ENTIRE FUNCTIONS THAT SHARE ONE VALUE WITH THEIR DERIVATIVES

HUALIANG ZHONG

Abstract

The paper generalizes a result of [2] and makes an example which shows that the generalization is precise. Also we get similar conclusions in other cases.

§ 1. Introduction

We say that nonconstant meromorphic functions f and g share the value a provided that f(z)=a if and only if g(z)=a. We will state whether the shared value is by CM (counting multiplicities) or by IM (ignoring multiplicities).

L. Rubel and C.C. Yang proved the following theorem:

THEOREM A^[1]. Let f(z) be a nonconstant entire function. If f and f' share two distinctive valves a and b IM, then $f \equiv f'$.

1986, Jank, Mues and Volkman proved:

THEOREM B^[2]. Let f(z) be a nonconstant entire function. If f and f' share the value a ($a \neq 0$), and f''(z) = a when f(z) = a, then $f \equiv f'$.

It is asked naturally whether the f'' of Theorem B can be simply replaced by $f^{(k)}$ $(k \ge 3)$. We make an example which shows that the answer of this question is negative.

Let k be a positive integer $(k \ge 3)$ and let $\omega(\ne 1)$ be a (k-1)-th root of unity. Set $g(z) = e^{\omega z} + \omega - 1$. It is easy to know that g, g' and $g^{(k)}$ share the value ω CM, but $g \ne g'$ and $g \ne g^{(k)}$.

Between the example and Theorem B we will prove the following results.

THEOREM 1. Let f(z) be a nonconstant entire function. If f and f' share the value a $(a \neq 0)$ CM, and $f^{(n)}(z) = f^{(n+1)}(z) = a$ $(n \geq 1)$ when f(z) = a, then $f \equiv f^{(n)}$.

Received Mach 7, 1994; revised July 26, 1994.

It is obvious that Theorem B is a special case of Theorem 1.

Before stating Theorem 2, we need a slight general notation about the "share". We assume that the reader is familiar with the usual notations and fundamental results of Nevanlinna's theory of meromorphic functions (see, e.g. [3], [8]). In particular, S(r, f) will denote any quantity that satisfies S(r, f) = o(1)T(r, f) as $r \to +\infty$, possibly outside a set e of f of finite linear measure.

Let $E=E\{f_1, f_2, \cdots, f_n; (a_1, a_2, \cdots, a_n)\} = (\bigcup_{j=1}^n f_j^{-1}(a_j)) \setminus (\bigcap_{j=1}^n f_j^{-1}(a_j))$ and let $N_E(r, 1/(f_i-a_i))$ denote the counting function of those a_i -points of f_i which belong to the set $E, i=1, 2, \cdots, n$. We introduce the following definitions:

DEFINITION 1. Two nonconstant meromorphic functions f and g share the value a CMN (or IMN) if f and g share the value a CM (or IM) outside the set E where $E(=E\{f,g;(a,a)\})$ satisfies that $N_E(r,1/(f-a))=S(r,f)$ and $N_E(r,(1/g-a))=S(r,g)$.

THEOREM 2. Let f(z) be a nonconstant entire function, f, $f^{(n)}$ $(n \ge 1)$ share the value $a \ne 0$ IMN, and $f'(z) = f^{(n+1)}(z) = a$ when f(z) = a. If for any set e of finite linear measure

(1.1)
$$\lim_{\substack{r \to \infty \\ r \in e}} \frac{N_E\left(r, \frac{1}{f^{(n+1)} - a}\right)}{N\left(r, \frac{1}{f^{(n+1)} - a}\right)} \neq \frac{1}{2}$$

where $E = E\{f, f^{(n+1)}; (a, a)\}, then f \equiv f^{(n)}$.

We don't know whether it is possible to get rid of the condition (1.1) in Theorem 2.

DEFINITION 2. Meromorphic functions f_1, f_2, \cdots, f_n share the array (a_1, a_2, \cdots, a_n) CM provided that $f_1^{-1}(a_1) = f_j^{-1}(a_j)$ $(1 \le j \le n)$ by counting mulitiplicities. Similarly we say f_1, f_2, \cdots, f_n share the array (a_1, a_2, \cdots, a_n) CMN (or IMN) if f_1, f_2, \cdots, f_n share the array (a_1, a_2, \cdots, a_n) CM (or IM) outside the set $E = E\{f_1, f_2, \cdots, f_n, (a_1, a_2, \cdots, a_n)\}$ where E satisfies that $N_E(r, 1/(f_j - a_j) = S(r, f_j), j = 1, 2, \cdots, n$.

There is an example which shows that the condition of Theorem B can't be replaced by the condition that f, f' and f'' share the array (a, a, b) CM. Let $g(z)=e^{2z}+1$. It is easy to know that g, g', g'' share (2, 2, 4) and $g \not\equiv g'$. However we can make the following conclusion.

THEOREM 3. Let f(z) be a nonconstant entire function. If f, f', f'' share the array (a, b, b) IMN, where $ab \neq 0$, then $f - a \equiv f' - b$.

§ 2. Lemmas

LEMMA 1. Let f(z) be a nonconstant meromorphic function and let b_j (j=1, $2, \dots, q$) be q distinctive finite numbers. Then for any integer $k \ge 0$,

$$\sum_{j=1}^{q} m\left(r, \frac{1}{f^{(k)} - b_{j}}\right) \leq m\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f)$$

where S(r, f)=o(1)T(r, f) as $r\to\infty$, possibly outside a set e of r of finite linear measure.

This lemma can be simply derived from p. 16 of [3].

Lemma 2. Suppose that entire functions f, f' share the value $a \ (\neq 0)$ CMN. Then

$$T(r, f) \leq 2N\left(r, \frac{1}{f-a}\right) + S(r, f)$$
.

Proof. Since, from Lemma 1, we know that

$$\begin{split} m\Big(r, \frac{1}{f-a}\Big) + m\Big(r, \frac{1}{f'-a}\Big) &\leq m\Big(r, \frac{1}{f'}\Big) + m\Big(r, \frac{1}{f'-a}\Big) + S(r, f) \\ &\leq m\Big(r, \frac{1}{f''}\Big) + S(r, f) \leq T(r, f'') + S(r, f), \end{split}$$

it follows that

$$T(r, f) + T(r, f') \le 2N(r, \frac{1}{f-a}) + T(r, f'') + S(r, f).$$

By using $T(r, f'') \leq T(r, f') + S(r, f)$, we get

$$T(r, f) \leq 2N\left(r, \frac{1}{f-a}\right) + S(r, f)$$
.

LEMMA 3. Suppose that nonconstant entire functions f, $f^{(k)}$ $(k \ge 1)$ share the array (a, b) IMN, $f'(z)=f^{(k+1)}(z)=b$ when f(z)=a, where $ab \ne 0$. If $f^{(k)}-b \not\equiv f-a$, then the following statements hold:

$$(2.1) 2N\left(r, \frac{1}{f-a}\right) \leq T(r, f) + S(r, f)$$

$$(2.2) T(r, f) \leq 2N\left(r, \frac{1}{f-a}\right) + S(r, f).$$

$$(2.3) N\left(r, \frac{1}{f^{(k+1)}}\right) \leq S(r, f).$$

Proof. From the conditions of the lemma, we see that if $z_0 \in f^{-1}(a) \cap (f^{(k)})^{-1}(b)$, then z_0 must be a common zero-point of f-a, $f^{(k)}-b$ and $(f^{(k)}-b)-(f-a)$ with multiplicities 1, 1 and $\gamma(\geq 2)$ respectively. Then

(2.4)
$$2N(r, \frac{1}{f-a}) \leq N(r, \frac{1}{(f^{(k)}-b)-(f-a)}) + S(r, f)$$
$$\leq T(r, f^{(k)}-f) + S(r, f) \leq T(r, f) + S(r, f).$$

Since, by using Lemma 1, we get that

$$(2.5) \quad m\left(r, \frac{1}{f-a}\right) + m\left(r, \frac{1}{f^{(k)}-b}\right) \leq m\left(r, \frac{1}{f^{(k)}}\right) + m\left(r, \frac{f^{(k)}}{f-a}\right) + \log 2 + m\left(r, \frac{1}{f^{(k)}-b}\right) \\ \leq m\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f),$$

it is deduced that

$$(2.6) T(r, f) + T(r, f^{(k)}) \leq N\left(r, \frac{1}{f-a}\right) + N\left(r, \frac{1}{f^{(k)}-b}\right) + m\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f)$$

$$\leq 2N\left(r, \frac{1}{f-a}\right) + T(r, f^{(k+1)}) - N\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f).$$

So

$$T(r, f) \leq 2N\left(r, \frac{1}{f-a}\right) + S(r, f)$$
.

By using (2.4) and (2.6), we get (2.3).

LEMMA $4^{[3]}$. Let f(z) be an entire function. Then

$$T(r, f) \leq \overline{N}\left(r, \frac{1}{f}\right) + \overline{N}\left(r, \frac{1}{f-a}\right) + S(r, f)$$
 where $a \neq 0$.

LEMMA 5. If entire functions f, f' and f'' share the array (a, b, b) $IMN(ab \neq 0)$, $z_0 \in f^{-1}(a) \cap (f')^{-1}(b) \cap (f'')^{-1}(b)$, set

$$H(z) = \frac{f'}{f-a} - \frac{f''}{f'-b}$$
 $K(z) = \frac{f''-f'}{f-a}$,

then

(2.7)
$$H(z) = \frac{1}{2} \left(1 - \frac{f''(z_0)}{h} \right) + O\left\{ (z - z_0) \right\}$$

(2.8)
$$K(z) = \frac{f''(z_0)}{b} - 1 + O\{(z - z_0)\}.$$

Proof. Since the Taylor expansion of f(z) about z_0 is

$$f(z) = a + b(z - z_0) + \frac{b}{2!}(z - z_0)^2 + \frac{f'''(z_0)}{3!}(z - z_0)^3 + \cdots,$$

by an elementary calculation, we can obtain (2.7) and (2.8).

§ 3. Proof of Theorem 1

From Theorem B, we know that Theorem 1 is valid for n=1. Next we suppose that $n \ge 2$. Set

$$\varphi(z) = \frac{f^{(n+1)}(z) - f^{(n)}(z)}{f(z) - a}, \qquad \psi(z) = \frac{f^{(n+1)}(z) - f^{(n)}(z)}{f'(z) - a}.$$

Then

(3.1)
$$m(r, \varphi) = S(r, f), \quad m(r, \psi) = S(r, f).$$

Suppose z_1 is an a-point of f(z). Then the Taylor expansion of f(z) about z_1 is

(3.2)
$$f(z) = a + a(z - z_1) + \frac{f''(z_1)}{2!} (z - z_1)^2 + \dots + \frac{f^{(n-1)}(z_1)}{(n-1)!} (z - z_1)^{n-1} + \frac{a}{n!} (z - z_1)^n + \frac{a}{(n+1)!} (z - z_1)^{n+1} + \dots$$

Hence

(3.3)
$$\frac{f^{(n)}}{f-a} = \frac{1}{z-z_1} + \left(1 - \frac{f''(z_1)}{2a}\right) + O\left\{(z-z_1)\right\}$$

(3.4)
$$\frac{f^{(n+1)}}{f-a} = \frac{1}{z-z_1} + \frac{1}{a} \left[f^{(n+2)}(z_1) - \frac{f''(z_1)}{2} \right] + O\left\{ (z-z_1) \right\}.$$

It follows from (3.3) and (3.4) that

(3.5)
$$\varphi(z) = \frac{f^{(n+2)}(z_1) - a}{a} + O\{(z - z_1)\}.$$

Since the pole points of $\varphi(z)$ come from the a-points of f(z), we see from (3.5) that

$$(3.6) N(r, \varphi) = 0.$$

Also we know from (3.2) that

$$\frac{f^{(n)}}{f'-a} = \frac{a}{f''(z_1)} \cdot \frac{1}{(z-z_1)} + \frac{1}{f''(z_1)} \left[f^{(n+1)}(z_1) - \frac{af'''(z_1)}{2f''(z_1)} \right] + O\left\{ (z-z_1) \right\}$$

and that

$$\frac{f^{(n+1)}}{f'-a} = \frac{a}{f''(z_1)} \cdot \frac{1}{(z-z_1)} + \frac{1}{f''(z_1)} \left[f^{(n+2)}(z_1) - \frac{a f'''(z_1)}{2 f''(z_1)} \right] + O\left\{ (z-z_1) \right\}.$$

Therefore

(3.7)
$$\phi(z) = \frac{f^{(n+2)}(z_1) - a}{f''(z_1)} + O\{(z-z_1)\}.$$

Thus

(3.8)
$$N(r, \phi) = 0$$
.

Combining (3.6), (3.8) with (3.1), we see that

(3.9)
$$T(r, \varphi) = S(r, f), T(r, \psi) = S(r, f).$$

From (3.5) and (3.7), it follows that

(3.10)
$$\frac{\varphi(z)}{\psi(z)} = \frac{f''(z_1)}{a} + O\{(z - z_1)\}.$$

Set $H(z) = \frac{f^{(n)}(z) - f'(z)}{f(z) - a}$. It is easy to know that

$$(3.11) T(r, H) \leq S(r, f).$$

From (3.2), we deduce that

(3.12)
$$H(z) = \left[1 - \frac{f''(z_1)}{a}\right] + O\left\{(z - z_1)\right\}.$$

Hence

(3.13)
$$H(z) + \frac{\varphi(z)}{\psi(z)} = 1 + O\{(z - z_1)\}.$$

Next we consider the following two cases:

(i) Suppose that $H(z)+\varphi(z)/\psi(z)\equiv 1$. Set $L(z)=H(z)+\varphi(z)/\psi(z)-1$. Combining (3.9), (3.11) and (3.13), we deduce that

(3.14)
$$N\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{L}\right) \leq T(r, L) \leq S(r, f).$$

By using Lemma 2, we get $T(r, f) \le S(r, f)$. It follows that f(z) is a polynomial. So f and f' can not share the value a CM which contradicts the condition of Theorem 1.

(ii) Let $H(z)+(\varphi(z)/\psi(z))\equiv 1$. Then

$$\frac{f^{(n)}(z) - f'(z)}{f(z) - a} + \frac{f'(z) - a}{f(z) - a} \equiv 1.$$

Thus $f \equiv f^{(n)}$.

§ 4. Proof of Theorem 2

Assume that $f \not\equiv f^{(n)}$. From Lemma 3, we see that

$$(4.1) T(r, f) \leq 2m \left(r, \frac{1}{f-a}\right) + S(r, f).$$

Hence

$$(4.2) T(r, f^{(n)}) \leq T(r, f) + S(r, f) \leq 2m \left(r, \frac{1}{f - a}\right) + S(r, f) \leq 2m \left(r, \frac{1}{f^{(n)}}\right) + S(r, f).$$

Thus

(4.3)
$$2N\left(r, \frac{1}{f^{(n)}}\right) \leq T(r, f^{(n)}) + S(r, f).$$

Now suppose that $f^{(n)} \equiv f^{(n+1)}$. Then $f^{(n)}(z) = ce^z$ and $f'(z) - f(z) = c_0 z^{n-1} + \cdots + c_{n-2}z + c_{n-1}$ where c and c_i $(i=0,1,\cdots,n-1)$ are constants. If $c \neq 0$, then $f^{(n)}$ has infinitely many a-points and there exist infinitely many points z such that f(z) = f'(z). It is deduced that $c_i = 0$ $(i=0,\cdots,n-1)$ and that $f \equiv f'$, which contradicts the assumption of $f \not\equiv f^{(n)}$. If c=0, then f is a polynomial whose degree is at most n-1. Since f is nonconstant, it has necessarily an a-point. By the assumption, it is also an a-point of $f^{(n+1)}(\equiv 0)$. This is a contradiction. So we assume that $f^{(n)} \not\equiv f^{(n+1)}$, then

(4.4)
$$N\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{f^{(n+1)}} + S(r, f) \leq T\left(r, \frac{f^{(n+1)}}{f^{(n)}}\right) + S(r, f)$$

$$\leq N\left(r, \frac{1}{f^{(n)}}\right) + S(r, f).$$

Combining (4.3), (4.4) and (2.2), we get

(4.5)
$$T(r, f) \leq T(r, f^{(n)}) + S(r, f).$$

On the other hand, it follows from (2.1) that

(4.6)
$$2N\left(r, \frac{1}{f^{(n)} - a}\right) = 2N\left(r, \frac{1}{f - a}\right) + S(r, f) \le T(r, f) + S(r, f)$$
$$\le T(r, f^{(n)}) + S(r, f).$$

So

(4.7)
$$T(r, f^{(n)}) \leq 2m\left(r, \frac{1}{f^{(n)} - a}\right) + S(r, f).$$

Combining with (4.2), we deduce from Lemma 1 that

$$(4.8) \quad m\left(r, \frac{1}{f^{(n+1)}}\right) \ge m\left(r, \frac{1}{f^{(n)}}\right) + m\left(r, \frac{1}{f^{(n)} - a}\right) - S(r, f) \ge T(r, f^{(n)}) - S(r, f).$$

Hence

(4.9)
$$T(r, f^{(n)}) \leq T(r, f^{(n+1)}) + S(r, f).$$

By using Lemma 3 and Lemma 4, we see that

(4.10)
$$T(r, f^{(n+1)}) \leq \overline{N}\left(r, \frac{1}{f^{(n+1)}}\right) + \overline{N}\left(r, \frac{1}{f^{(n+1)} - a}\right) + S(r, f)$$
$$\leq \overline{N}\left(r, \frac{1}{f^{(n+1)} - a}\right) + S(r, f).$$

Hence

(4.11)
$$N\left(r, \frac{1}{f^{(n+1)} - a}\right) = \overline{N}\left(r, \frac{1}{f^{(n+1)} - a}\right) + S(r, f).$$

From (4.10), (4.9), (4.5) and (2.1) we get

$$(4.12) 2N\left(r,\frac{1}{f-a}\right) \leq \overline{N}\left(r,\frac{1}{f^{(n+1)}-a}\right) + S(r,f).$$

Also we know that

$$(4.13) \quad \overline{N}\Big(r,\frac{1}{f^{(n+1)}-a}\Big) \leq T(r,f^{(n+1)}) \leq T(r,f) + S(r,f) \leq 2N\Big(r,\frac{1}{f-a}\Big) + S(r,f)$$

and

(4.14)
$$2N\left(r, \frac{1}{f-a}\right) = 2\overline{N}\left(r, \frac{1}{f-a}\right) + S(r, f)$$

$$= 2\left[\overline{N}\left(r, \frac{1}{f^{(n+1)}-a}\right) - \overline{N}_{E}\left(r, \frac{1}{f^{(n+1)}-a}\right)\right] + S(r, f),$$

where $E = E\{f, f^{(n+1)}; (a, a)\}.$

We deduce from (4.12) and (4.14) that

(4.15)
$$\overline{N}\left(r, \frac{1}{f^{(n+1)} - a}\right) \leq 2\overline{N}_{E}\left(r, \frac{1}{f^{(n+1)} - a}\right) + S(r, f),$$

and from (4.13), (4.14) that

(4.16)
$$\overline{N}\left(r, \frac{1}{f^{(n+1)} - a}\right) \ge 2\overline{N}_E\left(r, \frac{1}{f^{(n+1)} - a}\right) - S(r, f).$$

Combining (4.15), (4.16) with (4.11), we get

$$\lim_{\substack{r \to \infty \\ r \in e}} \frac{N_E(r, \frac{1}{f^{(n+1)} - a})}{N(r, \frac{1}{f^{(n+1)} - a})} = \frac{1}{2}$$

for some finite linear measure e of r which contradicts the assumption of the theorem.

§ 5. Proof of Theorem 3

Assume that $f'-b\not\equiv f-a$. By using the same methods as those in proof of Lemma 3, we get that

$$(5.1) N\left(r, \frac{1}{f''}\right) = S(r, f),$$

and that

(5.2)
$$T(r, f) \leq 2N(r, \frac{1}{f-a}) + S(r, f).$$

Using an argument similar to that in the proof of Theorem 2, we can assume that $f' \not\equiv f''$. Then

$$N\left(r,\frac{1}{f-a}\right) \leq N\left(r,\frac{1}{\frac{f''}{f'}-1}\right) + S(r,f) \leq T\left(r,\frac{f''}{f'}\right) + S(r,f) \leq N\left(r,\frac{1}{f'}\right) + S(r,f).$$

Hence

(5.3)
$$T(r, f) \leq 2N(r, \frac{1}{f'}) + S(r, f).$$

Let $z_0 \in f^{-1}(a) \cap (f')^{-1}(b) \cap (f'')^{-1}(b)$. From Lemma 5 and the assumption that f, f', f'' share (a, b, b) IMN, we get that

$$(5.4) 2H(z) + K(z) = O\{(z-z_0)\},$$

(5.5)
$$T(r, H) = S(r, f), T(r, K) = S(r, f).$$

Now we suppose that $2H(z)+K(z)\not\equiv 0$. From (5.4) we have

$$(5.6) N\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{2H-K}\right) + S(r, f).$$

Combining with (5.2) and (5.5), we get $T(r, f) \leq S(r, f)$ which contradicts the assumption of the theorem.

Next let $2H(z)+K(z)\equiv 0$. Then

(5.7)
$$\frac{f''(z) + f'(z)}{f(z) - a} = \frac{2f''(z)}{f'(z) - b} .$$

From (5.1) and (5.3), we choose z_1 satisfying $f'(z_1)=0$, $f''(z_1)\neq 0$. It follows from (5.7) that

$$f''(z_1)\left(\frac{1}{f(z_1)-a}+\frac{2}{b}\right)=0.$$

Hence

$$f(z_1) = a - \frac{b}{2}.$$

By the derivative calculation on both sides of (5.7), combining with $f'(z_1)=0$ and $f(z_1)=a-b/2$, we get that $f''(z_1)=b$. Therefore

$$\frac{1}{2}T(r,f) - S(r,f) \leq N\left(r,\frac{1}{f'}\right) - N\left(r,\frac{1}{f''}\right) \leq N_{E_1}\left(r,\frac{1}{f''-b}\right) \leq N_{E}\left(r,\frac{1}{f''-b}\right)$$

where $E_1=E\{f', f''; (b, b)\}$, $E=\{f, f', f''; (a, b, b)\}$ which contradicts the condition that f, f' and f'' share the array (a, b, b) IMN.

The author dedicates acknowledgements to the referee for his useful sugguestions and pertinent comments.

REFERENCES

- [1] L. Rubel and C.C. Yang, Values shared by entire functions and their derivatives, Complex Analysis, Kentucky 1976, Lecture Notes in Math., 599, Springer-Verlag, Berlin-Heldelberg-New York, 1977, 101-103.
- [2] G. Jank, E. Mues and L. Volkman, Meromorphe funktionen, die mit ihrer ersten und Zweiten Ableitung einen endlichen Wert teilen, Complex Variables Theory Appl. (1), 6 (1986), 51-71.
- [3] L. Yang, Value Distribution Theory and New Research on it, Science Press, Beijing, 1982 (in Chinese).
- [4] G. FRANK AND W. OHLENROTH, Meromorphe funktionen, die mit einer ihrer Ableitungen Werte teilen, Complex Variables Theory Appl. (1), 6 (1986), 23-37
- [5] G. GUNDERSEN, Meromorphic functions that share four values, Trans. Amer. Math. Soc., 277 (1983) 545-567. correction. 304 (1987), 847-850.
- [6] G. GUNDERSEN, Meromorphic functions that share three or four values, J. London Math. Soc. (2), 20 (1979), 457-466.
- [7] G. GUNDERSEN, Meromorphic functions that share three values IM and a fourth value CM, Complex Variables Theory Appl., 20 (1992), 99-106.
- [8] W. K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [9] H. ZHONG, On the extension of F. Nevanlinna Conjecture, Acta Math. Sinica (1), 36 (1993), 90-98.

DEPARTMENT OF MATHEMATICS AND PHYSICS Nanjing University of Aeronautics and Astronautics Jiangsu, 210016, P.R. China