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UNICITY THEOREMS FOR MEROMORPHIC

FUNCTIONS THAT SHARE THREE VALUES

HONG-XUN Yl

This paper studies the problem of the uniqueness of meromorphic functions
that share three values. The results in this paper improve some theorems
given by H. Ueda, Shou-Zhen Ye and Hong-Xun Yi. Examples are provided to
show that our results are sharp.

1. Introduction and main results

Let / and g be two nonconstant meromorphic functions in the complex
plane. If / and g have the same β-points with the same multiplicities, we say
/ and g share the value a CM. (see [1]). It is assumed that the reader is
familiar with the basic notations and fundamental results of Nevanlinna's theory
of meromorphic functions, as found in [2]. It will be convenient to let E
denote any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence. The notation S(r, f) denotes any quantity
satisfying

S(r, f)=o(T(r, f)) (r-*™,r£E).

H. Ueda proved the following theorem.

THEOREM A (see [3]). Let f and g be two distinct nonconstant entire func-
tions such that f and g share 0, 1 CM., and let a be a finite complex number,
and aφO, 1. // a is lacunary for f, then 1—a is lacunary for g, and

In [4] the present author proved the following result which is an improve-
ment of the above result.

THEOREM B. Let f and g be two distinct nonconstant entire functions such
that f and g share 0, 1 CM., and let a be a finite complex number, and aφQ, 1.
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If δ(a, /)>l/3, then a and I—a are Picard exceptional values of f and g res-
pectively, and

(f-a)(g+a-l)=a{l-a).

Recently Shou-Zhen Ye extended the above theorems to meromorphic func-
tions, and proved the following theorems.

THEOREM C (see [5]). Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0, 1, oo CM., and let a be a finite complex
number, and aφΰ, 1. //

δ(a, f)+δ(oo, / ) > A ,

then a and I—a are Picard values of f and g respectively, and also oo is so, and

THEOREM D (see [5]). Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0, 1, oo CM., and let au a2, ••• , ap be p (2^1)
distinct finite complex numbers, and ajφO, 1 (/=1, 2, •- , p). If

ΣKa,, f)+δ(oo,

then there exists one and only one ak in alf a2, ••• , ap such that ak and l — ak

are Picard values of f and g respectively, and also oo is so, and

(f-ak)(g+ak-l)=ak(l-ak).

In this paper we improve the above theorems and obtain the following
results.

THEOREM 1. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0, 1, oo CM., and let a be a finite complex number, and
aφO, 1. If

N(r, —^—Wr(r, f)+S(r, f)
\ j — a '

and

N(r, f)ΦT(r, f)+S(r, f),

then a and I — a are Picard values of f and g respectively, and also oo is so, and

(f-a)(g+a-l)=a(l-a).

By Theorem 1 we immediately obtain the following result which is an im-
provement of Theorems A, B, C and D.
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THEOREM 2. Let f and g be two distint nonconstant meromorphtc functions
such that f and g share 0, 1, oo CM., and let a be a finite complex number, and
aφO, 1. // δ(a, / )>0 and <5(co, /)>0, then a and I—a are Picard values of
f and g respectively, and also oo is so, and

Example 1. Let f(z)=(e*z+l)/{ez+l), g(z)=(e~2z+l)/(e-z+l), a=2. It is
easy to see that / and g share 0, 1, oo CM., and

Nir, f)ΦT(r, f)+S(r, f)

and δ(oo, /)=l/2>0. Noting

we have

and δ(a, /)=0. (/—α)(^+α—l)^α(l —α) is evident.

Example 2. Let /U)=2/(l+e*), £θ)=2/(l+<?-ε), α=2. It is easy to see
that / and g share 0, 1, oo CM., and

N(r, f)=T(r, f)+S(r, f)

and δ(oo, /)=0. Noting

we have

( ^ ) r , f)+S{r, f)

and ί(α, /)=l>0. (f-a)(g+a-l)φa(l-a) is evident.

Example 3. Let /O)=l/(^+l), ^)=l/(e""+l), α=2. It is easy to see
that / and g share 0, 1, oo CM., and

N(r, /)=T(r,

and 3(oo, /)=0. Noting

we have

( )=7'(r, f)+S(r, f)
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and δ(a, / )=0. (f—a)(g+a — l)φa(l — a) is evident.

The above examples show that Theorem 1 and Theorem 2 are sharp.

2. Some lemmas

The following lemmas will be needed in the proof of our theorems.

LEMMA 1. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0, 1, oo CM., then

eq-l g- g -l

where p and q are entire functions such that ep^l, eq^l and eq~p^l, and

T(r, g)+T{r, ep)+T{r, eq)=O(T(r} /)) ( r £ £ ) .

Proof. By assumption we have with two entire functions a and β,

f=e«-g and f-l^e^(g-l).

Since f^g, then ea^l, eβ^l and eβ~a^l. Setting p=β—a and q=β, we have
and eq~p^l. Thus from this we get

e'q~l

By the second fundamental theorem, we have

T(r, g)<N(r, \)+N(r, -zτ)+N(r, g)+S(r, g)

= N(r, j)+N(r, -rzϊ)+N(r, f)+S(r, g)

<3T(r, f)+S(r,g).

Thus from this we get

T{r, Φ)=T{r, e?)<T(r, f-l)+T(r, g

<4T(r, f)+S(r,g),

T(r, e<-p)=T(r, ea)^T(r, f)+T{r, g)+O{\)

<4T(r, f)+S(r,g),

T(r, ep)=T(r, eq-^-^)<T(r, e")+T(r,

<8T(r, f)+S(r,g).
Hence
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T(r, g)+T(r, ep)+T(r, e*)=O(T(r, /))

This completes the proof of Lemma 1.

LEMMA 2. Let f and g be two nonconstant meromorphic functions, and let
clf c2 and cz be three nonzero constants. If

then

T{r, f)<N(r, j)+R(r, -)+N(r, f)+S(r, / ) .
J o

Proof. By the second fundamental theorem, we have

T(r, f)<N(r, j)+R(r, ( / " --)'') +N(r, f)+S{r, f)

, j)+N(r, j)+N(r, f)+S(r, /),

which proves Lemma 2.

LEMMA 3 (see [6, Lemma 4]). Let p(z) be a nonconstant entire function, then

T(r, p')=o(T(r, e*))

In order to state Lemma 4, we introduce the following notations.
Let / be a meromorphic function. We denote by nx{χ, f) the number of

simple poles of / in \z\^r. Nx{r, f) is defined in terms of nx(r, f) in the
usual way. We further define

N*(r, f)=N(r, β-N^r, f).

In the same way we can define N2(r, 1//) and N2(r, l/(/—1)).

LEMMA 4. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0, 1, oo CM., then

N2(r, f)+N2(r, j)+N,(r9 j ^ ) = S(r, /).
j

Proof. By Lemma 1 we have

where p and q are entire functions such that epΞfcl, eq^l and eq~p^Ξl, and

T(r, g)+T(r, ep)+T(r, έ*)=O(T(r, /)) (r£E).

If eq=c, where c (φO, 1) is a constant, then we have N(r, l / / ) = 0 . If eq
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is not a constant, let {zn} be all the roots of /=0 with multiplicity>2, then
{zn} are the roots of (eq—l)'=q'eq=0. Thus

N2(r, γ)^2N(r, -V)^

Again by Lemma 3, we deduce

N2(r,

If ep^c, where c (Φθ, 1) is a constant, then we have N(r, /)=0. If ep is
not a constant, let {zn} be all the roots of l//=0 with multiplicity^, then
{zn} are the roots of (ep-iy=p'ep=0. Thus

r, -~7)£2T(r, ί0+0(1).

Again by Lemma 3, we have

N,(r,f)=S(r,f).
Note t h a t

JKΛ" ep-l '

If eq-p=c, where c (Φθ, 1) is a constant, then N(r, l/(/—1))=0. If βς""p is not
a constant, let {zre} be all the roots of /—1=0 with multiplicity ^2, then {zn}
are the roots of (eq-p-iy=(q'-p')eq-p=0. Thus

N2(r, -γ—A^2N(r, —,——)^2T(r, ^)+2T(r, ^0+0(1).

Again by Lemma 3, we have

From the above three equalities, we obtain

N2(r, f)+N2(r, ^)+N2(r, -.Λy
V / / \ / - I

which proves Lemma 4.

3. Proof of Theorem 1

By the assumption, from Lemma 1 we have
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where p and q are entire functions such that ev^l, eqφl and eq~p^l, and

(2) T(r, g)+T(r, ep)+T(r, eq)=O(T(r, /)) (r£E).

We discuss the following four cases.
a) Suppose that ep=Ξc(φ0, 1).
By (1) we have

eq—1
( 3 ) f=τ=r
and

(4) / - f l = ^ ~ 1 ~ ^ " n

C JL

If -l-a(c-l)Φθ, from (4),

which contradicts the assumption of Theorem 1. Then — 1 — a(c—1)=0 and
(α—l)/α. Again by (1), we obtain

and

Thus a and 1 —α are Picard values of / and g respectively, and also °o is so,
and

{f-a){g+a-l)=a{l~a).

b) Suppose that eq==c(Φθ, 1).
By (1) we have

Thus
N{r, f)=T(r, f)+S(r, / ) ,

which contradicts the assumption of Theorem 1.
c) Suppose that eq~p=c (ΦO, 1).
By (1) we have

, cep-l , c-1

Thus

N(r, /)=T(r,

which is again a contradiction.
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d) Suppose that none of ev, eq and eq~p are constants.

It is clear that p'^Q, q'^0 and p'^q1'. By Lemma 1 and Lemma 3, we have

(5) T{r, p')+T(r, q')=S(r, / ) .

Set

From (5) and (6) we obtain Λ έ̂O, 1, and

T(r, h)=S(r, / ) .
If

by integration, we have

where cx is a constant, and CiΦO. From (6) and (7), we obtain

q'

Again by integration, we get

c1+e-q=c2e

where c2 is a constant, and c2Φθ. Thus

By Lemma 2, we obtain

T(r, e-η=S(

which is impossible. Hence

From (1), we have

(8)

Set

then

F Q



308 HONG-XUN YI

__ q\h-l)-h'

~ f-h

and hence

(^ 1 {F'/F)-q>
κ ' ~f-h q'{h-\)-h'm

From (9) we get

(10) m(r, -jLj-^m(r, ~r)+S(r, f)=S(r, f)

and

(11)

Again from (1),

and

Thus

(12)

From (6) and (8), we

JV.(r,

we have

8'
g

g'U-8)
g(g-i)

obtain

1

7-A
) = S(r,/).

g-i

q'ev-p'e«+(p'-q')

(e« -lXβ'-l)

ep-l

(13) - ί 0 ' ( / - A ) = ^ e P - ^

By (12) and (13), we get

(14) -p'{f-h)=βg}g^y

Again by Lemma 4 and (11), we have

(15)

where N0(r) denotes the counting function of the zeros of f—g that are not
zeros of g and g—1. From (10) and (15), we obtain

T(r, f)=T(r, f-h)+S(r, f)
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= N(r, -JA+N0(r)+S(r, /).

Thus

(16) T(r, f)-N(r, ~) = N0(r)+S(r, /).

In the same manner as above, we have

(17) T(r, g)-N(r, jτ)=N0(r)+S(r, f).

By the second fundamental theorem, and using (16), we obtain

T(r, f)+T(r, g)<T{r, f)+N(r, j)+

-N(r, -jή+S(r, f)

= N(r, j)+N(r, -^ΐ)+N(r, g)+N0(r)+S(r, f)

, g)+S(r, f)

<T(r, f-g)+N(r, g)+S(r, f)

<m(r, f)+m(r, g)+N{r, f-g)+N(r, g)+S(r, f)

£m(r, f)+m(r, g)+N(r, f)+N(r, g)+S(r, f)

= T{r, f)+T(r, g)+S(r, /).
Thus

(18) T(r, f)+T(r, g)=N(r, -)+N(r, -^j)+N(r, g)+N0(r)+S(r, f).

Again by the second fundamental theorem, and using (17) and (18), we have

2T(r, f)<N(r, -Λ+N(r, τ^r)+N(r,

+N(r, f)-N(r, jr)+S(r, f)

+N(r, g)+N0(r)-T(r, g)+S(r, f)

=T{r, f)+N(r, ~j^)+S(r, f)
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<2T(r, f)+S(r, f).
Thus

N(r, - ^ - ) = T ( r , / ) + S ( r , / ) ,

which contradicts the assumption of Theorem 1.
This completes the proof of Theorem 1.

4. Applications of Theorem 1

For any set 5 and any meromorphic function / let

Ef(S)=υ {z\f(z)-a=Q\,

where each zero of f—a with multiplicity m is repeated m times in Ef(S)
(see [9]).

Recently the present author corrected a result of Gross and Yang [11] and
proved the following theorems.

THEOREM E (see [10]). Let S1={aι, a2) and S2={blt b2) be two pairs of
distinct elements with aι~\-a2—bι

Jt~b2 but aγa2φbγb2, and let S3~{°o}. Suppose
that f and g are two nonconstant meromorphic functions satisfying Ef(Sj)=Eg(Sj)
for ; = 1, 2, 3. Then N(r, f)=S(r, f) and

T(r, /)=T(r, g)+S(r, / ) .

THEOREM F (see [10]). //, in addition to the assumptions of Theorem E,
d(c/2, /)>l/5, where c—aλ-\-a2y then f and g must satisfy exactly one of the
following relations:

( i ) / = * ,
(ii) /+gΞΞα1 + α2,
(iii) (f—c/2Xg—c/2)=n±((a1 — a2)/2)2. This occurs only for (a1-~a2)

2+(bι-
W = 0 .

THEOREM G (see [10]). //, in addition to the assumptions of Theorem E,

and d(c/2, /)>0, where c=aι~\~a2, then the conclusions of Theorem F hold.

Applying Theorem 1, we immediately obtain the following result which is
an improvement of Theorem F and Theorem G.

THEOREM 3. //, in addition to the assumptions of Theorem E, δ(c/2, /)>0,
where c—a1

Jra2} then the conclusions of Theorem F hold.
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Proof. By Theorem E we have

N(r,f)ΦT(r,f)+S(r,f).

Again by δ(c/2, /)>0, we also have

(20) N(r, j~j2)*Πr, f)+S(r, f).

Let

F= (/-^)2-((Qi-Q2)/2)2 (g-c/2)8-((fli-fl»)/2)8

( ( 6 W / 2 ) f ( ( ) / 2 ) a ' ( ( ^ W / 2 ) 2 ( ( α α ) / 2 ) 2 '

If F = G, it is obvious that f=g or /+£E=fli + a2. Next, assume that
By Ef(Sj)=Eg(Sj)U=l, % 3), we know that F and G share 0, 1, oo CM.

From (19) and (20), we have

N(r, F)*T(r, F)+S(r, F)
and

N(r, -^i—)^=T(r, F)+S(r, F),

where

-((fli-02)/2)2

{{bb)/2γ(iaaύ/2γ ΨΌ' '

By Theorem 1, it follows that α is a Picard value of F, and hence c/2 is a
Picard value of /. Thus δ(c/2, / ) = l > l / 5 . Again by Theorem F, we obtain

this occurs only for (a1—a2)
2-\-(b1—b2)

2=0.
This also completes the proof of Theorem 3.

Example 4. Let f(z)=l-4ez, g{z)=l-e~z, fli=—1, a 8 =l, b^-VJt, b2=

V3i, Sι={au a2}, S2={bu b2), S3={oo}. It is easy to verify that

β ) ' (ghXgbJ '

which show Ef(Sj)=Eg(Sj) for y = l , 2, 3. Thus, / and # satisfy the conditions
of Theorem E. Noting that c— a^^ — Q and f{z)—c/2= 1—4ez, we have
3(c/2, /) = 0. fφg, f+g^ai + a2 and (f-c/ZKg-c/2) =£ ± ((a.-a,)^)2 are
evident. This shows that Theorem 3 is sharp.

5. Improvement of Theorem 1

Proceeding as in the proof of Theorem 1, we can prove the following
result, which is an improvement of Theorem 1.
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THEOREM 4. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0, 1, °o CM., and let a be a finite complex number, and

1. //

N{r, -A—)φT(r,f)+S(r,f),
f

then a is a Picard exceptional value of f, and f and g must satisfy exactly one
of the following relations:

( i ) (f—a)(g+a — ϊ)=a(l—a). This occurs only for oo be a Picard ex-
ceptional value of f. In this case, I — a and oo are Picard exceptional values
of g.

(ii) f+(a — ϊ)g = a. This occurs only for 0 be a Picard exceptional value
of f. In this case, a/(a—1) and 0 are Picard exceptional values of g.

(iii) f=ag. This occurs only for 1 be a Picard exceptional value of /. In
this case, I/a and 1 are Picard exceptional values of g.

Proof. Proceeding as in the proof of Theorem 1, we can obtain (1).
We discuss the following four cases.
a) Suppose that ev=c{φ0, 1).
Proceeding as in the proof of Theorem 1, we can obtain the relation ( i ) ,

and a and oo are Picard exceptional values of /, I—a and co are Picard ex-
ceptional values of g.

b) Suppose that ββ==c(=£θ, 1).
By (1) we have

and

roΛ\ f (c-l+a)-aep

(21) f-a= —

If c-1+aΦθ, from (21),

which contradicts the assumption of Theorem 4. Then c — 1 + α—0 and c—\—a.
Again by (1), we obtain

and

aep

* (α-D(e '- l )

Thus, we get the relation (ii), and a and 0 are Picard exceptional values of /,
a/(a—ΐ) and 0 are Picard exceptional values of g.



MEROMORPHIC FUNCTIONS 313

c) Suppose that eq~p=c(Φθ, 1).
By (1) we have

and

(c-a)e*-(l-a)
KM) I-a- -^—^ .

If c - α ^ O , from (22),

(r, -f^-) = T(r, f)+S(r, /),

which contradicts the assumption of Theorem 4. Then c—a. Again by (1),
we obtain

ae^-Λ
!~ e*-l

and

aep-\

Thus, we get the relation (iii), and a and 1 are Picard exceptional values of
/, I/a and 1 are Picard exceptional values of g.

d) Suppose that none of ep, eq and eq~p are constants.
Proceeding as in the proof of Theorem 1, we can arrive at a contradiction.
This completes the proof of Theorem 4.

By Theorem 4 we immediately obtain the following corollary.

COROLLARY. Let f and g be two nonconstant meromorphic functions such
that f and g share 0, 1, co CM., and let a be a finite complex number, and
aΦO, 1. //

N(r, —f \φT(r, f)+S(r, f),

and none of 0, 1, co are Picard exceptional values of f, then f=.g.

Acknowledgement. I am grateful to the referee for valuable comments.
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