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ON THE BRENNAN CONJECTURE
ENRIQUE VILLAMOR AND FENG XIAO

Abstract

In this paper we study the conformal mappings of some symmetric simply
connected domains in the complex plane whose boundary are fractal trees.
In particular we present, based on the alternative simplified approach of Car-
leson and Makarov to the Brennan conjecture, see [CM], some evidence
towards the truth of this conjecture.

1. Introduction

Let £ be a simply connected domain with at least two boundary points in
the extended complex plane, and let @ be a conformal mapping of £ onto the
open unit disk. Is

Sggl@’lpdxdy<oo

for 4/3<p<4?

If p=2 this integral represents the area of the unit disk and therefore is
finite. If £ is the plane slit along the negative real axis, then the integral
converges for 4/3< p<4 and diverges for p=4/3 and p=4. This follows
easily from a direct computation.

In [Br], Brennan proved that there exists a constant >0 which does not
depend on £ such that

Sggl@’]"dxdy<oo

for 4/3<p<3+7.
He also proved that for a large class of domains, including starlike and

close to convex domains, p=4 is the correct upper bound.
In [Po], Pommerenke proved that

SSOIQ’V’dxdy<OO
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BRENNAN CONJECTURE 173

for 4/3< p<3.399, which gives the best known lower bound for 7.

Recently Carleson and Makarov [CM] have reformulated Brennan’s con-
jecture as follows.

Let D be a simply connected domain and o, ay, ..., a,€0D. Let @ be a
conformal mapping of the upper half plane onto D satisfying @(z)~z? as z—oo.
Suppose the points x;&R are such that @(x;)=a,, ®'(x;)=0 and @”(x,) exists
for j=1, ..., m.

Then define 8, by

2
19]:‘8(0, aj)zm)—[’ ]:1, e, m,

There are several equivalent definitions for these quantities. Carleson and
Makarov proved that the Brennan’s conjecture is equivalent to prove that for
every configuration (D, «, a,, ..., a,) as above,

) Bi<l.
=1

Using Schiffer’s variation method, Carleson and Makarov proved that the above
inequality holds for m=2.

They also showed in their paper that without loss of generality, we can
consider D to be a simply connected domain as in [V].

Namely, consider the domain O=C\{(—c, 0]U(UX,[0, a,])}, where [0, a,]
is the line segment joining these two points. Let a,=R;e'’s, where —7<8,<
0,<--<Oy<mw and 0<R;<o, N>2. Consider the conformal mappings F;(z),
j=1, ..., N mapping @ onto the domain H=C\(—oo, 0], such that F;(a,)=0,
and lim,..|F;(z)/z|=1, j=1, ..., N. Then

Fi(2)

J

B,=lim

2‘*(1]‘

=|F{(a;| for j;=I, ..., N.

We are going to study the Iim supy...(Z.8;,/+/N), since if this limit is
greater than 1 it follows by Schwarz’s inequality that

y B _ &P 1
ENTEYNVN
N ‘35 N 1
é\/,éw 2N
_ (X B
—\/E,Tv‘

and hence

for ‘N large enough, and thus, by the Carleson-Makarov’s criterion, the Bren-
nan’s conjecture is false.
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From now on, we shall denote by C an absolute positive constant whose
value can change from line to line, and use the notation A=B to mean that
(1/C)A<BZCA for some C.

Remark. Concerning the inequality 25"=1,8,>«/N , for N=2 and a,=a,, it
appears that the largest 8,=pf. occurs when arga,=.22=~7/13 and then 8,=
B:~2/3. Thus, B,+B,=1.33, which is about six per cent less than v/ 2.

2. Preliminaries and related results

Let £ be a region in the complex plane, and I” a set whose elements y are
rectifiable curves in £. Then for a nonnegative Borel measurable function p,
every y has a well-defined p length

LG, 0)={ pldzl,
which may be infinite, and 2 has a p area
AR, p):SSQp"dx dy.
If we introduce the minimum length of the whole set I" as
LT, p)=inf L(y, p),

then we can form the homogeneous expression

LT, pr
A&, o)

The set of all these ratios is conformally invariant, thus so is the least upper
bound. Therefore, we define the extremal length of I" in 2 as

L, py
Aa(l)=sup— 5" oy

where p is subject to the condition 0<A(L2, p)<co.

There are several alternative definitions for 1g(/") obtained by using dif-
ferent normalizations. For instance, 2o(I") is equal to sup,L(I’, p)* when p is
subject to the condition 0<<A(2, p)<1. Similarly, we say that p is admissible
if L(I', p)=1, and define the modulus of I' with respect to 2 as Mp(I")=
inf,A(2, p) for admissible p, then 2o(I") is the reciprocal of the modulus
Mo(I")=@1/2oI")).

The conformal invariance of both Mg(I") and Ao(") is an immediate con-
sequence of the definition.

Let 2 be an open set and let E,, E, be two disjoint sets in the closure of
. Take I' to be the set of connected arcs in 2 which join E, and E,. Then
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the extremal length Ag(") is called the extremal distance between E, and E,
in 2, and we denote it by do(E,, E,).

A quadrilateral is a Jordan region @ together with four points on its boun-
dary. These points divide the boundary into two pairs of opposite sides a, a’
and B, B’. We can choose a, a’ as the base pair and determine the extremal
distance dg(a, a’).

Since the extremal distance is conformally invariant, we can replace Q by
a conformally equivalent rectangle R. We choose the mapping so that the a,
a’ side of R lie on x=0, x=a and the B, B’ sides lie on y=0, y=b.

It is well known, see [AH], that de(a, a’)=a/b, and that do(B, pB')=b/a.
Notice that de(a, a’)Xdo(B, f)=L1.

There are other extremal lengths that can be associated with the configura-
tion formed by £, E, and E,. We could let I'* consist of all y* in £ which
separate E, and E,, the corresponding conformal invariant Ao(/'*) is called the
conjugate extremal distance of E,; and E, with respect to £, and is denoted by
d¥(E,, E,).

In the quadrilateral case, we have the conjugate extremal distance equal
to the reciprocal of the extremal distance. This is the case in all sufficiently
regular cases.

It is well known that every doubly connected region is conformally equiv-
alent to an annulus R, <|z|<R,. If C, and C, denote the two components of
the boundary of an annulus 2, the extremal distance do(C,, C;) is equal
to (1/2x) In(R./R,). The conjugate extremal distance d}(C,, C,) is equal to
2r/In(R,/R,).

The importance of the extremal length in complex analysis derives not
only from its conformal invariance, but also from the fact that it is compara-
tively easy to find lower and upper bounds for it. By definition, any specific
choice of p gives a lower bound for Ao(I"), namely,

LT, p)°
AL, o) -
We pass to list some of the properties of the extremal length that will be

used throughout this paper. For a proof of these properties we refer the reader
to the book “Conformal Invariants” [AH] by Ahlfors.

Aol =

THEOREM 2.1 (The comparison law). If every yeI' contains y'<I"’, then
ANz aI).

As an immediate consequence of the comparison law we obtain the follow-
ing corollary.

COROLLARY 2.1.1. The extremal distance do(E,, E,) decreases when 2, E,, E,
increase.

THEOREM 2.2 (The composition laws). Let 2, and 2, be disjoint open sets.
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Let I'y and I'y consist of rectifiable arcs in £, and £2,, respectively, and let I be
a third set of rectifiable arcs.
1. If every yeI contains y,€1', and y,€1, then

ANz 2+ y).
2. If every y,€I'y and every y.<1'y contains y&1I, then

1 1 1
A=A TATy

THEOREM 2.3 (An Integral Inequality). Let £ be a region in the complex
plane between the lines x=a and x=b. Denote by 0(t) the length of the intercept
of £ with the line x=t. Let E, and E; be those two boundary curves of £ con-
necting the lines x=a and x=b. Then,

1 b d
My(E,, Eq)= >§ X

do(E,, Ey) T Ja 0(x) ’

We pass to describe some related results.

DEFINITION 2.1. Let £ be a simply connected domain and a, b a pair of
points such that b€ and a=. We define the reduced extremal length as
follows.

For ¢>0 let I'. denote the family of all curves joining the e-neighborhoods

of a and b in R, and I, the corresponding family in C. Define,
B=(@; a, b=lim exp {2z[2([')— AL )]},

where A denotes the extremal length. The existence of the limit is a standard
property of A.

Let us now fix one of the points, say b, and consider m distinct points a,,
.o, @ on 02. Denote by §,=B(&2; a,, b). Carleson and Makarov in [CM]
showed that Brennan’s conjecture is equivalent to the statement

EI.BJ=1

for any m and any configuration (2; {a;}, b).

It is important to remark here that the g’s are Mébius invariant, and they
can be expressed in terms of conformal mappings.

Suppose that b=oo and let f, be a conformal map from C\{x: x=<0} onto
Q satisfying f;(c)=c and f;(0)=a,. Suppose also that f, has angular deriva-
tives at 0 and o. Then,

L)
B=TFie
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Let again b= and let f map the upper half plane onto Q satisfying
f@)=z?
as z—oo. Suppose the points x;&R are such that
fxp=a,  [f'(x,)=0,

and the derivative f”(x,) exists. Then

2
B=Trr
Indeed, if ¢ is small, the preimage of {|w—a,|=¢} is like a semicircle of radius
V2¢/1f"(x;)] and the preimage of {|w|=1/¢} is like a semicircle of radius
¢¥/2, Therefore, we have

~ 1 1
A= 9 108'?, .

M= —71? log%—\/_l_'f/;(z’fz)i

and
; 2
=lim e27r[l(f'5)-1(1”€>l—_:_—.
ﬁl JeY ]f//(x])l
Let £, be a simply connected domain such that co=f, and the boundary
I'y consists of a finite number of straight line segments. Let b, ay, ..., a, be

the extreme points of I, that is, the points at which £, makes the full angle.
We assume that b=0, {x: x<0} C£,, and the segment L of [, with endpoint
at b lies on the real axis. Then for every sufficiently small >0 we can con-
struct a fractal set, a “dandelion”, I'(k) as follows.

For j=1, ..., m let [, denote the segment of length % lying on Iy and end-
ing at a,. Define the polygon I',=1I",(k) by replacing each [, by a rescaled
copy of I, so that under rescaling the segment L corresponds to /,. The
polygon I’y has m? extreme points other than b. To obtain I',=1",(k) we repeat
the above procedure with the scale k2% Proceeding with the construction we
define polygons I, I's, ... which converge to some fractal set I'=1"(k). Observe
that if % is small enough, then no intersections occur at any step of the con-
struction. We will call the polygon [, the “initiator” of the fractal set I

There is some relationship between the properties of the harmonic measure
on /' and the B-numbers of the initiator. For a domain £ and >0 let us
denote

logN(p, ¢)

|logp |
where N(p, ) is the maximal number of disjoint discs of radius p and harmonic
measure at least p'**¢. By a theorem in [CM] we have that

7o(e)=Iim sup
p-0
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ro(e)<Ke.

Then we have the following two results:

T__HEOREM 2.4. 1) Let {4} x>0 be the family of dandelions with initiator I,
2,=C\I'}, and {B;} be the B-numbers of I',. Then if

Y ge
=1
for some p>0, then
Kglir?j’nf fg(?s‘lmk(s)gZp.
2) In the opposite derection, let
ra(e)>Ke

for some simply connected domain 2 and €>0. Then, there exists a polygon I,
satisfying

Ms

pEI=1,

Il
-

J

COROLLARY 2.4.1. There exists an absolute constant p such that
m >
Szl

for every configuration (2; b, {a;}).

3. Upper bounds

We are going to concentrate on the following symmetric “dandelions”,

Let a,=e*®*/k*) S, to be the line segment joining 0 and a, for any h=
0, +1, £2, ..., £k and B=(—co, 0].

Let S=\U%-_+S, and ©=C—(SUB). Then @ is a dandelion-like domain
with (2k+1) branches equally spaced in the unit disk, as shown below

Let H=C—B. By the Riemann Mapping Theorem, for each h=0, +1, ...,
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+k, there exists a conformal mapping F,(z): ®—H with the following two
normalizing conditions

@.1 Frlan)=0
and
3.2) liln E"—;Q =1.

Our goal in this section is to obtain estimates for the sum

k
h=2_k‘8h
where
o= Fian) | =lim | D) g o1
—ap |l 2—ay

Let Di={z:|z—a,|<p} and D} ,={z: |z—an|<(1/p)}. Let O®}=[OND},]
——D_;,‘, where p is a small positive number, and h=0, +1, ..., =% as before.

Let H® be the image of 6O} under F,(z). By the normalizing conditions
(3.1) and (3.2), we have that for any positive ¢ there exists a positive p(e), call
it p, such that

{z:121< -;—(1—s>}chF,,(Dlh,,,>c{z Hzl< %(l—l—e)}f\H

and
{z:lz| <|Fi(an)| o=} NHCFu(Dp)C iz 2| <|Fi(an) o+ )} NH
hz hy
S

(T Wmmss,
2 21rc hL i ] I
N |l v

lg : )

[ O R —— 1A’ n2 2r 2
NN, e
Inp lnp+in2  _ . h«

k+1 — ¢ L,

Since F,(2) is a conformal mapping from O&—H, if we let I' be the family
of curves joining dD? and 0D}, in @} by the conformal invariance of the
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modulus we have that M(I", O©)=M("’, H%), where I'’ is the family of curves
joining 0F,(D%) and 0F,(D¥,) in H}.

Our next goal is to get an upper bound for M(I", @%). To do this, we take
the conformal mapping @,(2)=In(z—a,): O—S:, where S:}=0,(O}) turns out
to be a quadrangle as shown above.

First, notice that F,(Z) satisfies the two normalization conditions for a_,,

therefore F_,(z)=F,(Z) and thus
k k
hgkﬁh=2/§1Bh+‘8°'

Let I" be the family of curves connecting the two vertical sides of the qua-
drangle S?. By the conformal invariance of the modulus we have

M(I", @%)=M(T; Sb).
Let I" be the family of curves connecting the horizontal sides of Skt By
the conjugate rule we have
S S
M, S
Therefore, to find a lower bound for M(I', ©}) we simply need to find a

lower bound for M(I°, St). Since we have that M(I', O = M(I"’, H?) the
comparison rule gives us that

M, Sp=

2n
HMh= — -,
= 0+ o)/ (0" — ) [ Fian) )]
which gives a lower for M(I", OF). .
To find an upper bound for M, "=1/(M(I", S*)) we simply need to find
a lower bound for M(I", S») which we will obtain using the Integral Inequality
from Section 2,

M,

MT, spzf4 (lx) dx .

3.1. Data of configuration

In the figure for S} we note several important points and lines. Their
coordinate values and equations are listed below.

For the lines

x

e hz A
lL: y=n+ Pl arccos 5
L hm e®
ly: y= ﬂ+—k+1 +arccos7

ls: y=n+arcsin§l—rﬁ%/f—k+—l)l
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oy i Sinthz/(k+1))
ly: y=—m-+arcsin e .
For the points
hrm hm
A: (A, A)=(In2+Incos XhaD ™t 2<k+1))
LA ATy— __hx o 3hm
A+ (AL, Ay)=(1n2+In cos shin T 2(k+1))
B: (B, By):(ln 2, arcsingn—(ﬁﬂgf}ﬁ—kn)
2
y mr prs hz
B': (B., By)=(In2, —z+-—k+1>
T hx
C:(Csy C=(Inp+In2, 7+ k+1>

: I
C’: (Cs, Cyy=(Inp+In2, —%+}}fi).

It is clear that on the intervals [Inp, Inp+In2] and [In2, —Inp], 6(x)=2x.
Let us split the interval [lnp, —Inp] into four subintervals as follows

I: [Inp, Inp+In2]

hm
II: [ln o+1n2, In2+In cosé@—_{__i)—]

hr
I [m 05 53y 0 In 2]

IV: [In2, —Inp].
On the intervals I and IV we have that
S 1 __In2

0 T 2
and
S 1 e —lnp——ln2'
w 0(x) 2r
Hence

1 1 . —lp
Szo(x)d”gwo(x)d"‘ o

Now we split the problem into two cases since A, will have different signs for
different values of A.

CAse 1. For values of h such that 0<(hAn/(E+1))<2r/3. In this case A,
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=0 and we divide the interval [Inp-+In2, In2] into three pieces:
I: [lnp+In2, 0], II: [0, A,], I1II: TA,, B.].

CASE 2. For values of h such that 2z/3<hn/(k+1)<=. In this case A.
<0 and we divide the interval [Inp+In2, In2] into the following three pieces:

I: [Inp+In2, A.], II: [A,, 0], Ir: [0, B.].
CASE 1. Values of & for which 0<h<2k/3.

hr %Y
t k+1 In2
DN~
C‘)—==:_—’-———’7‘ |
D D (R S So S S S G S G U S S S S —— _-:t-_’_' _____________ = - -
M)
C"'ﬂ‘ }A/ |
p D | g
Inp Inp+In2 _ r
Tt ]
———————————————— o n

As shown in the figure above, we need the coordinate values for the points
D, D’, and M along with the line equations for CD, DA, AB, and A’B’.

D:(o,%+kh—ﬁ), D (0 2”

We will use the slope intercept equation of a straight line y=mx+b. For the
line CD we have the following values for m and b,

76
" —Ilnp—In2
2r hr

b= +7351-

S M (05

Thus,

/6 2r hrm
Y= Thp—tnz *T 3 tEt1-
For the line DA,

_ (=/3)—(hm/2(k+1))
“ In2+Incos(hm/2(k +1))
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b_Z_zr hn
RS
Thus,
_ (=/3)—(hm/2(k+1)) +2ﬂ'+ hw
Y= Tn2+1n cos(hn/2(k +1)) PSR

For the line AB,

(hn-/Z(k +1))—arcsin(sin(hn /(k +1))/2)
In cos(hm/2(k +1))

Thus,
(hzr/Z(k +1))—arcsin(sin(hn/(k+1))/2) . sin(hn/(k+1))

In cos(hn/2(k+1)) x+arcsin 5

(hn/Z(k +1))—arcsin(sin(hz /(% +l))/2)
Incos(hzm/2(k+1))

+r—

For the line A’B’,

_ h=/2(k+1)
" Incos(hm/2(k+1)) "

Thus,

_ hm/2kl) o hm o hw/2kt])

" Incos(hm/2(k+1)) k41 In cos(hm/2(k+1))
On the interval I, 6(x) is the distance between the lines CD and C’D’, which
is given by

—In p—an_x+?

R
= ez T3

0(x)z2( n/6 27:)

Thus

S —l—dng 1 dx
10(x) 1((x/3)/(—=Inp—In 2))x + (47 /3)

—lnp—an 4r
[ lnp i+ 3 ]lnp+ln2
_ —lnp—ln 4r
= /3 ( 3 In n)
_ —lnp—In2 . 4
= /3 In 3

On the interval II, 8(x) is the distance between the lines DA and D’A’, which
is given by
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(x/3)—(hn/2k+1) __ 2x
n2+Incos(hzr/2(k 1)) 3

_ @n/3)—(hr/(k+1))
" In2+In cos(hr/2(k+1))

0(x)=2(1

4r
x4+ ? .
Hence

1 1
Su 6(x) dx:Su((272:/’3)—(h7z'/(k+1))/(1n2—|—ln cos(hm/2(k4+1))))x+(4x/3) dx

__In2+Incos(hrn/2(k+1))
T (2n/3)—(hr/(k+1)

@r/3)—(hr/(k+1)) 47 \In2+1n cos (hn/2(k +1))
X [l“ In2+In cos(ha/20k+1) * T 3 ]0

__In2+4Incos(hr/2(k-+1)) ln(Z:r——(hﬂ:/(le —|—1)))
T @2n/3)—(hw/(k+1) 47 /3
_ In24Incos(hm/2(k+1)) ln(Z—(h/(k—i—l)))
T @2n/3)—(hx/(k+1)) 4/3

In2 3

> _  _In—
2530y

On the interval /11, 6(x) is the distance between the lines AB and A’B’, which
is given by

. —arcsin(sin(hr/(k+1))/2) . sin(hrn/(k+1))
0= costhn/2e+T)) T2 tarcsin 2
_ hz In2 arcsin(sin(hr/(k +1))/2)
k+1 In cos(hrm/2(k +1))
Thus
1 . —arcsin(sin(arn/(k+1))/2) . sin(hr/(k+1)) kr
gm a0 4* ‘Sm( Incos(hn 2k 1)) T 2w tarcsin 2 TR
In 2 arcsin(sin(hz/(k +1))/2) )~1
In cos(hn/2(k +1))
In cos(hr/2(k +1)) [l ( —arcsin(sin(hr/(k+1))/2) .
~ —arcsin(sin(An/(k +1))/2) In cos(hm/2(k +1))
L arcsin sin(hn/(k+1))  hx

2 k+1

In2arcsin(sin(az/(k+1))/2) ]ln 2
Incos(hr/2(k+1))

In2+lncos(an/2(k+1))
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- Incos(hm/2(k+1) T sin(hn/(k+1)  hx
= arcsin(sin(hz/(k+1))/2) Ll“(2”+a’°5‘“ 2 k+1>
hr
—ln(Z:r——}?_*_1 ]

_ In cos(hm/2(k+1)) 1 (1+ arcsin(sin(hz/(k +1))/2))
" —arcsin(sin(hw/(k+1))/2) " 2r—(hzm/(k4+1))

- In cos(hn/2(k+1))
= (hw/(R+1)—2r

In cos(hz/2(k+1))
—2r

Thus, when 0<h<(2/3)k we have that

5
4IIIZ

(W%

5
4 lnz

Incos(hrm/2(k+1)) 4 lni.
—2r 4

Bz 1 —Inp—In2 4  In2
> T
Sc, i) 4*= ns+573

n/3 3
CASE 2. Values of h for which (2/3)k<h<k. In this case we can use a
similar argument to get estimates for our integrals.
Now A,.<0, and as we mentioned before, we can divide the interval [In p-+
In2, In2] into three pieces,

ln%—}—

I:[Inp+In2, A,;] II1: [A,, 0] 1r: [0, B.].

<

hw
Tt 1

]

In2

§

(o]

—Inp

W —

-
S S,
T

=

&

T
!
]

SRR

i
1
!
}
!
!
1
i
1
I
1
I
]
I
i
!
T
I
]

Vi

Inp Inp+In2 _ . khjl

—T

..... —Inp

For intervals I and I/ we can use the lines CE and C’D’ to estimate 6(x)
and from our previous calculation we have

1 _ —lnp—In2 4
SIJ“Sno(x)d"— 25 M3

For interval II] we use the lines EF and D’B’ to estimate 6(x).
The coordinates of the points E, F, and M are
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E:<0’ 297 k+1) F: (mz ”+k+1) M: (0’ k—l—l

and the equation of the line EF is
_m/3 2 hrm
"2 T3 TRy
hence

1 In2 1
Sm 6(x) dngo (/3 /n2x127/3 ¢*

= L

_3In2
T 2z

Therefore, when (2/3)k<h<k we have that

B 1 —Inp—In2 4  3In2
> —
Scx o) PE T a3 M3t

Putting all these results together, we have:

In2.

In2.

Case 1. Values of h for which 0<h<(2/3)k.

-lnp ] —lnp—In2 4 In2 3
>__ 7 =
Sm,, o) ¥ s mgton /31
In cos(hn/2(k+1)) 5 —lnp
T —2r 41“ 4 + 2r
CASE 2. Values of i for which (2/3)k§h§k.
np ] ~lnp —In2 _31513 _lnp
o 42 g gy a2t
These equations give us a lower bound for M(I, S%) and therefore, we have
np €
Sm,, Ok ‘"(p2<1—e>TE:<an>1>

which can be simplified to be

‘Bhge-zx.\.m};p(l/ﬂ(m)dm—Z ne,

This gives us an upper bound for the 8,’s.
In Case 1, we have

‘Bhge(ln p+In2)6ln (4/3)-3In2In(3/2)-Inp

Se(eln(ua)—l)ln p+6ln(4/3)In2-3In(3/2)In2
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S_p“““/:”'l2‘““(4/3)—3111(3/2) )
In Case 2, we have
ﬁhée(lnp+ln2)61n(4/8)-31n21n2-lnp

S‘osln(l./a)—l 26 In(4/3)-3In2
Hence,
In4/3)- 1 -
‘Boépe n(4/3) 126 n¢4/3)-31n(3/2)

k
2 ﬂhé(_g_Zeln(uS)—aln(a/Z) + %26 In(4/3)-31n z)pe In(4/3) -1k
h=1

c (%)slnum -1 b

éCkO.Z'ISSOS s

IA

for some universal constant C independent of .. Thus,
é ﬂh—<_— C _ko.znsosg\/k“
h=k

for £ large enough. Showing that for our symmetric configurations

= Zh=k,Bn

[ B |y,

ratd IV ] S

Therefore, these configurations will not work in an approach aimed to disprove
Brennan’s conjecture.

4. Concluding remarks

In all the calculations made in Section 3, we have used configurations in
which all of the branches are of the same length and they are evenly distributed
in the unit disk. It is still unknown if this will give us the best results for
the upper bound. However, generally speaking, we know that this kind of
symmetric configurations usually give the extreme values. An interesting pro-
blem will be to prove that our configurations give the upper bound for the
sums X%__.B, among all possible configurations, that is, configurations with %
branches having different lengths, and randomly distributed over the unit disk.

Another interesting fact we would like to point out is that, when calculat-
ing the upper bounds for our B,’s, if we choose the best fit in our configura-
tion we have

-lnp 1 an+m2 1 In2+1n cos(hn/2(k+1)) 1 -lnp ]
S dx S -I-S dx
In

me 0 T me 27 in p+ina 27 —2 cos(e?/2) 27

In2 1
+Sln2+ln coscnmi2ck+1yy 2n—(hmw/(k+1))+arcsin(sin(hn/(k+1))/e*)—arccos(e®/2) dx,
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which is, according to our numerical evidence, very close to —3lnp/27. If
this observation can be proved, then we will have

ﬁhige—ﬁxj(uﬂ(xndz—zlnp
__<__e—2x(-31np)/2z—21np
__S_el""
=p.
This leads us to make the following conjecture.

CONJECTURE 4.1. For any configuration similar to the ones described in this
paper, (i.e. the lengths and the angles of the branches may vary) the sum of the
Bn’s is bounded from above by some universal constant C, namely

3 BasC.

he—k
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