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RIEMANNIAN STRUCTURES AND THE CODIMENSION OF

EXCEPTIONAL MINIMAL SURFACES IN Hn AND Rn

MAKOTO SAKAKI

0. Introduction

Let Nn(c) denote the n-dimensional simply connected space form of constant
curvature c. In particular, set Rn=Nn(Q), Sn=Nn(l) and Hn=Nn(-l). Let us
consider a kind of rigidity problem to classify those minimal surfaces in Nn(c)
which are (locally) isometric to minimal surfaces in ΛΓ3(c). Concerning this
problem, several results are known (see [6], [7], [8], [9], [10], [11], [13], [14],
[15], [16]). In the Euclidean case where c—0, Lawson [6] solved this problem
completely (cf. [7, Chapter IV]). He showed that if a minimal surface in Rn

is isometric to a minimal surface in R*, then either M lies in a totally geodesic
R3, or M lies fully in a totally geodesic RG as a special type of minimal surfaces.
Here we say that a subset in Nn(c) lies fully in Nn(c) if it does not lie in a
totally geodesic Nn~l(c). In particular, his result implies that if n=4, n=5 or
n^7, then the Riemannian structures of minimal surfaces lying fully in Rn are
different from those of minimal surfaces in R\ In the previous paper [13], we
showed that if a minimal surface in N\c) is isometric to a minimal surface in
NB(c), then M lies in a totally geodesic N\c}. This result says that the
Riemannian structures of minimal surfaces lying fully in N*(c) are different
from those of minimal surfaces in N*(c). These results suggest that there are
some relations between the Riemannian structures and the codimension of
minimal surfaces in Nn(c).

In [4] Johnson gave a nice class of minimal surfaces in Nn(c) which can
be intrinsically characterized by the generalized Ricci condition. They are
called exceptional minimal surfaces and are related to the theory of harmonic
sequences in [1], [2] and [17] (see [15]).

In this paper we will discuss the relation between the Riemannian structures
and the codimension of exceptional minimal surfaces in Hn and Rn, Our results
are stated as follows:

THEOREM 1. Suppose that an exceptional minimal surface lying fully in Hnι
is isometric to an exceptional minimal surface lying fully in Hnz. Then nι=n2.
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THEOREM 2. ( i ) Suppose that an exceptional minimal surface lying fully
in Rnι is isometric to an exceptional minimal surface lying fully in RH2. Then
either (a) nι=nz, (b) n± is odd and n2=2nι, or (c) nz is odd and n1=2nz.

(ii) The case (b) or (c) of ( i ) may occur: Every exceptional minimal surface
lying fully in R2m~ί is locally isometric to an exceptional minimal surface lying
fully in

Remark, ( i ) Theorem 1 says that if n^n^ then the Riemannian structures
of exceptional minimal surfaces lying ful ly in Hnι are different from those of
exceptional minimal surfaces lying fully in Hnz.

(ii) See Corollaries 6.1 and 6.2 of [4] for the rigidity of exceptional minimal
surfaces lying fully in Nn(c) among all exceptional minimal surfaces lying ful ly
in Nn(c).

(iii) Theorem 1 is a generalization of Theorem 2 of [11].
(iv) The spherical case is treated in [1], [8] and [15] as pseudo-holomorphic

or superconformal minimal surfaces in the sense of [1] and [2].

1. Exceptional minimal surfaces

In this section we follow [4] and recall exceptional minimal surfaces.
Suppose that M is a minimal surface lying fully in Nn(c). Let the integer m
be given by n—2m—1 or 2m, and let indices have the following ranges:

Let eA be a local orthonormal frame field on Nn(c), and let ΘA be the
coframe dual to eA. Then dθA—ΣBωAB/\SB) where ωAB are the connection
forms on Nn(c).

Suppose that e3 is a local orthonormal frame field on M and that the frame
§A is chosen so that on M, ej — e^ and ea are normal to M. When forms and
vectors on Nn(c) are restricted to M, let them be denoted by the same symbol
without tilde: ΘA=ΘA\M, ωAB=ωAB\M and eA=eA\M. Then ωaj=Σkhajkθk,
where hajk are the coefficients of the second fundamental form of M.

Let TXM and TxN
n(c) denote the tangent spaces of M and Nn(c), respec-

tively, at a point x. Curves on M through x have their first derivatives at x
in TXM, but higher order derivatives will have components normal to M. The
space spanned by the derivatives of order up to r is called the r-th osculating
space of M at x, denoted T{

x

r)M.
The r-th normal space of M at x, denoted Nor^r)M, is the orthogonal

complement of T^r)M in T^r+1)M. At generic points of M, the dimension of
Norir)M is 2 when l<,r^m—2, and the dimension of Norim~1}M is 1 or 2,
depending on whether n is odd or even. Those normal spaces that have
dimension 2 are called the normal planes of M. Let βn denote the number of
normal planes possessed by M at generic points: βn — m—2 if n=2m — l, and
βn — m — l if n = 2m.
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Choose the normal vectors ea so that Norir)M is spanned by {ezr+ι, βzr+z} >
where l^r^βn When n — 2m— 1, Norim"υM is spanned by {^m-iί Set
φ—θ^iθz. Then there are //« such that Ha = hall-\-ihal2 for α— 3 and 4, for
each r with 2^r^βn

where α— 2r+l and 2r+2, and when n— 2m— 1

(see [4], cf. [3]), which correspond to the higher fundamental forms of M.
The r-th normal plane, Nor£r)M, of M is called exceptional if Hlr+ι+HL+2

=0. The minimal surface M is called exceptional if all of its normal planes
are exceptional. Note that when n— 2m— 1, Nor(

x

m~1}M is a line, not a plane,
and the notion of exceptionality does not apply. So, in particular, every minimal
surface in N\c) is exceptional.

See [15] for the relation between exceptional minimal surfaces in Sn and
the theory of harmonic sequences in [1], [2] and [17].

Exceptional minimal surfaces are intrinsically characterized in Theorems A
and B of [4], which is a generalization of the Ricci condition for minimal
surfaces in N*(c) (see [5, Theorem 8]). So exceptional minimal surfaces lying
fully in Nn(c} may be seen as natural generalizations of minimal surfaces in
N\c), in particular when n is odd.

Examples of exceptional minimal surfaces can be constructed as in Remark
3 of [15].

2. A lemma

For a 2-dimensional Riemannian manifold (M, ds2), let K and Δ denote the
Gaussian curvature and the Laplacian of (M, ds2}, respectively. For each ^^0,
set

4§=l/2, Al=c-K,
( 1 )

Ac

PlAlog(Λc

p)-{-Λc

p/Λc

p_l-2(p-{-l)K^> if Ae

p>0,

0, otherwise,

(cf. [4]). Suppose that Ae

p>0 for l^p^m-1 and the metric (Ac

m^l/mds2 is
flat. Then

or equivalently,

(2) Δ log(Ac

m_1)=2mK.

Then we have the following:
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LEMMA. For O^r^ra— 1 and pl>2m,

AC _ / AC \2/ AC
-τlτn,-l+r — \ <* m-ij /^m-l-

(3)

Proof. The first identity (3) is true for r=0. By (1) and (2) we obtain

So, (3) holds for r=l. Next suppose that (3) holds for r and r+1 with
O^r^m— 3. Then by (1), (2) and the assumption,

By induction, (3) is true from ^_χ to ^2m-2. Then by (1) and (2),

Thus by (1) we have Ac

p— 0 for p^2m. q.e.d.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Let dsz be the induced metric and let Ap1 be as in
(1). By Theorem A of [4], it is easy to see that nι—nz if both W i and n2 are
even. So we assume that n1=2mί—l. Then by Theorem A of [4], Ap1^ for
l^p^ml—l with equality only at isolated points, and the metric (Am\-ι)ί/mιds2

is flat on
1>0 for

which is M minus isolated points. Then Lemma is valid on M* for m— mlt

By the lemma, Apl>Q for l<p<2m1-2 and A^-^O on M*. So by Theorem
A of [4], we find that n2=2m2 is impossible. If n2— 2m2— 1, then as above, we
have Ap^O for l<^p<L2m2— 2 and ^4ifm2-i<0 on some open dense subset, which
is possible only when Wι= m2. q.e.d.

0/ Theorem 2. (i) Let ί/s2 be the induced metric and let A°p be as
in (1). We assume that nl— 2ml — 1 and n2— 2m2. Then, using Theorem A of
[4] and Lemma as in the proof of Theorem 1, we have A°p>0 for 1^^^2m!— 2
and Azmί-ι=Q on some open dense subset. As n2— 2m2, by Theorem A of [4],
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we have m2=2m1 — l=nl. By the same argument as in Theorem 1, we can see
that n^ — Ui if both Πι and nz are even, or both nl and nz are odd.

(ii) Let M be an exceptional minimal surface lying fully in R2™-1. Let ds2

be the induced metric and let Λ°p be as in (1). Using Theorem A of [4] and
Lemma as above, we have AQ

P>0 for l<^p<^2m— 2 and J4gm_1=0 on

; Λ°p>0 for l^p^m-

which is M minus isolated points. By Theorem B of [4], we find that
(M**, ds2) is locally isometric to an exceptional minimal surface lying fully in
#2 ( 2 m~υ. q.e.d.

4. A question

There are minimal surfaces lying ful ly in Rnι which are isometric to
minimal surfaces lying fully in Rn* with niΦΠi (see [7, Chapter IV], cf. Theo-
rem 2), and there are minimal surfaces lying ful ly in Snι which are isometric
to minimal surfaces lying fully in Sn* with n^Φn^ (see [8] and [15]). But in
the hyperbolic case, no such examples are known (cf. [13] and Theorem 1). So
we shall ask the following:

QUESTION. Are there any minimal surfaces lying ful ly in Hnι which are
isometric to minimal surfaces lying ful ly in Hn* with

If the answer to this question is negative, then it would mean that the
difference of the dimension is (locally) essential in the hyperbolic metric, with
respect to the Riemannian structures of minimal surfaces.
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