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RIEMANNIAN STRUCTURES AND THE CODIMENSION OF
EXCEPTIONAL MINIMAL SURFACES IN H* AND R"

MAKOTO SAKAKI

0. Introduction

Let N™(¢) denote the n-dimensional simply connected space form of constant
curvature ¢. In particular, set R*"=N"0), S"=N"*(1) and H"=N"(—1). Let us
consider a kind of rigidity problem to classify those minimal surfaces in N?(c)
which are (locally) isometric to minimal surfaces in N3(¢). Concerning this
problem, several results are known (see [6], [7], [8], [9], [10], [11], [13], [14],
[15], [16]). In the Euclidean case where ¢=0, Lawson [6] solved this problem
completely (cf. [7, Chapter IV]). He showed that if a minimal surface in R”
is isometric to a minimal surface in R?® then either M lies in a totally geodesic
R?, or M lies fully in a totally geodesic R° as a special type of minimal surfaces.
Here we say that a subset in N*(c¢) lies fully in N"(¢) if it does not lie in a
totally geodesic N""!(¢). In particular, his result implies that if n=4, n=5 or
n=7, then the Riemannian structures of minimal surfaces lying fully in R™ are
different from those of minimal surfaces in R®. In the previous paper [13], we
showed that if a minimal surface in N*(¢) is isometric to a minimal surface in
N%c), then M lies in a totally geodesic N®(¢c). This result says that the
Riemannian structures of minimal surfaces lying fully in N*%() are different
from those of minimal surfaces in N3(c). These results suggest that there are
some relations between the Riemannian structures and the codimension of
minimal surfaces in N"™(c).

In [4] Johnson gave a nice class of minimal surfaces in N?®(¢) which can
be intrinsically characterized by the generalized Ricci condition. They are
called exceptional minimal surfaces and are related to the theory of harmonic
sequences in [17, [2] and [17] (see [15]).

In this paper we will discuss the relation between the Riemannian structures
and the codimension of exceptional minimal surfaces in H® and R®. Our results
are stated as follows:

THEOREM 1. Suppose that an exceptional minimal surface lying fully in H™
is isometric to an exceptional minimal surface lying fully in H". Then n,=n,.
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THEOREM 2. (i) Suppose that an exceptional minimal surface lying fully
in R™ is isometric to an exceptional minimal surface lying fully in R™. Then
either (a) ny=mn,, (b) n, is odd and n,=2n,, or (c) n, is odd and n,=2n,.

(ii) The case (b) or (c) of (i) may occur: Every exceptional minimal surface
lying fully in R*™"' is locally isometric to an exceptional minimal surface lying
Sfully in R*GE™-D,

Remark. (i) Theorem 1 says that if n,# n,, then the Riemannian structures
of exceptional minimal surfaces lying fully in H™t are different from those of
exceptional minimal surfaces lying fully in H"2.

(ii) See Corollaries 6.1 and 6.2 of [4] for the rigidity of exceptional minimal
surfaces lying fully in N"(¢) among all exceptional minimal surfaces lying fully
in N*(¢).

(ili) Theorem 1 is a generalization of Theorem 2 of [11].

(iv) The spherical case is treated in [1], [8] and [15] as pseudo-holomorphic
or superconformal minimal surfaces in the sense of [1] and [2].

1. Exceptional minimal surfaces

In this section we follow [4] and recall exceptional minimal surfaces.
Suppose that M is a minimal surface lying fully in N*(¢). Let the integer m
be given by n=2m—1 or 2m, and let indices have the following ranges:

1<7, k<2, 3ga<n, 1<A, B<n.

Let &, be a local orthonormal frame field on N™(c), and let §4 be the
coframe dual to &,. Then df,=23 3.3\l where @.5 are the connection
forms on N™(c).

Suppose that e, is a local orthonormal frame field on M and that the frame
¢4 is chosen so that on M, &,=e, and 2, are normal to M. When forms and
vectors on N™(c) are restricted to M, let them be denoted by the same symbol
without tilde: 0,=0,|y, wip=&inly and e,=84|y. Then @,;=23,h.;04,
where h,;, are the coefficients of the second fundamental form of M.

Let T.M and T .N™(c) denote the tangent spaces of M and N"(c), respec-
tively, at a point x. Curves on M through x have their first derivatives at x
in T,M, but higher order derivatives will have components normal to M. The
space spanned by the derivatives of order up to » is called the 7-th osculating
space of M at x, denoted T{" M.

The r-th normal space of M at x, denoted Nor({”M, is the orthogonal
complement of T(WM in T{*PM. At generic points of M, the dimension of
Nor{”"M is 2 when 1<r<m—2, and the dimension of Nor{™ "M is 1 or 2,
depending on whether #n is odd or even. Those normal spaces that have
dimension 2 are called the normal planes of M. Let B, denote the number of
normal planes possessed by M at generic points: B,=m—2 if n=2m—1, and
Ba=m—1 if n=2m.
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Choose the normal vectors e, so that Nor{” M is spanned by {es .1, €sr.2},
where 1<r<f,. When n=2m—1, Nor{® "M is spanned by {esm-i}. Set
¢=0,+1:0,. Then there are H, such that H,=h,+ihs. for =3 and 4, for
each r with 2<r<8,

Hyr @4, 501+ Hop g, 0r=H,$

where a=2r+1 and 2r42, and when n=2m—1
HZm-sw2m-1,Zm-3+Hzm—zC02m-1,2m-2:H2m-1¢

(see [4], cf. [3]), which correspond to the higher fundamental forms of M.

The 7-th normal plane, Nor{™ M, of M is called exceptional if H% , ,+H% ..
=0. The minimal surface M is called exceptional if all of its normal planes
are exceptional. Note that when n=2m—1, Nor{™ VM is a line, not a plane,
and the notion of exceptionality does not apply. So, in particular, every minimal
surface in N3(¢) is exceptional.

See [15] for the relation between exceptional minimal surfaces in S™ and
the theory of harmonic sequences in [1], [2] and [17].

Exceptional minimal surfaces are intrinsically characterized in Theorems A
and B of [4], which is a generalization of the Ricci condition for minimal
surfaces in N3(c) (see [5, Theorem 8]). So exceptional minimal surfaces lying
fully in N™(¢) may be seen as natural generalizations of minimal surfaces in
N?(c), in particular when 7 is odd.

Examples of exceptional minimal surfaces can be constructed as in Remark
3 of [15].

2. A lemma

For a 2-dimensional Riemannian manifold (M, ds?), let K and A denote the
Gaussian curvature and the Laplacian of (M, ds?), respectively. For each ¢=<0,
set

(L)

¢=1/2, Afi=c—K,
y { ASlAlog(Ay)+ A/ Ao —2(p+1DK], if A3>0,
e 0, otherwise,

(cf. [4]). Suppose that A5>0 for 1<p<m—1 and the metric (A%_;)"™ds? is
flat. Then
K 1

Aoy oA,y A log{(Aq- )™ =0,

or equivalently,
(2) Alog(As_)=2mK.

Then we have the following:
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LEMMA. For 0<r<m—1 and p=2m,
A rir=(A%1)"/ Af-ir,
Afm1=4c(A% )2, A5=0.

(3)

Proof. The first identity (3) is true for »=0. By (1) and (2) we obtain
An=A%_1[A log(A%_ )+ A%t/ Afoe—2mK=(A%_1)"/ Atz

So, (3) holds for »r=1. Next suppose that (3) holds for » and r+1 with
0<r<m—3. Then by (1), (2) and the assumption,
At irar={(An-1)"/ A -r-2} [24 log(A%_1)—A log(Af—r-2)
A _r1/ Ay s—2(m+r+1)K ]
={(A%-1)"/ Atar o} [ASr 1/ Afur s — A log(Afr ) +2(m—r—1K]
={(A%-1)"/ A r-at (Af-r-2/ A s)
=(A%-1)"/ Anres.
By induction, (3) is true from A%_; to ASn_.. Then by (1) and (2),
Afm_1=2(A%_1)’[24 log(A%-)+2A,—22m—1)K]
=4c¢(A%-1)*<0.
Thus by (1) we have A5=0 for p=2m. q.e.d.

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Let ds® be the induced metric and let Az be as in
(1). By Theorem A of [4], it is easy to see that n,=n, if both #n, and n, are
even. So we assume that n,=2m,—1. Then by Theorem A of [4], A3'=0 for
1<p<m,—1 with equality only at isolated points, and the metric (Az}-1)"/™ds*
is flat on
M*={xeM; Az'>0 for 1<p<m,—1},

which is M minus isolated points. Then Lemma is valid on M* for m=m,.
By the lemma, A3'>0 for 1<p=<2m,—2 and Azy,-,<0 on M*. So by Theorem
A of [4], we find that n,=2m, is impossible. If n,=2m,—1, then as above, we
have Az'>0 for 1=p<2m,—2 and Azn,-1<0 on some open dense subset, which
is possible only when m,=m.. q.e.d.

Proof of Theorem 2. (i) Let ds® be the induced metric and let A} be as
in (1). We assume that n,=2m,;—1 and n,=2m,. Then, using Theorem A of
[4] and Lemma as in the proof of Theorem 1, we have A3>0 for 1<p<2m,—2
and A, .,=0 on some open dense subset. As n,=2m,, by Theorem A of [4],



EXCEPTIONAL MINIMAL SURFACES 479

we have m,=2m;,—1=n,. By the same argument as in Theorem 1, we can see
that n,=mn, if both n, and n, are even, or both n, and n, are odd.

(i) Let M be an exceptional minimal surface lying fully in R*™"!. Let ds®
be the induced metric and let A} be as in (1). Using Theorem A of [4] and
Lemma as above, we have A},>0 for 1<p<2m—2 and A},_,=0 on

M**={xeM; A}>0 for 1<p<m—1},

which is M minus isolated points. By Theorem B of [4], we find that
(M**, ds®) is locally isometric to an exceptional minimal surface lying fully in
R2em-n, g.e.d.

4. A question

There are minimal surfaces lying fully in R™ which are isometric to
minimal surfaces lying fully in R with n,#n, (see [7, Chapter IV], cf. Theo-
rem 2), and there are minimal surfaces lying fully in S™ which are isometric
to minimal surfaces lying fully in S™ with n,##n, (see [8] and [15]). But in
the hyperbolic case, no such examples are known (cf. [13] and Theorem 1). So
we shall ask the following :

QUESTION. Are there any minimal surfaces lying fully in H"t which are
isometric to minimal surfaces lying fully in A" with n,#n,?

If the answer to this question is negative, then it would mean that the
difference of the dimension is (locally) essential in the hyperbolic metric, with
respect to the Riemannian structures of minimal surfaces.
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