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ENTIRE FUNCTIONS THAT SHARE ONE VALUE
WITH THEIR DERIVATIVES

HUALIANG ZHONG

Abstract

The paper generalizes a result of [2] and makes an example which shows
that the generalization is precise. Also we get similar conclusions in other
cases.

§1. Introduction

We say that nonconstant meromorphic functions f and g share the value a
provided that f(z)=a if and only if g(z)=a. We will state whether the shared
value is by CM (counting mulitiplicities) or by IM (ignoring multiplicities).

L. Rubel and C.C. Yang proved the following theorem :

THEOREM AM™. Let f(z) be a nonconstant entire function. If f and f’ share
two distinctive valves a and b IM, then f=f’.

1986, Jank, Mues and Volkman proved :

THEOREM B, Let f(z) be a nonconstant entire function. If f and f’ share
the value a (a+0), and f”(z)=a when f(z)=a, then f=f'.

It is asked naturally whether the f” of Theorem B can be simply replaced
by f“% (k=3). We make an example which shows that the answer of this
question is negative.

Let k£ be a positive integer (£=3) and let w(#1) be a (k—1)-th root of unity.
Set g(z)=e**+w—1. It is easy to know that g, g’ and g‘® share the value @
CM, but g==g’ and g=zg‘®.

Between the example and Theorem B we will prove the following results.

THEOREM 1. Let f(z) be a nonconstant entire function. If f and [’ share
the value a (a#0) CM, and f™(z)=f"*"Y(z)=a (n=1) when f(z)=a, then
f=1o.
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It is obvious that Theorem B is a special case of Theorem 1.

Before stating Theorem 2, we need a slight general notation about the
“share”. We assume that the reader is familiar with the usual notations and
fundamental results of Nevanlinna’s theory of meromorphic functions (see, e.g.
[31, [8]). In particular, S(r, f) will denote any quantity that satisfies S(», f)
=o(1)T(r, f) as r—-+oo, possibly outside a set ¢ of » of finite linear measure.

Let E=E{fy, fs, -, fn;(ay, @, -+, @)} = (Ul [7'(a,)\(N=1 f7'(ay)) and
let Ng(r, 1/(f;—a,)) denote the counting function of those a;-points of f, which
belong to the set E, i=1, 2, ---, n. We introduce the following definitions :

DEFINITION 1. Two nonconstant meromorphic functions f and g share the
value a CMN (or IMN) if f and g share the value a CM (or IM) outside the
set E where E(=E{f, g;(a, a)}) satisfies that Ngx(r, 1/(f—a))=S(r, f) and
Ng(r, (1/g—a))=S(r, g).

THEOREM 2. Let f(z) be a nonconstant entire function, f, f™ (n=1) share

the value a (#0) IMN, and f'(z2)=f"*""(z)=a when f(z)=a. If for any set e
of finite linear measure

(n+1)
1.1 lim— 1 "% ( ST —a
;@8 N( f<n+1) a

where E=E{f, f"*V; (a, a)}, then f=f™.

—a) 1
)2

We don’t know whether it is possible to get rid of the condition (1.1) in
Theorem 2.

DEFINITION 2. Meromorphic functions f,, f,, -+, f, share the array (a,, a,,
-+, a,) CM provided that f7'(a,)=f;'(a;) (1<7=n) by counting mulitiplicities.
Similarly we say f,, f,, ---, fa. share the array (a,, a,, -+, a,) CMN (or IMN)
if fi, fs, -+, fn share the array (a,, a,, -, a,) CM (or IM) outside the set
E=E{f,, fs -, fn, (ay, @y, -+, @)} where E satisfies that Ng(r, 1/(f;—aj;)=
S(r, £, 7=1,2, -, n

There is an example which shows that the condition of Theorem B can’t
be replaced by the condition that f, f’ and f” share the array (a, a, b) CM.
Let g(z)=e®*+1. It is easy to know that g, g/, g” share (2,2, 4) and g=*g’.
However we can make the following conclusion.

THEOREM 3. Let f(z) be a nonconstant entive function. If f, f’, f” share
the array (a, b, b) IMN, where ab+0, then f—a=f"—

§2. Lemmas

LEMMA 1. Let f(z) be a nonconstant meromorphic function and let b, (7=1,
2, -+, q) be q distinctive finite numbers. Then for any integer k=0,
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Sl )2l s

where S(r, f)=0o(1)T(r, f) as r—oo, possibly outside a set ¢ of r of fiinte linear
measure.

This lemma can be simply derived from p. 16 of [3].

LEMMA 2. Suppose that entire functions f, f’ share the value a (+0) CMN.
Then

1
7, 7—_~5)+S(r, n.

Proof. Since, from Lemma 1, we know that
N A (P R e

)45, NETG, 9450, ),

T, f)§2N(

= m(r.
it follows that
TG, )47, FISEIN(r, 525 )+ T, 450, 1),
By using T(r, f//)ST(r, f)+S({, f), we get

Tir, NS2N(r, )+, 1.

f

LEMMA 3. Suppose that nonconstant entire functions f, f*> (k=1) share the
array (a, b) IMN, f'(z2)=f"%*Y(z)=b when f(z)=a, where ab+0. If f* —
f—a, then the following statements hold :

@.1) 2N(r, L DS, )
(2.2) T(r, H=2N(r, %)—I—S(r, f.
2.3) N(r, fm,)) Str, £).

Proof. From the conditions of the lemma, we see that if z,&f a)N
(f*)~Y(b), then z, must be a common zero-point of f—a, f* —b and (f*'—b)
—(f—a) with multiplicities 1, 1 and y(=2) respectively. Then
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1
(2.4) 2N(r, =N G (=) ST )
=T(@, fP=N+S0, NETC, H+Se 1.

Since, by using Lemma 1, we get that
R N I s

k)4, 1),

gm(r,
it is deduced that

@6) T, HHTG, f<k>>§N(r,71:E)+N( ey ) F 7(—,}-+T,)+s<r, f

<2N( e )—I—T(r fED)=N(r, 5 )+SCr, ).

f(k+1)
So

T, HS2N(r, 22 )+50, ).

f
By using (2.4) and (2.6), we get (2.3).

LEMMA 451, Let f(z) be an entire function. Then

(-, H=N (7, %)—}-N(? L )+S(r, ) where a#0.

" f
LEMMA 5. If entire functions f, f' and f” share the array (a, b, b) IMN

(ab#0), zo€ (@)D OINf”)7'(b), set

ror k@=L

H(z)=

f—a f—b f-
then
@.7) H@=2(1- L) 40 —20)
(2.8) K(z)= fli()@—l-l—O {(z—2z)}.
Proof. Since the Taylor expansion of f(z) about z, is
f(Z)=a+b(z—zo)+2%(z—zo)2 f”l(z" (z—z0)+ -,

by an elementary calculation, we can obtain (2.7) and (2.8).



254 HUALIANG ZHONG

§3. Proof of Theorem 1

From Theorem B, we know that Theorem 1 is valid for n=1. Next we
suppose that n=2. Set

fP0(E)— [ () fP0(@) =)

= Fa MO T
Then
3.1 m(r, @)=S, f), mr, =S, f).
Suppose z, is an a-point of f(z). Then the Taylor expansion of f(z) about z; is
62 fmatate-art L eayt o+ L E e

a n a n+1
J{‘H(Z—Zx) +(7_i_—1)—!(2"‘21) +
Hence
sm o1 IEN)

(3.3) e (S ) SR CEE)

f(n.+1) . 1 1 s B f//(zl) B
(3.4) - FAMORES S LN G

It follows from (3.3) and (3.4) that

fr(z) —a
a

(3.5) ¢(z)= +0{(z—2z)}.

Since the pole points of ¢(z) come from the a-points of f(z), we see from (3.5)
that

36 NG, ¢)=0.
Also we know from (3.2) that
f(n) - a . 1 l n1 B af”/(Zl) B
== Py =z T P [rorenta)— f,,(zl)]-I—O{(z )
and that
f(n+l) . a . 1 ]_ (n+2 _ af”’(Zl) _
f'—a - f7(zy) (Z—Zl)—*— "(z1) [f Nz1) zf,,(z‘)]—l—O {(z—z1)}.
Therefore

F"(z1)
Thus
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3.8 N(r, ¢)=0.
Combining (3.6), (3.8) with (3.1), we see that
3.9 T(r, o)=S(r, ), T(r, $)=S(, f).
From (3.5) and (3.7), it follows that
o(z) _ f"(z1)

(3.10) - a +0{(z—z1)}.

f™2)— '@ .
Set H(z)= “Fo—a It is easy to know that
(3.11) T(r, H)=S(r, /).
From (3.2), we deduce that
(3.12) H)=[1- r (2‘)]+0{(z 2.
Hence
(3.13) H(z)-}—ﬁz; =140 {(z—21)}.

Next we consider the following two cases:
(i) Suppose that H(z)+¢(z)/d(z)#]l. Set L(z2)=H(z)+¢(z)/¢(z)—1. Com-
bining (3.9), (3.11) and (3.13), we deduce that

(3.14) N(r, ﬁ)éN(n %)éT(r, LSS, f).

By using Lemma 2, we get T'(r, /)XS(r, f). It follows that f(z) is a polynomial.
So f and f’ can not share the value ¢ CM which contradicts the condition of
Theorem 1.

(ii) Let H(z)+(p(2)/¢(z))=1. Then

f™@)—f'(2) f'(Z)—a=1
f(e)—a f@)—a —

Thus f=f™,

§4. Proof of Theorem 2
Assume that f=f. From Lemma 3, we see that
.1 T(r, f<om(r L)+S(r .
. ’ = b f_a 3

Hence

(42 T, f)STC, H+S0, HS2m(r,

LY+, psm(r, o)+, ).
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Thus
43) IN(r, 7 )STC, SOV 4S0, 1),

Now suppose that f™=f™*H  Then f™(z)=ce* and f'(2)— f(z)=cez" '+
«+ +Cn-22+cCp-1 where ¢ and ¢, (=0, 1, ---, n—1) are constants. If ¢+0, then
f™ has infinitely many a-points and there exist infinitely many points z such
that f(z)=f"(z). It is deduced that ¢;=0 (=0, ---, n—1) and that f=f’, which
contradicts the assumption of fz=f™. If ¢=0, then f is a polynomial whose
degree is at most n—1. Since f is nonconstant, it has necessarily an a-point.
By the assumption, it is also an a-point of f‘**(=0). This is a contradiction.
So we assume that f™z=f*D  then

44 N(n, T )<N( f(n+1,7—)+5(r, n=1(r, ff—((n;w))JrS(r, f
f(n) -
<N(r, ?-(1;5)-{-5(7’, £.
Combining (4.3), (4.4) and (2.2), we get
(4.5) T(r, NET(r, f)+S, f).
On the other hand, it follows from (2.1) that
(4.6) 2N(r,f(n) =2 (r, 7= )—I—S(r HET(r, fH+S, )
=T(r, f™)+S(r, f).
So
@.7) T(r, fo)<2m(r, f(n) )+ S, £).

Combining with (4.2), we deduce from Lemma 1 that

4.8) m(r,-f—(%m)> m(r, f<n>)+m(,7m—)1;;)—3<n HzT(r, FO)=Sr, f).
Hence
4.9) T(r, f™)ET(r, f™*V)+S(, f).

By using Lemma 3 and Lemma 4, we see that

(4.10) T(r, f =N (7, f(,m))+N( f(,m) )+ S0, 1)
<N (r, f(,ml) )+, ).

Hence
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1 = 1
(4.11) N(r zarmn—g )=N (7 e ) 450, 1.
From (4.10), (4.9), (4.5) and (2.1) we get
4.12) 2N (r, 5= )<N( f(nm g )+ S D).
Also we know that
@13 N(r, ey ) ST, SONET, N+, HSIN(r, 2 )45, 1)
and

1) aN(r, ﬁ)zzﬁ(n L)t 1)

2N (7, g )~ Nelr, ey )| +50 1,

where E=E{f, f™*Y; (a, a)}.
We deduce from (4.12) and (4.14) that

(4.15) N(r, f(,m) )<2NE( f(,m, )+S<r n,
and from (4.13), (4.14) that
(4.16) N(r, f(,m) e ) 22N, f(,m) ) =S /).

Combining (4.15), (4.16) with (4.11), we get

Nl pebd)
lim ——m——= 0
T&e N( »f(n+1)__ )
for some finite linear measure ¢ of » which contradicts the assumption of the
theorem.
§5. Proof of Theorem 3

Assume that f'—b%f—a. By using the same methods as those in proof
of Lemma 3, we get that

T\ _
5.1) N(r, 7;)—S(r, ),
and that

.2) T, fl< 2N<r, >+S(r .
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Using an argument similar to that in the proof of Theorem 2, we can assume
that f’s=f”. Then

1 f”
N(r7=5)=N(r I 1)+S<r NET(r, 27 480, H=N(r, 5)450. .
Hence
(5.3) (¢, H=2N(r, f,)+S(r .
Let zo= fYa)N(f")b)N(f”)"Y(b). From Lemma 5 and the assumption that f,
f’, f” share (a, b, b) IMN, we get that
(5.4) 2H(2)+ K (2)=0 {(z—2z,)},
(5.5) T(r, H)=S(r, ), T(r, K)=S(r, f).

Now we suppose that 2H (z)+K (z2)%0. From (5.4) we have

(5.6) N(r,7i—a)§N( s K)+S(1’ f.

Combining with (5.2) and (5.5), we get T(r, f/)<S(r, f) which contradicts the
assumption of the theorem.
Next let 2H(z)+K(z)=0. Then

["@+f"(z) _ 2f"(z)

f(z)—a f(z2)—
From (5.1) and (5.3), we choose z; satisying f’(z,)=0, f”(z;)#0. It follows from
(5.7) that

(5.7)

fff(zl)(ﬁgj—_; +2)=0.

Hence
b
fz)=a— 5

By the derivative calculation on both sides of (5.7), combining with f’(z,)=0
and f(z1)=a——b/2 we get that f”(z;)=b. Therefore

T N=S0, DEN(r ) =N ) 5N (1 )< e )

where E\=E{f’, f”; (b, b)}, E={f, f/, f”; (a, b, b)} which contradicts the con-
dition that f, f’ and f” share the array (a, b, b) IMN.

The author dedicates acknowledgements to the referee for his useful sug-
guestions and pertinent comments.
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