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YANG-MILLS HOMOGENEOUS CONNECTIONS
ON COMPACT SIMPLE LIE GROUPS
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1. Introduction

Let M be a compact Riemannian manifold and P a principal G-bundle,
where G is a compact Lie group. Fix a bi-invariant Riemannian metric on G.
Let £, denote the curvature form of a connection 4 on P. A critical point of
the Yang-Mills functional
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is called a Yang-Mills connection. A Yang-Mills connection A is said to be
stable if the second variation of the Yang-Mills functional is non-negative. A
flat connection is a stable Yang-Mills connection. H.T. Laquer [4] proved that
(0)-connection on a compact Lie group is an unstable Yang-Mills connection. A
compact Riemannian manifold M is called Yang-Mills unstable if, for every
choice of G and every principal G-bundle P over M, stable Yang-Mills connection
is always flat. S. Kobayashi, Y. Ohnita and M. Takeuchi [3] classified the
compact simply connected irreducible symmetric spaces of type I which are
Yang-Mills unstable. In their paper, they gave a following question :

Is every simply connected compact simple Lie group Yang-Mills unstable ?
In this paper, we consider an equivariant G-bundle P over a compact connected
simple Lie group L. It is obtained by a Lie homomorphism p: L—G. With
respect to homogeneous connections on P, we get the following :

THEOREM 1. Consider the following three conditions (1), (2), and (3):

(1) p is indecomposable (see § 2 for definition),
(2) Flat homogeneous connections are only (+)-connections,
(3) (0)-connection is a unique non-flat Yang-Mills homogeneous connection.

Then (1) and (2) are equivalent. (3) implies (1).
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Moreover if p(I) contains a regular element of g, then (1) implies (3). In
general, (1) does not imply (3) (see § 3).

THEOREM 2. Assume p(l) contains a regular element of g. Then any non-
flat Yang-Mills homogeneous connection 1s unstable.

2. Proof of theorems

Let L be a compact connected simple Lie group with Lie algebra I. Take
an Ad(L)-invariant inner product <{,> on [. Let G be an another compact con-
nected Lie group with Lie algebra g. Take an Ad(G)-invariant inner product
{(,>ong. Let p: L—G be a Lie homomorphism. We denote the differential
Lie homomorphism of p by the same symbol p. Put

K=LxLDH={l, 1);leL}=L ((, l)~!) and M=K/H.
We define an inner product <,)> on f by
(X, ), (Z, WH=2(KX, Z>+<Y, W)) for X, Y, Z, Wel.
We define an Ad(H)-invariant subspace m of f by
m={X, —X); X&l}.

Then we have:
f=h+m (direct sum).

The induced Ad(H)-invariant inner product on m naturally induces a K-invariant
Riemannian metric on M. The mapping

(a, b)H—ab™*
is an isometry from M onto L. The mapping

m—1; <%X, ~—~%—X>‘—>X

is a linear isometry from m onto I. In this correspondence, we have
(Ad(H), m)=(Ad(L), ).

We define a Lie homomorphism p from H into G by
p:H—G; (1, D—pQ).

Every Lie homomorphism from H into G is obtained in this way. The space
of homogeneous connections on the principal G-bundle P=KX ;G over M is
identified with

Hom,(f, g)={A=Hom(, g); [p(X), AY)]=A(X, Y]) for X, Y&l}.
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by Wang’s theorem ([2, pp. 106-107, Theorem 11.5]), where Hom(l, g) is the
space of linear mappings from the vector space [ to the vector space g. Remark
that Rp is contained in Hom.(l, g). The curvature from £ of a homogeneous
connection 4=Hom(l, g) is an alternative linear mapping from [X{ to g which
is given by

1
20(X, Y)=—Zp([X, YD+[AX), AY)].
In particular, the curvature form £, of tp=Rp is
1
220X, V)=(r"~7 )o(CX, Y1

Hence A=(+1/2)p are flat connections, which are called (+)-connection, re-
spectively. A critical point of the Yang-Mills functional A—||Q||? is called a
Yang-Mills connection. A homogeneous connection 4<Hom,(l, g) is Yang-Mills
if and only if for each Xe&!

LA, AE, X)]=0,

where {E,, ---, E,} is an orthonormal basis of {. In particular, 4=0 is a Yang-
Mills connection, which is called the (0)-connection.

DEFINITION 1. We say that p is indecomposable, if
0= p1+ps 0. I—g: Lie homomorphism s.t. [Im p,, Im p;]=0 (x)
’———>()1=0, p:=p or p;=0, p,=p.
We say that (%) is a decomposition of p.

Since the kernel of p is an ideal of I, p is injective or p=0. If p=0, then
Hom,({, §)=1{0} and (0)-connection is flat. Therefore we may assume that p is
injective.

THEOREM 1. Consider the following three conditions (1), (2), and (3):

(1) p is indecomposable,
(2) Flat homogeneous connections are only the (x)-connections,
(3) The (0)-connection is a unique non-flat Yang-Mills homogeneous connection.

Then (1) and (2) are equivalent. The condition (3) implies (1). Moreover if p(l)
contains a rvegular element of g, then (1) implies (3).

Remark 1. In general, (1) does not imply (3) (see § 3). n
Proof of the first half of Theorem 1. If p=p,+p; is a non-trivial decom-

position of p, then 1/2(p,—p,) is a flat homogeneous connection except the
(£)-connection and (1/2)p, is a non-flat Yang-Mills connection except the
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(0)-connection. Hence (2) implies (1), and (3) implies (1). We show (1) implies
(2). Let A be any flat homogeneous connection. Put

1 1
o=5p+4, pr=5p—A.

Then p=p;+p, is a decomposition of p. Since p is indecomposable, p,=0 or
p1=p. Hence A=(x1/2)p. n

THEOREM 2. Assume p() contains a regular element of g. Then any non-
flat Yang-Mills homogeneous connection 1s unstable.

Proof of the second half of Theorem 1 and Theorem 2. 1t is sufficient to
prove that for each non-flat Yang-Mills connection A=Hom ({, g), there exists
a(=a)=Hom.(, g) such that

(Al) a=0 implies A4=0,
(A2) p=a+(p—a) is a decomposition of p, and p—a+0,
(A3) d%/dt*||2.]1,-0<0, where 2, is the curvature form of A-+#(o—a).

Applying Whitehead’s vanishing theorem of cohomology group ([6, p. 95, Theo-
rem 13]) for the representation (ad-p, g) of [, we have following:
If A, A,Hom({, g) satisfy

(B) [AX), A(Y)]=—[A:,(Y), 4:(X)],
(B2) Gy, v z[pX), [A(Y), A4:(Z)]]1=0, where Sx v,z is the sum over the
cyclic permutations of X, Y, Z,

then there exists 4;eHom;(l, g) such that
[A4:(X), A,(Y)]=A[X, Y]).

Remark that under the condition (Bl), the condition (B2) is equivalent to
Sx.v.zLAX, Y]), A,(Z)]=0. Since p(I) contains a regular element of g,
[A4,, A,] is skew-symmetric automatically. In fact, take Cartan subalgebras t
and %) of [ and g respectively such that p(t)Ch. Then

Lot), 4)]= 4[4, t)H=0.

This implies A4;)Ch by assumption. In particular, [4,(1), 4,)]=0 and
[A,(H), A,(H)]=0 for Het, Since I=Ad(L)t ({1, p. 248, Theorem 6.4]), we get
[4.(X), Ay(X)]=0.

Let A=Hom;.(l, g) be any non-flat Yang-Mills homogeneous connection.
First we prove Sy v, z[0(X), [AY), A(Z)]]=0 using the classification of compact
simple Lie algebras. The vector space

V=IAl=span{XAY ; X, Y}

is an [-module by the f-action:
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(ad 2)YXN\Y)=[Z, XINY+XA[Z, Y].
The space
W=span{[A(X), AY)]; X, Y&}

is an ad(p(l))-invariant subspace of g. We consider the [-homomorphism @ from
V onto W which is defined by

Q:V=INI-W; XAY = [AX), AY)].

Since @ is surjective, V/V,=W as I-modules, where V,=Ker @. On the other
hand, we consider the {-homomorphism ¥ from V into ! which is defined by

U:V=IANl-1; XAY —[X, Y].

Since [, {]=!, ¥ is surjective. We show that the irreducibility of V,=Ker¥.
We denote by I¢, 1€ and p¢ the complexifications of I, t and p respectively.
The complex Lie algebra ¢ is simple. We denote by A the set of nonzero
roots of I¢ with respect to t°. For a€A, there exists a non-zero vector E, (¢
such that

[H, E,J=a(H)E, for all HetC.
We have a direct-sum decomposition :
[C=t‘4+ 2 CE,.
ach

Fix a lexicographic ordering on 1. We denote by d, the highest root of A and
by {ai, -+, a,} the set of simple roots of A. The set

{0o—a; A} #0

is a single point set {d,} or two points set {J;, d.}, and the set consists two
points if and only if [=8&u(m).
In the case where {§,—a;=A}={0,}, we define an I-invariant subspace
V1(o+0,) of V§ by
V1(8o40,)=adU(°)(E;,\Es,),

where U(I°) is the universal enveloping algebra of 1. The highest weight of
V(0,+0,) is 6,+0, and the multiplicity of 9,43, is equal to 1. Hence V,(d,+0,)
is irreducible. By virtue of Weyl’s dimensionality formula ([6, p. 257]), we get

dim [(dim [—3)

dim V1(60+51>: 2

:dim V1 .
Hence V{=V(0,+0,). In particular, V¢ is irreducible so V, is.

In the case where {J,—a;EA}=1{d,, d,}, we define [-invariant subspaces
V1(0,+0,) and V,(0,+0,) of V¢ by
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V(8o +0,)=ad(U())(E;, A Es)),
V1(8y+02)=ad(U(®))(Es,AEs,).

For /=1, 2, the highest weight of V(d,+0;) is 8,+0d; and the multiplicity of
do+0; is equal to 1 Hence V,(0,+0;) (=1, 2) is irreducible. By virtue of
Weyl’s dimensionality formula, we get

dim Vl(ao‘{_al):dim V1(50+52):%dim V1 .
Hence we have
V¢=V(0o+0,)+V(0,+0,) (direct sum).

We denote by W(L) the Weyl group of L. Clearly, there exist ¢,, e,€W(L)
such that

0(00+0,)=—(00+02), 03(0y+0:)=—(0,+0,).

Hence V, is real irreducible, whether {J,—a;=A} is a single point set or two
points set. So we get

Vi=ad(UD))UADCV,.
Hence @ naturally induces [-homomorphism ¢ from V/V, onto W defined by

01 V/Vi=W; AT [AX), AY)],

where XAY is the equivalence class of XAY. From Jacobi’s identity, we have
Gx.v.zad(2)XN\Y =8y v z([Z, XINY+XN[Z,Y])

ZZ@X,Y.z[Z, XINY
=0.

Hence we have
0=¢(8x.v.z ad(Z2)XA\Y)=8x v z[0(Z), [AX), AY)]].

By Whitehead’s vanishing theorem of cohomology group, there exists ac<
Hom,(f, g) such that

a(LX, YD=A4LAX), AV ).
By Jacobi’s identity, we have
S . oLallX, Y1), AZ))=x.r oLLAX), AV, AZ)]1=0.

By Whitehead’s vanishing theorem of cohomology group, there exists I'e
Hom (!, g) such that

[a(X), AY)I=I(X, Y]).
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Since A is Yang-Mills, we have

—STX)=7 HIAE), a(E, X])]
= S LAE,), LAE), AX)]]

4

where ¢ is the eigenvalue of the negative of the Casimir operator of (ad, ).
Hence I'=, that is,

[a(X), AV)]=A[X, YT).

Hence we get (Al). We show a is a Lie homomorphism. From Jacobi’s
identity, we have

%[a(X), a([Z, WD]=[a(X), [AZ), AW)]]
=[la(X), A2)], AW)]+[A(Z), [a(X), AW)]]
=[AX, ZD), AW)]+LAZ), [AX, W])]]

:%a([[X, Z1, WI+0Z, [X, W1D)

=Za(lX, [Z, W1D).

Hence a=Hom,(!, g) is a Lie homomorphism. So, if we put 0=p—a, then p=a+9
is a decomposition of p. The curvature form £ of A is given by 2(X, ¥V)=
(—1/40)([X, Y]). Since A is not flat, we have d+0. Hence we have (A2).
Since [0(X), A(Y)]=0, the curvature form £, of A-+td is given by

2, n="""tax, v,

Hence we have (A3).

3. An example

When p(I) does not contain any regular element of g, the (0)-connection is
not necessarily a unique non-flat Yang-Mills homogeneous connection, even if p
is indecomposable. We show such an example. Put L=SU(m) for m=3. We
define an Ad(L)-invariant inner product <,)> on [ by

X, YD>=—tr(XY) for X, Y l.

The inner product ¢, ) naturally induces a Hermitian inner product <{,) on I°.
Put G=SU(° and p=Ad:L—G. In this case, p(I) does not contain any
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regular element of g. We define an Ad(G)-invariant inner product <, > on g by
(A, B>= 2 <AE,, BE,> for A, Beg,

where {F;},s.sm2-1 is an orthonormal basis of {. We define a homogeneous
connection 4=Hom(l, g) by

(AT )= \/ «{(XY+YX)———tr(XY)1}

2+4
where 1, is the identity matrix (cf. [5]).

Remark 2. 1If m=2, then A=0. n

ProposITION 1. (1) Hom.(l, g)=Rp+RA (orthogonal direct sum),

(2) p is indecomposable,

(3) A (#0) is a non-flat Yang-Mills homogeneous connection, which is a local
minimum on the space of homogeneous connections Hom,(l, g).

Proof. (1) is obtained by simple calculation. (2) is obtained by (1) and
Theorem 1.
(3) The equations

m?—1

m2- m2—
S B, [By X)=—2mX, 'S Bt=—"""1,

and

[AX), LAY), AZ)1IW)

mA([X [y, Z1)w)

+ 5 {tr(Y WY A(X)Z —tr(ZW) A X)Y

—tr(Y AXW)Z +tr(Z AXOW)Y'}

2+4

imply that 4 is a non-flat Yang-Mills homogeneous connection.
Put A(x, y)=(x/2)p+v4 and f(x, y)=4|2(x, y)II>, where Q(x, y) is the
curvature form of A(x, y). The equations

2 iloE, EDIP=4m*(m*—1),
m*(m®—1)(m*—4)
m2+4 ’
mi(m2—1)(m*—4)
4(m?*+4)

Sl ACE, EDIP=

SlLAED, AEN]*=

imply that
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o 2(n 2 _1\2 4
f(x, y)=m¥m 1){ G 4(m2 T 4)
112_4 - mZ _
+m2+4x Y- m 2+4) (2 —1)y? }
Hence f is a local minimum at (0, 1). [ ]
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