 by a rescaled
copy of Γo so that under rescaling the segment L corresponds to l3. The
polygon Γλ has m2 extreme points other than b. To obtain Γ2=Γ2(k) we repeat
the above procedure with the scale k2. Proceeding with the construction we
define polygons Γ2, Γz, ... which converge to some fractal set Γ=-Γ(k). Observe
that if k is small enough, then no intersections occur at any step of the con-
struction. We will call the polygon Γ o the "initiator" of the fractal set Γ.

There is some relationship between the properties of the harmonic measure
on Γ and the β-numbers of the initiator. For a domain Ω and ε>0 let us
denote

. logiV(/θ, ε)
ra(e)=hm sup ° KJ' -

where N(p, ε) is the maximal number of disjoint discs of radius p and harmonic
measure at least p1/2+ε. By a theorem in [CM] we have that
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Then we have the following two results:

THEOREM 2.4. 1) Let {Γk) k>Q be the family of dandelions with initiator Γo,
Ωk=C\Γk, and {βj} be the β-numbers of Γo. Then if

for some p>0, then

>lim inf sup ε~ιγQΛε)^2p.
k-*0 ε>0 ' *

2) In the opposite derection, let

for some simply connected domain Ω and s>0. Then, there exists a polygon Γo

satisfying

COROLLARY 2.4.1. There exists an absolute constant p such that

Σ

for every configuration (Ω b, {aj\).

3. Upper bounds

We are going to concentrate on the following symmetric "dandelions".
Let ah=eHhπnk+1)), Sh to be the line segment joining 0 and ah for any h =

0, ± 1 , ±2, ..., ±k and B = ( - o o , 0].
Let S=\Jk

h==-kSh and Θ=C—(S\JB). Then θ is a dandelion-like domain
with (2fe + l) branches equally spaced in the unit disk, as shown below

Let H = C—B. By the Riemann Mapping Theorem, for each Λ=0, ± 1 , . . . ,
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±k, there exists a conformal mapping Fh(z): Θ-
normalizing conditions

179

with the following two

(3.1)

and

(3.2)

F»(αΛ)=0

lim-^Ul.

Our goal in this section is to obtain estimates for the sum

where

β*=\Fί(ah)\=lim
z-+ah

Fh{z)

z—ah

h=0, ± 1 , ..., ±

Let /)*={*: \z-ah\<p} and £>?„={*: | *-α A |<( l//>)} . Let βj£=

— D£, where p is a small positive number, and /ι=0, ± 1 , ..., ± ^ as before.
Let i/J be the image of θh

p under Fh(z). By the normalizing conditions
(3.1) and (3.2), we have that for any positive ε there exists a positive ρ(ε), call
it p, such that

and

ln/)+ln2 _^ ,

Since Fh(z) is a conformal mapping from θ-*H, if we let Γ be the family
of curves joining dΌh

p and dDΐ/p in Θh

p by the conformal in variance of the
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modulus we have that M(Γ, Θ%)—M(Γf, H$), where Γ' is the family of curves
joining dFh{Df) and dFh(DΪ/p) in Hh

p.
Our next goal is to get an upper bound for M(Γ, Θp). To do this, we take

the conformal mapping Φh(2)—\n(z—ah): <9£->S£, where SJ=Φ f t(ΘJ) turns out
to be a quadrangle as shown above.

First, notice that Fh(z) satisfies the two normalization conditions for α_Λ,

therefore F-h{z)—Fh{z) and thus

h=-kΓ h=\Γ Γ

Let Γ be the family of curves connecting the two vertical sides of the qua-
drangle S£. By the conformal invariance of the modulus we have

M(Γ, β*)=Aί(Γ, S*).

Let Γ be the family of curves connecting the horizontal sides of S£. By
the conjugate rule we have

" M{Γ, Sh

p)

Therefore, to find a lower bound for M(Γ, Θ%) we simply need to find a
lower bound for M{Γ, Sh

p). Since we have that M(Γ, <9£) = M(Γ', Hh

p) the
comparison rule gives us that

M(Γ', H>)2 2π

which gives a lower for M(Γ, Qf).
To find an upper bound for M(Γ, θ*)=l/(Aί(f, SJ)) we simply need to find

a lower bound for M(Γ, Sp) which we will obtain using the Integral Inequality
from Section 2,

3.1. Data of configuration
In the figure for Sp we note several important points and lines. Their

coordinate values and equations are listed below.
For the lines

. , hπ ex

, hπ

-1-arccos-y-
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/4: yz=z—7r-farcsin-—-—~ —.

For the points

A: (Ax, i4,)=

A': (A'x, Λ ' , ) = ( l n 2 + l n c o β - 2 ^ ;

B: (Bx, Bυ)=(in2, arcsin 2

B': (B'X,B')={ " h π

C: (Cx, Cy)=(lnp+ln2, | +

C : (Cί, c;)=(ln/>+ln2, - ^

It is clear that on the intervals [ln^o, In|θ4-ln2] and [In2, — ln^o], θ(x)—2π.
Let us split the interval [ln/>, —\np~\ into four subintervals as follows

/: [\np,

//: [lnp+ln2, In2+In cos

IV: [In2, -ln/>].

On the intervals 7 and 77 we have that

)iθ(x)aχ- 2π

and

Hence

f 1

2π

Now we split the problem into two cases since Ax will have different signs for
different values of h.

CASE 1. For values of h such that Q<(hπ/(k+l))^2π/3. In this case Ax
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^0 and we divide the interval [Inp-j-ln2, In2] into three pieces:

/ : [Inp+\n2, 0], //: [0, AJ , ///: \_AX, BJ .

CASE 2. For values of h such that 2πβ<hπ/(k+l)<π. In this case Ax

<0 and we divide the interval [Inp-f-ln2, In2] into the following three pieces:

/ : [ln/>+ln2, ΛJ, //: [A,, 0],

CASE 1. Values of h for which 0£h£ 2k β.

Ill: [0,

—\np

\nρ In/ί>+ln2

As shown in the figure above, we need the coordinate values for the points
D, Df, and M along with the line equations for CD, DA, AB, and A'B'.

2π , hπ \

D:(p9^. + ^ y / > ' : ( < > , -
We will use the slope intercept equation of a straight line y—mx-\-b. For the
line CD we have the following values for m and b,

m—-
π/6

\np-\n2

2π _̂_ hπ
ΊΓ

Thus,

For the line DA,

y=~
π/6 2π hπ

-\np-\n2
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2π , hπ
ju~ 3 ^ A + l

Thus,

(π/3)-(hπ/2(k+l)) 2π hπ
J ln2+lncos(Aτr/2(£+l)) 3 ' k + 1

For the line AB,

m ~ lncos(Λπ/2(*+l))

Thus,

+ π-\n2κ-

For the line A'B't
_ hπ/2{k + l)

™"~ lncos(Aπ/2(* + l)) '

Thus,

Aπ
"•" i I 1

On the interval /, θ(x) is the distance between the lines CD and CD', which
is given by

~ -In|β-ln2 ' 3 '

Thus

Έll
πβ L V —lnp—In2 ^ 3 /Ju.,+i«i

—lnp—In2

= Έ
_ -\np-\n2 4_
~ π~β l n 3 " #

On the interval //, θ(x) is the distance between the lines DA and DM', which
is given by
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( χ • z*

Vln2+ϊncos(/ιπ/2(6+l)) 3

ln2+lncos(A;r/2(&+l))"*+ 3 '

Hence

dx

Γ / (2ττ/3) — (hπ/(k + l)) 4πx
X L Vln2+lncos(Aτr/2(^+l)ίX T /

/2π-(hπ/(k+l))\

/2-(A/(fe+l))\
nv 4/3 )

In 2 . 3
ln-TΓ.= 2π/3 2

On the interval ///, θ(x) is the distance between the lines ΛB and A'B', which
is given by

ln_2 arcsin(sin(/ι;r/(& +l))/2)

Thus

-arcsin(sin(Aπ:/(fe+l))/2)r 1 , Γ /
}inθ(x) J///V

In 2 arcsin(sin(Aπ/(^ +l))/2) w

. sin(Aπ/(fc+l)) hπ
+arcsm —

2 k+1

ln2arcsin(sin(Aπ
/Jln2+lncoS(Λπ/2(* + l
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lncos(/i7r/2(&+l))
i ^

hπ \

J+ϊ)
hπ

\ncos(hπ/2(k+l))
—arcsin(sin(/zτr

lncos(/ιτr/2(£+l)) _5
(hπ/(k + ϊ))-2π 4

In cos(hπ/2(k-{-!)) . Λ 5

arcsin(sin(/zπ

Thus, when 0^/i^

: 4

we have that

-In2 , 4 , In2

CASE 2. Values of /ι for which (2/3)k^h^k. In this case we can use a
similar argument to get estimates for our integrals.

Now AX<Q, and as we mentioned before, we can divide the interval [\np +
In 2, In 2] into three pieces,

: [ l n j o+ln2, //: \_AX, 0] ///: [0, Bx~].

Inp

C<

Injo+ln2

L_| 1

— = = ^

— π

y F In 2

_̂ IB
/// i

M |

D' ί

—Inp

—Inp

For intervals / and // we can use the lines CE and CD' to estimate θ(x)
and from our previous calculation we have

r f 1 .
Ji Jπ^(^)

—ln/>—In2
==~ ~π/3

4
3

For interval /// we use the lines EF and D'B' to estimate θ(x).
The coordinates of the points E, F, and M are
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2π hπ \ „ / hπ \ λ, / hπ
+ ) F Λ l 2 + ) M :(°

/ 2π hπ \ „ / hπ \
:κ°'^r+τ+ϊ)> F Λln2'π+τ+i)k+l>

and the equation of the line EF is

__ π/3 2π hπ
y-~Ίn2X + T + J+ϊ'

hence

r l , _ r l n 2 l
)mθ(x) Jo ((*/3)/ln2>θ(x) Jo ((π/3)/ln2)Λ:+27r/3

31n2

4!^ln2.

Therefore, when (2/3)k£h£k we have that

- I n p - l n 2 , 4 , 31n2

ττ/3 3 ' 2τr

Putting all these results together, we have:

CASE 1. Values of h for which 05g/*^(2/3)&.

J _ ^ > -ln/D-1112. 4 M D 2 , 3

In2.

, lncos(/ιπ/2(^ + l)) Λ , 5 , -In/?
i o 4 in ~h o—2π 4 2π

CASE 2. Values of Λ for which

P 1 -111/0-^2. 4

- d x ^ — έ Γ — l n y
These equations give us a lower bound for M(Γ, SJ) and therefore, we have

n

which can be simplified to be

This gives us an upper bound for the /Vs.
In Case 1, we have

βh < 0 ( l n / ° + l n 2 > 6 l n (4/3)-3 In 2 In (3/2)-In,

<; ^ (6 In (4/ 3) -1) In , + 6 In (4/ 3) In 2-3 In (3/ 2) In 2
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<ς ~6 In (4/3) -1 2 6 In(4/3) -3 In (3/2)

In Case 2, we have

β < g(ln p + ln 2) 6 In (4/3) -3 In 2 In 2-ln p

< « 6 In (4/3) - 1 2 6 l n (4/3) -8 In 2

Hence,

/Q <" Λ 6ln(4/3)-l O6 ln(4/3)-3ln(3/2)

k / 2 6ln(4/3)-3ln(3/2) 1 6 l n 4 / 3 - 3 l n 2 \ 6 l n 4 3 - l

l U / 8 > - l ^

for some universal constant C independent of £. Thus,

for k large enough. Showing that for our symmetric configurations

Therefore, these configurations will not work in an approach aimed to disprove
Brennan's conjecture.

4. Concluding remarks

In all the calculations made in Section 3, we have used configurations in
which all of the branches are of the same length and they are evenly distributed
in the unit disk. It is still unknown if this will give us the best results for
the upper bound. However, generally speaking, we know that this kind of
symmetric configurations usually give the extreme values. An interesting pro-
blem will be to prove that our configurations give the upper bound for the
sums Σl=-ftj5ft among all possible configurations, that is, configurations with k
branches having different lengths, and randomly distributed over the unit disk.

Another interesting fact we would like to point out is that, when calculat-
ing the upper bounds for our βh'sf if we choose the best fit in our configura-
tion we have

Γ-lnp I rinp + \n2 1 f In2 + ln cos(Λτr/2(A + l)) \ C~lnP 1

-dxin, T(x)dxhnP 2τ:dχJr)inp+in2 2?r-2cos(e*/2) rfxfJin2 2π

Γln2 1

jin2+incos(ftτr/2(*+i)) 2ττ—(hπ/{k + l))+arcsin(sin(/i7r/(& + l))/ex)—arccosOV2) '
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which is, according to our numerical evidence, very close to —3lnρ/2π. If
this observation can be proved, then we will have

<g-2tf(-3 In p)/2π-2 In p

This leads us to make the following conjecture.

CONJECTURE 4.1. For any configuration similar to the ones described in this

paper, (i.e. the lengths and the angles of the branches may vary) the sum of the

βh's is bounded from above by some universal constant C, namely
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