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ENTIRE FUNCTIONS THAT SHARE ONE VALUE

WITH THEIR DERIVATIVES

HUALIANG ZHONG

Abstract

The paper generalizes a result of [2] and makes an example which shows
that the generalization is precise. Also we get similar conclusions in other
cases.

§ 1. Introduction

We say that nonconstant meromorphic functions / and g share the value a
provided that f(z)=a if and only if g(z)=a. We will state whether the shared
value is by CM (counting multiplicities) or by IM (ignoring multiplicities).

L. Rubel and C. C. Yang proved the following theorem :

THEOREM AC1]. Let f{z) be a nonconstant entire function. If f and f share
two distinctive valves a and b IM> then f=f.

1986, Jank, Mues and Volkman proved:

THEOREM BC2]. Let f{z) be a nonconstant entire function. If f and f share
the value a (aφQ), and f"{z)—a when f(z)=af then f=f.

It is asked naturally whether the f" of Theorem B can be simply replaced
by f{k) (&^3). We make an example which shows that the answer of this
question is negative.

Let k be a positive integer (k>3) and let ω(Φl) be a (k — l)-th root of unity.
Set g{z)—eωz-\~o)—1. It is easy to know that g, g' and gik) share the value ω
CM, but gΞfΞg' and gφg(k).

Between the example and Theorem B we will prove the following results.

THEOREM 1. Let f(z) be a nonconstant entire function. If f and f share
the value a (aφO) CM, and f{n\z)= f^n+ί\z)=a (w^l) when f(z)=a, then
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It is obvious that Theorem B is a special case of Theorem 1.
Before stating Theorem 2, we need a slight general notation about the

"share". We assume that the reader is familiar with the usual notations and
fundamental results of Nevanlinna's theory of meromorphic functions (see, e. g.
[3], [8]). In particular, S(r, f) will denote any quantity that satisfies S(r, f)
=0(l)T(r, /) as r-^ + oo, possibly outside a set e of r of finite linear measure.

Let E=E{flf f2, .» , / „ ; ( * ! , α2, - , α»)} = (U^i/7Kα,))\(Π?-i /jι(fly)) and
let iV^r, l/(fχ—aι)) denote the counting function of those appoints of ft which
belong to the set E, i—\, 2, •••, n. We introduce the following definitions:

DEFINITION 1. Two nonconstant meromorphic functions / and g share the
value a CMN (or IMN) if / and g share the value a CM (or IM) outside the
set E where E(=E{f,g;(a,a)\) satisfies that NE(r, l/(f-a))=S(r, f) and
NE{r, (l/g-a))=S(r, g).

THEOREM 2. Let f(z) be a nonconstant entire function, f, f(n) (n>l) share
the value a (Φθ) IMN, and f'(z)=f(n+1\z)=a when f(z)=a. If for any set e
of finite linear measure

(1.1)

where E^E{f, / ( n + 1 ) (α, a)}, then f=f(n\

We don't know whether it is possible to get rid of the condition (1.1) in
Theorem 2.

D E F I N I T I O N 2. Meromorphic functions flf f2, •••, fn share the array (au a2,
- , an) CM provided that / γ 1 ( α 1 ) = f γ ( a j ) (ϊ^j£n) by counting multiplicities.
Similarly we say fu f2, •••, fn share the array (au a2y •••, an) CMN (or IMN)
if fu fu •••, fn share the array (alf a2, •••, α») CM (or IM) outside the set
E=E{fu ft, •••, fn, (βi, β2, •••, β i)} where J5 satisfies that Ns(r, l/(fj—aj)=
S(r,fd), j=l,2, -,n.

There is an example which shows that the condition of Theorem B can't
be replaced by the condition that /, / ' and / " share the array (a, a, b) CM.
Let g(z)=eu+L It is easy to know that g, g', gff share (2, 2, 4) and g&g'.
However we can make the following conclusion.

THEOREM 3. Let f{z) be a nonconstant entire function. If f, / ' , f" share
the array (a, b, b) IMN, where abΦO, then f—a=f'—b.

% 2. Lemmas

LEMMA 1. Let f(z) be a nonconstant meromorphic function and let b3 (j — l,
2, -•- , q) be q distinctive finite numbers. Then for any integer k^O,



252 HUALIANG ZHONG

Σjm(r, j a ^

where S(r, f)—o{l)T(r, f) as r-+oo, possibly outside a set e of r of fiinite linear
measure.

This lemma can be simply derived from p. 16 of [3].

LEMMA 2. Suppose that entire functions /, / ' share the value a (Φθ) CMN.
Then

T(r9 f)£2N(r,j^)+S(r, f).

Proof. Since, from Lemma 1, we know that

m (r> 7=7)+m(r' 7 ^ ) ^ K r τ)+m(r> τ=^)+S{r<f)

<m(r, jy)+S{r, f)<T(r, f")+S(r, /),

it follows that

T(r, f)+T(r, f')£2N(r, -^-)+T{r, f")+S(r, f).

By using T(r, f")<T{r, f')+S(r, /), we get

T{r, f)<2N(r, -A-)+S(r, /).

LEMMA 3. Suppose that nonconstant entire functions f, f(k) (k^l) share the
array {a, b) IMN, f'(z)=f{k+ι\z)=b when f(z)=a, where abφO. If f<*>-b=£
f—a, then the following statements hold:

(2.1) 2JV(r, j-^<T{r, f)+S(r, f)

(2.2) T(r, f)£2N(r, J^)+S(r, f).

(2.3)

Proof. From the conditions of the lemma, we see that if zo^f~\a)Γ\
(f{k))~ι(b)y then z0 must be a common zero-point of f—a, f(k)—b and (f(k)—b)
—(f—a) with multiplicities 1, 1 and γ(^2) respectively. Then
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( 2 4 ) 2N(r> 7^a

r, mT(r, f)+S(r, /).

Since, by using Lemma 1, we get that

(2.5) m ( r , ^ ) + m ( r , ^ ) ^

it is deduced that

(2.6) T(r, f)+T(r, /<*>)£N(r, j~)+N(r,~^)+m(r,j^)+S(r, f)

So

By using (2.4) and (2.6), we get (2.3).

LEMMA 4C3:. Let f(z) be an entire function. Then

T(r,f)^N(r,j)+N(r,ηJ-^)+S(r,f) where aΦO.

LEMMA 5. // entire functions f, f and f" share the array (a, b, b) IMN
(abΦO), z^f-\a)r\{f'r\b)r\(f'Ύ\b), set

then

(2.7) H{z)=

(2.8) K(z)= ff

Proof. Since the Taylor expansion of f{z) about z0 is

h f'i? )

by an elementary calculation, we can obtain (2.7) and (2.8).
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§3. Proof of Theorem 1

From Theorem B, we know that Theorem 1 is valid for n = l . Next we
suppose that n>2. Set

Then

(3.1) m{r, φ)=S(r, / ) , ro(r, ^)-S(r, / ) .

Suppose 2Ti is an α-point of f(z). Then the Taylor expansion of f(z) about zx is

(3.2) /(2) i ip Z ^

Hence

f(n) 1
(3 3) 7 ^ = ^

(3.4) ^ = ~ 1 - + - / ( n + ί ) U i ) - A ^ - + 0 {(*-*)}.

It follows from (3.3) and (3.4) that

(3.5) φ(z) = ί ^ - ^ + 0 {(z-^)}.

Since the pole points of φ(z) come from the α-points of f(z), we see from (3.5)
that

(3.6) N(r, φ)=0.

Also we know from (3.2) that

f'-a- f(zύ (z-zύ+f'{zι)V {Zι) 2f"(Zl)

and that

+f'-a-f'M {z-Zι)
+ f''{Zi)V {Zl) 2f"{Zi)

Therefore

(3.7) ^ ) = /^)

Thus
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(3.8) N(r,φ)=0.

Combining (3.6), (3.8) with (3.1), we see that

(3.9) T(r, φ)=S(rt f\ T{r, φ)=S(r, f).

From (3.5) and (3.7), it follows that

Set H(z)=J-—)z\ J , It is easy to know that

(3.11)

From (3.2), we deduce that

(3.12) H(z)

Hence

(3.13) H{z)+^4-

Next we consider the following two cases:
(i) Suppose that H(z)+φ(z)/φ{z)^L Set L(z)=H(z)+<p(z)/ψ(z)-l. Com-

bining (3.9), (3.11) and (3.13), we deduce that

(3.14) N(r, -Jz^)^N{r> z)=T(r>

By using Lemma 2, we get T(r, f)^S{r, f). It follows that f(z) is a polynomial.
So / and / ' can not share the value a CM which contradicts the condition of
Theorem 1.

(ii) Let H(z)+(φ(z)/φ(z)) = l. Then

finKz)-f'(z) f'(z)-a

f(z)-a ^ f{z)-a ~1'

Thus / = / ( n ) .

§4. Proof of Theorem 2

Assume that fΞ$f(n). From Lemma 3, we see that

(4.1) T(r, f)£2m(r, y^)+S(r, f).

Hence

(4.2) T(r, /<»>)̂ T(r, f)+S(r, f)£2m(r, y^)+S(r, f)<2m(r, -~y)+S(r, f).
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Thus

(4.3) 2N(r, j^)^T(r, / (

Now suppose that /<») =/<»•"). Then f{n){z)^cez and f\z)-f(z)=coz
n'1 +

••• + c n - 2 £ + c n _ 1 where c and cx (*=0, 1, •••, n—1) are constants. If cφO, then
/ ( n ) has infinitely many α-points and there exist infinitely many points z such
that f(z)=f'(z). It is deduced that c<=0 (ί=0, •••, n —1) and that /ΞΞ/' , which
contradicts the assumption of / ^ / ( n ) . If c=0, then / is a polynomial whose
degree is at most n—1. Since / is nonconstant, it has necessarily an α-point.
By the assumption, it is also an α-point of / ( 7 1 + 1 ) (ΞΞ0). This is a contradiction.
So we assume that / ( n ) ^ / ( n + 1 ) , then

N(r, jzd=N

/(n)

Combining (4.3), (4.4) and (2.2), we get

(4.5) T(r, f)^T{r, fw)+S(r, f).

On the other hand, it follows from (2.1) that

(4.6) 2N(r, jJ^)=2N{r, j^)+S(r, f)<T{r, f)+S(r, f)

So

(4.7) T(r, /<»>)̂ 2m(r, jJ~)+S(r, f).

Combining with (4.2), we deduce from Lemma 1 that

(4.8) m{r,7^w)^m{r,^)+m{r>j^-^-S{r, f)>T(r, /""

Hence

(4.9) T(r, fw)£T(r, / ( r ι + 1 )

By using Lemma 3 and Lemma 4, we see that

(4.10) T(r, /<»+»)£ff (r, -j±^

Hence
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From (4.10), (4.9), (4.5) and (2.1) we get

(4.12) 2

Also we know that

(4.13) N(r, l_a)£T(r, fin+1^T(r, f) + S(r, f)<2N(r, j^)+S(r, f)

and

(4.14) 2N(r, ~-^=2N(r, j^)+S(r, f)

where E=E{f, / ( 7 1 + 1 ) (a, a)}.
We deduce from (4.12) and (4.14) that

(4-15) N(r,jT^-^)^2Ns(r,7IJv-^)+S(r, f),

and from (4.13), (4.14) that

(4-16) N(r, f{n+l_a)> /

Combining (4.15), (4.16) with (4.11), we get

ί

for some finite linear measure e of r which contradicts the assumption of the
theorem.

§5. Proof of Theorem 3

Assume that f'—b^f—a. By using the same methods as those in proof
of Lemma 3, we get that

(5.1) N(r,j7)=S{r,f),

and that

(5.2) T(r, f)£ 2N(r, -±—)+S(r, f).
V J — Q,'
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Using an argument similar to that in the proof of Theorem 2, we can assume
that / W ' . Then

Hence

(5.3)

Let ^oe/-1(α)Π(//)"1WΠ(///)"1W. From Lemma 5 and the assumption that /,
/', f share (α, b, b) IMN, we get that

(5.4) 2H{z)+K{z)=O{{z-z0)},

(5.5) T(r, //)-S(r, /), T{r, K)=S(r, / ) .

Now we suppose that 2H(z)+K(z)^0. From (5.4) we have

(5.6)

Combining with (5.2) and (5.5), we get T{r, f)<^S(r, /) which contradicts the
assumption of the theorem.

Next let 2H(z)+K(z)=0. Then

( 5 7 ) f(z)+f\z)_ 2f"(z)
f(z)-a f'{z)-b •

From (5.1) and (5.3), we choose zλ satisying /'(zO—O, /"{zjφΰ. It follows from
(5.7) that

ί {Zl\f(Zι)-a + bΓυ

Hence

/(*.)= α - 4 .
By the derivative calculation on both sides of (5.7), combining with f'(zi)=0
and f(z!)=a—b/2, we get that f»{zi)=b. Therefore

±-T{ryf)-S{r,

where Ex^E{ff, f" (ft, ft)}, £ = {/, /', f" (α, ft, ft)} which contradicts the con-
dition that /, / ' and /" share the array (α, ft, ft) IMN.

The author dedicates acknowledgements to the referee for his useful sug-
guestions and pertinent comments.
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