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1. Introduction and main theorems

In 1961, T. Frankel [3] showed that two compact totally geodesic submani-
folds P and Q in a Riemannian manifold N of positive sectional curvature must
necessarily intersect if their dimension sum is at least that of N. If N is also
a Kaehler manifold, he proved a more satisfactory result: There, instead of
requiring P and Q to be totally geodesic, under the assumption that they are
analytic submanifolds, he obtained the same conclusions under the assumptions.
The proof was done by a nice application of the formula for the second varia-
tion of arc-length of a geodesic derived by Synge in [11].

Synge once used the second variational formula to prove that an even
dimensional orientable compact manifold with positive sectional curvature is
simply connected. It turns out that the Synge's method for the second varia-
tion of arc-length of a geodesic works as a powerful tool in differential geo-
metry. In the present paper, we shall study the intersections of minimal sub-
manifolds in a Riemannian manifold with partially positive curvature and analytic
submanifolds in a Kaehler manifold with partially positive holomorphic bisec-
tional curvature by using this method. We remark that Galloway and Rodriguez
[7] studied the same problems for minimal submanifolds in a manifold with
non-negative sectional curvature by a different approach but our results have
few relations with theirs.

Before stating our theorems, we recall some concepts of partially positive
curvature (cf. [12]). Let Nn be an rc-dimensional Riemannian manifold and
p^Nn be a point of Nn. If, for any (& + 1) mutually orthogonal unit tangent
vectors e, eu ••• , ek<=TpN

n, we have Jfi=ιK(eΛet)>0 (resp. ^0), we say Nn

has positive (resp. nonnegative) &-th Ricci curvature at p. UN71 has positive
(resp. nonnegative) &-th Ricci curvature at every point of it, we call Nn has
positive (resp. nonnegative) &-th Ricci curvature and denote this fact by
RiCίk)(Nn)>0 (resp. ^0). Here, K(e/\et) denotes the sectional curvature of the
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plane spanned by e and ex (l<^i<k). Thus, positive (nonnegative) 1-th Ricci
curvature is equivalent to positive (nonnegative) sectional curvature and positive
(nonnegative) (n—l)-th Ricci curvature is equivalent to positive (nonnegative)
Ricci curvature. Compact locally symmetric spaces of rank ^ 2 are examples
of manifolds with positive &(&>l)-th Ricci curvature. Slight perturbations of
these metrics give non-symmetric examples. Further examples of manifolds of
positive &-th Ricci curvature can be found among the compact homogeneous
spaces with a bi-invariant metric (cf. [1]).

Now we can state our Theorem 1 as follows:

THEOREM 1. Let N be an n-dimensional complete connected Riemannian
manifold with nonnegative k-th Ricci curvature. Let V and W be a complete
immersed totally geodesic hypersurface and an r(^k)-dιmensιonal complete im-
mersed minimal submanifold of N, respectively, each immersed as a closed subset,
and let one of V and W be compact. Assume N has positive k-th Ricci curva-
ture either at all points of V or at all points of W. Then V and W must
intersect.

Theorem 1 generalizes several known results. Firstly, it generalizes a
Myers' theorem [10] stating that there exists no closed immersed minimal sub-
manifolds in an open hemisphere, since as an immediate consequence of Theorem
1 we know that every closed immersed minimal submanifold in a Riemannian
manifold N of positive sectional curvature must have non-empty intersection
with any immersed closed totally geodeisc hypersurface of N. Secondly,
Theorem 1 is a higher dimensional generalization of the following Hadamard's
theorem [5] : On a complete connected surface with positive curvature, every
geodesic must meet every closed geodesic on the surface. Finally, it also
generalizes the FrankeΓs theorem mentioned before in case of one of the sub-
manifolds P and Q has codimension one. We would like to mention that the
FrankeΓs theorem can be also regarded as a generalization of the above Hada-
mard's theorem.

Theorem 1 is optimal in the sense that the condition on V can't be weakened
either to "minimal hypersurface" or to "totally geodesic submanifold" (see Ex-
ample 1) and that one can't expect the same conclusion in Theorem 1 still holds
if N is only assumed to have nonnegative &-th Ricci curvature (see Example 2).

As an application of Theorem 1, we can prove certain nonexistence result
for minimal immersions into a half space of a Riemannian manifold N with
partially positive curvature. Namely, we have

THEOREM 2. Let Mn~λ be an onentable embedded compact totally geodesic
hypersurface in an n-dimensional orient able complete connected Riemannian mani-
fold Nn with nonnegative sectional curvature. Assume Nn has positive k-th Ricci
curvature at all points of Mn~\ If Vr is an immersed closed ri>,k)-dimensional
minimal submanifold of Nn which is on one side of Mn~\ then Vr is contained
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in Mn~ι. Moreover, when r—n—2, the natural homomorphism of the fundamental
groups: π1(Vn~2)->π1(Mn~1) is surjectiυe.

The simplest illustration of Theorem 2 is perhaps the following: Let
S2m+\1) be the standard unit (2m+l)-sphere and RP2m+\l) the (2ro+l)-dimen-
sional real projective space of curvature 1. Here, ra^l. Let N—S2m+1(l)X
RP2m+\l) be the Riemannian product space of S2m+1(l) and RP2m+\l). It is easy
to check that N has nonnegative sectional curvature and positive (2m+2)-th
Ricci curvature. Now, we take a totally geodesic hypersurface M=S 2 m (l)X
RP2m+1(l) of N. Then M divides N into two open domains Ωx and Ω2, where
each has M as its boundary. Theorem 2 tells us that any closed immersed
minimal submanifold of dimension ^>2m+2 in Ωι or Ω2 is contained in M and
that there is no minimal embedded 4m-sρhere in any of the closed domains Ωλ

and 42 2.
When the ambient manifold is a Kaehler manifold, we have

THEOREM 3. Let N2n(n^2) be a complete connected Kaehler manifold of
nonnegative holomorphic bisectional curvature and of real dimension 2n. Let W2r

and Vt be a complete immersed complex analytic submanifold of real dimension
2r and a t(^2n—r)-dimensional complete immersed totally geodesic submanifold,
respectively, each immersed as a closed subset, and let one of W2r and V1 be
compact. Assume N2n has positive holomorphic bisectional curvature either at all
points of W2r or at all points of V1. Then W2r and V1 must intersect.

Theorem 3 is also optimal in the sense that V1 can't be weakened to be
minimal, that the condition r+t^2n is essential and that the condition N2n has
positive holomorphic bisectional curvature on W2r or V1 is also necessary (see
Examples 3, 4 and 5).

2. Proofs of the results

Proof of Theorem 1. We can assume that V and W are embedded, other-
wise the proof given will then hold using any "sheet" of the immersion. Sup-
pose then that V and W do not intersect. Let γ: [0, /]—>JV be a normal geodesic
from p^W to q^V that realizes the minimum distance between these submani-
folds (Since both V and W are closed subsets and one of them is compact,
such γ exists at least one). An argument using the first variation formula of
arc-length shows that γ strikes both V and W orthogonally. Since V has codi-
mension 1, parallel translating any unit vector e tangent to W at p yields an
unit vector field E along γ which is tangent to V at q. This vector field along
γ gives rise to a "variation" of the geodesic γ keeping end-points on the "end-
manifolds" V and W. Now, take a unit orthonormal basis eu ••• , er of TPW.
Parallel translating them along γ give rise to r mutually orthogonal unit vector
fields Eu ••• , Er along γ. Each vector field Et (/=!, •••, r) makes a variation
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with length LEi(s) of the variational curve of the geodesic γ keeping endpoints
on V and W. The first variation of arc-length LEi(0) is 0. By the second
variation formula of arc length [9, p. 99] we have, for i=l, ••• r,

(1) LEiφ)=<σv(Et(g)t E^q)), γV)>

where σv and σw denote the second fundamental forms of V and W, respec-
tively. Since V is totally geodesic, we have σv—0. From the minimallity of
W, we know that

Σ σw(et, eτ)=0 .
t = l

Also, it follows from Ric(k)(N)^0 and r^k that

for any indices iιΦi2Φ ••• Φik^{l, •••, r], thus, we have

^ 23 K(f(t)ΛEι.(tmθ .

Moreover, since N has positive &-th Ricci curvature either at all points of V
or at all points of W, we know either

or

for any indices ixΦ ••• Φik^{\, •••, r}. Hence, we have either

or

Substituting these formulas into (1), we get

Σ LEi(0)=-[l ±K(r'(t)ΛEt(t))dt<0 .
ι=i % Jθr=i

Thus, L^(0)<0, for some i, which contradicts to the assumption that γ is of
minimal length from W to V. Hence V and W must intersect. This completes
the proof of Theorem 1. Q.E.D.
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In 1951, S. B. Myers [10] proved that there exists no closed immersed
minimal hypersurface in an open hemisphere. The following Corollary 1 which
generalizes this result is a direct consequence of Theorem 1.

COROLLARY 1. Any immersed closed minimal submanifold in a Riemannian
manifold N of positive sectional curvature must intersect every immersed closed
totally geodesic hypersurface of N.

Proof of Theorem 2. Since the Ricci curvature of Nn is nonnegative and
is positive at all points of Mn~\ we know that along each geodesic γ: [0, +oo)
-^Nn issuing orthogonally from Mn~\ the condition

holds. Here, Ric(γ'(f)) denotes the Ricci curvature of Nn in the direction γ'{f).
It then follows from Theorem 1 in [6] and the fact that Mn~ι is totally geodesic
that Nn is compact. We can thus conclude that the first Betti number of Nn

is zero by using again the fact that the Ricci curvature of Nn is nonnegative
and positive at some points. Combining this with the fact both Nn and Mn~ι

are orientable, and chasing through the exact sequences of homology groups, it
is easy to see that Mn~ι divides Nn into two components Ωγ and Ω2, such that
dΩ1=dΩ2 (cf. [2]). This shows that the condition "Vr is on one side of Mn~ι"
makes sense. By Theorem 1, Vr has the non-empty intersections of M71"1.
Thus, Vr is on one side of Mn~ι and touches it. It then follows from Corol-
lary 1.4 in [7] that Vr is contained in Mn~\ When r—n—2, since Nn has
positive k {k<n—2)-U\ Ricci curvature at all points of Mn~ι and Mn~ι is a
totally geodesic hypersurface, we know that the Ricci curvature of Mn~x is
positive and that Vn~2 is a minimal hypersurface of Mn~ι. By Frankel's theo-
rem in [4], the natural homomorphism of the fundamental groups: πλ{Vn~2)—>
π^M71'1) is surjective. This completes the proof of Theorem 2.

Proof of Theorem 3. Suppose that W2r and Vt do not intersect. Let
γ: [0, /]-+JV27i be a normal geodesic from po^W2r to q^Vt that realizes the
minimum distance between them. Denote by / the complex structure of N2n.
Since W2r is a Kaehler submanifold, we can choose a unit orthonormal basis
eu -" , er, er+1, ••• , e2r of TPoW

2r such that er+ι—Jet (i=l, ••• , r). Parallel trans-
lating elf Jeu ••• , er and Jer along γ give rise to 2r mutually orthogonal unit
vector fields Elf JEU ••• , Er and JEr along the geodesic. From r-\-t^2n, we
know that at least r + 1 of the vector fields Eu JEly •••, Er and JEr are tan-
gent to V1 at q0. Thus, there exists some &<Ξ{1, ••• , r] such that both Ek and
JEk are tangent to V1 at q0. The Ek and JEk give rise to two variations of
the geodesic γ keeping end points on W2r and VK The first variation of arc-
length L^(0)=L/£Λ(0)=0, and using the second variation formula of arc-length,
we get
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L'ik(0)=<σvt(Ek(g0)9 Ek(q0)), γ\l)>-<σW2r(ek, ek)y r

f{Q)y-

and
qo), JEk{q»)), γ'(l)>-<σW2r{Jek, Jek), r '

where, σW2r and σvt denote the second fundamental forms of W2r and V1, re-
spectively. Since W2r is a Kaehler submanifold and V1 is totally geodesic, we
have

Hence, we have

(2) L

Now, we denote by R the Riemannian curvature tensor of N2n. For any point
p^N2n, recall that the holomorphic bisectional curvature H{σ, σ') of two J-
invariant planes σ and af in TpN

2n is defined by (cf. [8])

H(σ, σ')=R{X, JX, Y, JY),

where I is a unit vector in σ and Y a unit vector in σf. By Bianchi's identity
we have

K(Ek(t)Λγ'(t))+KUEk(t)Λγ'(t))=R(γ'(t), Jγ\t), Ek(t), JEk{t)).

From the assumption that N2n has nonnegative holomorphic bisectional curva-
ture and has positive holomorphic bisectional curvature either at all points of
W2r or at all points of V\ we have

R(γ'(t), Jγ\t),

for any ίe[0, /], and

max{#(r'(0), Jr'(0), Ek{0), JEM), R(

Substituting these formulas into (2), we get

Hence, the second variation corresponding to at least one of the vector fields
Ek or JEk is strictly negative, contradicting to the assumption that γ is of
minimal length from W2r to V1. Thus, W2r and V1 must intersect. This com-
pletes the proof of Theorem 3. Q.E.D.



248 KATSUEI KENMOTSU AND CHANGYU XIA

3. Examples

In this section, we always assume n ^ 2 .

1. Let S n + I ( l ) = {(*!, ••-, xn+i)eRn+2\ΣΪ±ϊ x\=l\ be the unit (n+l)-sphere.
Take an (n—l)-dimensional totally geodesic submanifold P={(0, 0, xz> •••, x n + 2 )
G S n + 1 ( l ) ( and a Clifford minimal hypersurface Q={(xu x2, ••• , xn+2)^Sn+1(l)\
x\+xl=l/n, Σ?A2 x\=(n-l)/n) of Sn+1(l). It is easy to see that Pr\Q=Q.
This example shows that the condition "V is a totally geodesic hypersurface"
in Theorem 1 can't be weakened to any of the two ones: (i) V is a totally
geodesic submanifold; (ii) V is a minimal hypersurface.

2. The Riemannian product space N=S2(l)xS2(l) has nonnegative 2-th
Ricci curvature. Take a totally geodesic hypersurface M=S\l)xS\l) and a
minimal (in fact totally geodesic) surface V = S2(l)X(0, 0, 1). Here, S\l) =
\(xlf x2, 0)eS2(l)}. It is easy to see that the 2-th Ricci curvature of N can
take value zero in some subspaces of the tangent spaces of N at points of M
and V, but Mr\V=$. This example shows that if N is only assumed to have
nonnegative &-th Ricci curvature in Theorem 1, then the conclusion is not valid.

3. Denote by CPn(c) the complex projective space with the Fubini-Study
metric of holomorphic sectional curvature c. Let π: S2π+1(l)—>CPn(4) be the
Hopf fibration. Let W={{z1} z2y 0, •••, 0)^S2n+\l)c:Cn+1\z1z1+z2z2=l} be a 3-
d i m e n s i o n a l t o t a l l y g e o d e s i c s u b m a n i f o l d of S 2 n + 1 ( l ) a n d V—\{zu z2, •••, zn+i)^
S2n+1(l)\ \zί\

2+\z2\
2=3/2n, ΣίA1 \zι\

2=(2n-3)/2n} be a Clifford minimal hyper-
surface of S2^+1(l). Here, (zlf •••, zn+i)^Cn+1 and we identify Cn+1 with R2n+2.
Then W=π(W) is a Kaehler submanifold of real dimension 2 and V=π(V) is a
closed minimal hypersurface of CPn(4). Obviously, άimcW-\-άim V—2n, but
WΓΛV=0. This example shows that the condition "V is totally geodesic" in
Theorem 3 can't be weakened to "minimal".

4. Let RPn(c/4:)-+CPn(c) be the natural totally geodesic imbedding of real
projective space into the complex projective space: Using the homogeneous
coordinate system {zu •••, zn+i] of CPn(c), RPn(c/4) is expressed by

t=2rα, α = l, •••, n+1}.

It is the fixed point set of the complex conjugation of the coordinates which is
an isometry of CPn(c). Therefore it is totally geodesic. Now we take the
standard complex quadric Qn~1(c)-^CPn(c):

Q
n
-\c)=Uz

u

I
It is easy to see that dim RPn(c/4)+άimc Qn-1(c)=n+n-l=2n-l<2n and
RPn(c/A)Γ\Qn~1(c)=Q. This example shows that the condition on the dimen-
sions of V and W in Theorem 3 is essential.

5. With the notations in the last example, let us consider N=CPn(c)X
CPn(c) with the product metric. Then N has nonnegative holomorphic Msec-
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tional curvature. The complex analytic submanifold W—CPn{c)xQn~\c) and
the totally geodesic submanifold V=CPn(c)xRPn(c) clearly satisfy the condition
dimcW+άimRV^άΊmRN, but WΓ\V=Q. This example shows the importance
of the following condition in Theorem 3: N has positive holomorphic bisectional
curvature at all points of V or W.
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