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UNICITY THEOREMS FOR MEROMORPHIC
FUNCTIONS THAT SHARE THREE VALUES

HONG-XUN Y1

This paper studies the problem of the uniqueness of meromorphic functions
that share three values. The results in this paper improve some theorems
given by H. Ueda, Shou-Zhen Ye and Hong-Xun Yi. Examples are provided to
show that our results are sharp.

1. Introduction and main results

Let f and g be two nonconstant meromorphic functions in the complex
plane. If f and g have the same a-points with the same multiplicities, we say
f and g share the value a CM. (see [1]). It is assumed that the reader is
familiar with the basic notations and fundamental results of Nevanlinna’s theory
of meromorphic functions, as found in [2]. It will be convenient to let F
denote any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence. The notation S(r, f) denotes any quantity
satisfying

Str, Hl=o(T(r, f))  (r—oo, r&EE).

H. Ueda proved the following theorem.

THEOREM A (see [3]). Let f and g be two distinct nonconstant entire func-
tions such that f and g share 0,1 CM., and let a be a finite complex number,
and a+#0, 1. If a is lacunary for f, then 1—a is lacunary for g, and

(f—a)g+a—1)=a(l—a).

In [4] the present author proved the following result which is an improve-
ment of the above result.

THEOREM B. Let f and g be two distinct nonconstant entive functions such
that f and g share 0,1 CM., and let a be a finite complex number, and a+0, 1.
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If d(a, f)>1/3, then a and 1—a are Picard exceptional values of f and g res-
pectively, and
(f—a)g+a—D=a(l—a).
Recently Shou-Zhen Ye extended the above theorems to meromorphic func-

tions, and proved the following theorems.

THEOREM C (see [5]). Let f and g be two distinct nonconstant meromorphic
Sfunctions such that f and g share 0, 1, o CM., and let a be a finite complex
number, and a+0, 1. If

e, S+, >3,

then a and 1—a are Picard values of f and g respectively, and also oo 1s so, and

(f—a)Xg+a—D=a(l—a).

THEOREM D (see [5]). Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0,1, co CM., and let a,, a,, ---, a, be p (=1)
distinct finite complex numbers, and a;#0, 1 (=1, 2, ---, p). If

2 2(p+1)

2y, i, >0
then there exists one and only one a, in ai, a,, ---, a, Such that a, and 1—a,
are Pjcard values of f and g respectively, and also « is so, and

(f—a)(gtar—1)=a,(l—ap).

In this paper we improve the above theorems and obtain the following
results.

THEOREM 1. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0,1, oo CM., and let a be a finite complex number, and
a+0,1. If

1
N(r, =) =T, P45, P
and

N(r, N#T(r, H+S(, ),

then a and 1—a are Picard values of f and g respectively, and also o is so, and
(f—a)g+a—D=a(l—a).

By Theorem 1 we immediately obtain the following result which is an im-
provement of Theorems A, B, C and D.
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THEOREM 2. Let f and g be two distint nonconstant meromorphic functions
such that f and g share 0,1, co CM., and let a be a finite complex number, and
a#0, 1. If 0(a, /)>0 and 0(co, f)>0, then a and 1—a are Picard values of
f and g respectively, and also o is so, and

(f—a)g+a—1)=a(l—a).

Example 1. Let f(z)=(e®*+1)/(e*+1), glz)=(e **+1)/(e™*+1), a=2. 1t is
easy to see that f and g share 0, 1, co CM., and

N(r, f)#T@, £)+S, f)
and d(co, f)=1/2>0. Noting

e¥*—2e*—1
e*+1 ’

f@)—a=

we have
N(r, =) =T, S0, )

and d(a, f)=0. (f—a)g+a—1)7=a(l—a) is evident.

Example 2. Let f(z2)=2/(1+e¢?), g(z)=2/(1+¢7?), a=2. It is easy to see
that f and g share 0, 1,  CM., and

N(r, N=T(r, /)+SC, 1)

and d(eo, f)=0. Noting
2e*

f(z)_az—”IIeT’

we have
N(r, =) # T, 450, )

and d(a, f)=1>0. (f—a)g+a—1)7#a(l—a) is evident.

Example 3. Let f(z)=1/(e*+1), g(z)=1/(e7*+1), a=2. It is easy to see
that f and g share 0, 1, « CM., and
N(r, /)=T(r, f)+S(, )
and &(co, f)=0. Noting

2e°+1

f(Z)"‘a=“”e—,:'_—1—,

we have

N (r,

) =T, NS0, 1)
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and d(a, /)=0. (f—a)g+a—1)Fa(l—a) is evident.

The above examples show that Theorem 1 and Theorem 2 are sharp.

2. Some lemmas

The following lemmas will be needed in the proof of our theorems.

LEMMA 1. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0, 1, o CM., then

et—1 e 1—1
f= 1 g= 1’

where p and q are entire functions such that e?=£1, ¢'=%1 and ¢ ?=£1, and
T(r, ©)+T(r, ")+ T(r, )=0(T(r, ) (r&E).
Proof. By assumption we have with two entire functions a and f,
f=e%.g and f—1=ef-(g—1).

Since fz£g, then e%=1, ef=1 and e?-*=1. Setting p=p—a and ¢g=pf, we have
e?=1, ¢*=%1 and ¢ P%]1. Thus from this we get
e?—1 e -1

f:?)‘:‘l‘ and g=

e P—1"

By the second fundamental theorem, we have
1 1
T, <N(r, 2)J+N(r, =1)+NC, 9450, 8)

=N(r, 5)+N(r, 7o) N, NS0, 0

<3T(r, [)+S(r, g).
Thus from this we get
T(r, e)=T(r, e/ )=T(r, f~D+T(r, g—1)+0(1)
<AT(r, /)+S(r, &),
T(r, et ?)=T(r, e)=T(r, /)+T(r, +0()
<4T(r, N)+S(r, &),
T(r, e®)=T(r, = P)<T(r, e)+T(r, *~7)+0(1)

<8T(r, /)+S(r, g).
Hence
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T(r, &)+T(r, e?)+T(r, e)=0T(, f)) (r&E).

This completes the proof of Lemma 1.

LEMMA 2. Let f and g be two nonconstant meromorphic functions, and let
¢1, ¢ and ¢y be three nonzero constants. If

ciftc.g=cs,
then
1
I

Proof. By the second fundamental theorem, we have

T, H<N(r, =)+ (r, é) +N@, )+, f).

70, N<N(r, )48 (. (= 5)7)+80 P+t )

— 1N — 1N —
=N(r, 5)+8(r. ) +8e, e, ),
which proves Lemma 2,
LEMMA 3 (see [6, Lemma 4]). Let p(z) be a nonconstant entive function, then
T(r, p)=0(T(r, e?)) (r&E).

In order to state Lemma 4, we introduce the following notations.

Let f be a meromorphic function. We denote by n,(», f) the number of
simple poles of f in |z|<r. N,(r, f) is defined in terms of »,(r, f) in the
usual way. We further define

No(r, f)=N(@, /)—Ni(r, ).
In the same way we can define Ny(r, 1/f) and N,(, 1/(f—1)).

LEMMA 4. Let f and g be two distinct mnonconstant meromorphic functions
such that f and g share 0, 1, co CM., then

Nir, P+N(r, )+ N, )=S0, 1),

Proof. By Lemma 1 we have

e?—1
f”“' ep__l ’

where p and ¢ are entire functions such that ePz£l, e?2£1 and e?"?=£1, and
T(r, )+T(r, e®)+T(@r, e)=0T(, f) (&E).

If e?=c, where ¢ (0, 1) is a constant, then we have N(r, 1/f)=0. If ¢¢
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is not a constant, let {z,} be all the roots of f=0 with multiplicity=2, then
{zn} are the roots of (e?—1)'=q’¢?=0. Thus

Nz(r, f)<2N< —-—)<2T(r, 7)+0).
Again by Lemma 3, we deduce
N2<r, %):S(r, .

If e?=c, where ¢ (0, 1) is a constant, then we have N(r, f)=0. If e? is
not a constant, let {z,} be all the roots of 1/f=0 with multiplicity=2, then
{zn} are the roots of (e?—1)=p’e?=0. Thus

Nir, )S2N(r, =7 )27, p)+0().

Again by Lemma 3, we have

IVZ(r) f):S(rr f) .
Note that

f(z2)—1= e (f_%—l) .

ep
If e?-?=¢, where ¢ (%0, 1) is a constant, then N(r, 1/(f—1))=0. If ¢?"? is not

a constant, let {z,} be all the roots of f—1=0 with multiplicity =2, then {z,}
are the roots of (e?7?—1)=(¢’—p")e??=0. Thus

1 , ,
Nu(r, L) san(e, =) SHE 2T, p)+0).
Again by Lemma 3, we have

Ni(r, 7) =S, 7).

From the above three equalities, we obtain

N, +N(r, ) +Nu(r, )=S0, ),

which proves Lemma 4.

3. Proof of Theorem 1

By the assumption, from Lemma 1 we have

e?—1 e ?—1
(1) f= 1’ g= 1’
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where p and ¢ are entire functions such that e?=£1, ¢?%1 and ¢?"?z£1, and
(2) T(r, g)+T(r, e?)+T(r, )=0(T(r, f)) (rEE).

We discuss the following four cases.
a) Suppose that e?=c(+0, 1).
By (1) we have

e?—1
(3) f= 1
and
~e=l—ale—1)
(4) f—a= - .

If —1—a(c—1)#0, from (4),

1 .
N(r. =5 ) =Tt N80, 1),
which contradicts the assumption of Theorem 1. Then —1—a(¢—1)=0 and ¢=
(a—1)/a. Again by (1), we obtain

f=a—ae?
and
g=l—a)—(1—a)e™".

Thus a and 1—a are Picard values of f and g respectively, and also <« is so,
and

(f—a)g+a—1)=a(l—a).

b) Suppose that e?=c(0, 1).
By (1) we have

Thus
N(r, H=T(, /)+S, 1),

which contradicts the assumption of Theorem 1.
¢) Suppose that e?P=c (0, 1).
By (1) we have

_ceP—1 c—1
f=rgy Tty

Thus
N(r, H=T(, H+Se, 1),

which is again a contradiction.
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d) Suppose that none of e?, ¢? and ¢?°? are constants.
It is clear that p’z£0, ¢’%£0 and p’#q’. By Lemma 1 and Lemma 3, we have

(5) T, p)+T(r, ¢)=S, f).
Set

(6) =1,

From (5) and (6) we obtain A0, 1, and

T(r, h)y=S(, f).
If
¢'(h—1)—h’=0,

by integration, we have
(7) h—1=c,e?,
where ¢, is a constant, and ¢,#0. From (6) and (7), we obtain

/

9 _
c,e?+1

b’
Again by integration, we get

cite t=cpe?,
where ¢, is a constant, and ¢,#0. Thus

ceP—e i=c,.
By Lemma 2, we obtain
T(r, e ?)=S(r, e7?),

which is impossible. Hence

¢'(h—1)—h'=#0.

From (1), we have

_e'—heP+h—1
(8) I
Set
F=(f—h)e?P—1)=e?’—he?+h—1,
then

F'  (f"—het+h—1Y—q(e"—he?+h—1)

F B (f=h)e?—1)
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_ g h—=D)—h’
=9

and hence

1 _ (F'/F)—¢
F=h — ¢h—D—h'"

(9)

From (9) we get

1 F’
(10) m(r, <= y)sm(r )+, p=Str, 1)
and
1
(11) No(r, - /{):S(r, .
Again from (1), we have
S8
| =1
and
g _gleP—pet+(p'—q")
g (e?—1)(e?—1)
Thus
(12) 8(f=g) _ger—pet+(p'—q") .

glg—1) e?—1
From (6) and (8), we obtain

'ep—])'eq-l-(ﬁ’*q')
e?P—1 '

(13) —p(f—hy="1
By (12) and (13), we get
a4 —p(fmy= B8
Again by Lemma 4 and (11), we have
1 1
(15) N(r —=57)=N(r )+ N+, 1),

where Ny(r) denotes the counting function of the zeros of f—g that are not
zeros of g and g—1. From (10) and (15), we obtain

T(r, =T, [—h)+SF, )

:m(r, ~f~£~ﬁ">+N(r, »'j;—i—ﬁf)—FS(r, )
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1
=N(r, =) +ND+S0, 1.

Thus

1
(16) T(r, H=N(r, —)=N)+S(, ).

8
In the same manner as above, we have

1
() T, =N(r, ) =N +5(r, 1.

By the second fundamental theorem, and using (16), we obtain

T, DT ST N+N(r, ) +N(r 27)+N0r 2

=N(r, ) +S(r, £)

1
SN(, rs= ) +NG )45, 1)

éT(r: f—g)+N<7’, g)+S(r: f)
ém(r’ f)—"_m(r; g)‘i“N(?’, f_g)+N(r1 g)+S<r’ f)
s=m(r, )+m(r, g+N(r, /)+N(r, g)+S(r, /)

=T(r, NH+T(r, g)+S(, ).
Thus
T Tt =N(r, LY +N(r, L) +N No(r)+S
a8) T, N+Ter, ©=N(r, ) +N(r, ,Z7)+ N, D+NOIESCr, 1.

Again by the second fundamental theorem, and using (17) and (18), we have
1 1 1
27(r, N=N(r, ) +N(r —];;T>+N(r, 7_—(1)

NG )=N(r, 57)+S(r, £)

éN(r, é—)-l—N(r, jg_l_—1>+N(r, 7—_1_—(1~>
+N(r, g)+No(r)—T(r, )+S(, [)
1

=T(r, PHN(r

)+, O
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=2T(», H+S(r, ).
Thus

1
= )=Tr S, P,
which contradicts the assumption of Theorem 1.
This completes the proof of Theorem 1.

N(r,

4. Applications of Theorem 1
For any set S and any meromorphic function f let

E(S)= U {z] f(a)—a=0},

where each zero of f—a with multiplicity m is repeated m times in E(S)
(see [9]).

Recently the present author corrected a result of Gross and Yang [11] and
proved the following theorems.

THEOREM E (see [10]). Let S,={a,, a,} and S,={b,, b} be two pairs of
distinct elements with a,+a,=b,+b, but a,a,#b,b,, and let S;={co}. Suppose
that f and g are two nonconstant meromorphic functions satisfying E (S,)=E,(S,)
for j=1,2,3. Then N(r, )=S(r, f) and

T(r, )=T(r, )+S, ).

THEOREM F (see [10]). If, in addition to the assumptions of Theorem E,
oc/2, f)>1/5, where c=a,+a,, then [ and g must satisfy exactly one of the
following relations :

(i) f=g,

(ii) fH+g=ai+a,,

(i) (f—c/2X(g—c/2)=+((a,—ay)/2)*. Ths occurs only for (a,—as)®+(b,—
b,)2=0.

THEOREM G (see [10]). If, in addition to the assumptions of Theorem E,

1
f—b:
and 0(c/2, f)>0, where c=a,+a,, then the conclusions of Theorem F hold.

N(r, —25) +N(r 5) =270, NS0, 1)

Applying Theorem 1, we immediately obtain the following result which is
an improvement of Theorem F and Theorem G.

THEOREM 3. If, in addition to the assumptions of Theorem E, d(c/2, )>0,
where c=a,+a,, then the conclusions of Theorem F hold.
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Proof. By Theorem E we have
(19) N(r, H#T(r, ))+S(r, f).
Again by d(c/2, f)>0, we also have

(20) N(r, =5) # T, 4500, 7).

Let

_ (f—=¢/20—((a:—a5)/2) o= _&—c/2r—((a:—a,)/2)

T (0= b2)/2)*—((a;—a0)/2)*° ((b1—b2)/2)—((a1—a5)/2)*

If F=G, it is obvious that f=g or f4+g=a,+a,. Next, assume that F=G.
By Eq(S)=E,S;) (j=1, 2, 3), we know that F and G share 0, 1, o CM.

From (19) and (20), we have

F

N(r, F)#T(r, F)+S(r, F)
and
1
N(r 5=) =T, F)+S@, F),

where
_ —((a1—a,)/2)

((by—b2)/2)*—((a,—a.)/2)*
By Theorem 1, it follows that a is a Picard value of F, and hence ¢/2 is a
Picard value of f. Thus d(c/2, f)=1>1/5. Again by Theorem F, we obtain

(f—c/2)(g—c/2)=*((a:1—a5)/2)",

a #0, 1.

this occurs only for (a,— a,)*+(b;—b,)?=0.
This also completes the proof of Theorem 3.

Example 4. Let f(z2)=1—4¢*, gz)=1—e~*, a,=—1, a,=1, by=—+/37, b,=
V' 34, Si={a,, a5}, Su=1{by, by}, Ss={oo}. It is easy to verify that
(f—a)(f—a,) — 8% if_bl)(f“@:4ezz
(g—a)(g—a,) ’ (g—b)(g—b,) ’

which show E(S;)=E.(S,) for j=1,2, 3. Thus, f and g satisfy the conditions
of Theorem E. Noting that c¢=a,+a,=0 and f(z)—c/2=1—4e¢* we have
ac/2, f)=0. f=#g, f+g#*a+a, and (f—c/2)(g—c/2)*= + (a,—a,)/2)* are
evident. This shows that Theorem 3 is sharp.

5. Improvement of Theorem 1

Proceeding as in the proof of Theorem 1, we can prove the following
result, which is an improvement of Theorem 1.
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THEOREM 4. Let f and g be two distinct nonconstant mevomorphic functions
such that f and g share 0,1, co CM., and let a be a finite complex number, and
a+0,1. If

1
N(r g )# T NS, £,
then a is a Picard exceptional value of f, and f and g must satisfy exactly one
of the following relations:

(i) (f—a)Xg+a—1)=a(l—a). This occurs only for c be a Picard ex-
ceptional value of f. In this case, 1—a and oo are Picard exceptional values
of g.

(ii) f+(a—l)g=a. This occurs only for 0 be a Picard exceptional value
of f. In this case, a/(a—1) and 0 are Picard exceptional values of g.

(iii) f=ag. This occurs only for 1 be a Picard exceptional value of f. In
this case, 1/a and 1 are Picard exceptional values of g.

Proof. Proceeding as in the proof of Theorem 1, we can obtain (1).

We discuss the following four cases.

a) Suppose that e?=c(+0, 1).

Proceeding as in the proof of Theorem 1, we can obtain the relation (i),
and a and <« are Picard exceptional values of f, 1—a and co are Picard ex-
ceptional values of g.

b) Suppose that e?=c(0, 1).

By (1) we have

c—1
f e?—1

and

(c—14a)—ae?
(21) f—a= T—.
If ¢c—1+a+#0, from (21),

1
N(r =3 )=T(, NS, £,

which contradicts the assumption of Theorem 4. Then c—1-+a=0and c=1—a.
Again by (1), we obtain

and
_ ae?
8= (a—D(er—1)

Thus, we get the relation (ii), and a and 0 are Picard exceptional values of f,
a/(a—1) and 0 are Picard exceptional values of g.
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¢) Suppose that e?"?=c¢(+0, 1).
By (1) we have

ce?—1
I=Toot
and
22) fog=Ee=(0=0)

If c—a+0, from (22),

N(r, L )=T0 N+, 1),

which contradicts the assumption of Theorem 4. Then c¢=a. Again by (1),
we obtain
_aer—1
T oer—1

and

ae?—1

8= Ger—1) -

Thus, we get the relation (iii), and ¢ and 1 are Picard exceptional values of
f, 1/a and 1 are Picard exceptional values of g.
d) Suppose that none of e?, ¢? and e¢?"? are constants.

Proceeding as in the proof of Theorem 1, we can arrive at a contradiction.
This completes the proof of Theorem 4.

By Theorem 4 we immediately obtain the following corollary.

COROLLARY. Let f and g be two nonconstant meromorphic functions such
that f and g share 0, 1, co CM., and let a be a finite complex number, and
a0, 1. If

1
f—a

and none of 0, 1, o are Picard exceptional values of f, then f=g.

N(r, );tT(r, NS, 1),

Acknowledgement. 1 am grateful to the referee for valuable comments.
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