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ON THE VALUE DISTRIBUTION OF f l ( f ™ ) n

BY C. K. TSE AND C. C. YANG

Abstract

Quantitative estimations on the value distribution of /*(/α:>)n are studied
in this paper. As a result of this, some known results are improved.

1. Introduction

Let / denote_a transcendental meromorphic function, and the usual symbols :
T(r, /), N(r, /), N(r, /), m(r, /), S(r, /) of Nevanlinna value distribution theory
see, e.g. [7], are used throughout the paper.

A complex value a is said to be a Picard value of /, if and only if, f(z)—a
has at most finitely many zeros. W. K. Hayman [8] conjectured that the only
possible Picard value of fnf is zero, and he himself proved the case when
n^3 in [10], and left the cases of n = l, 2. Later on, Mues [11] proved the
case for n=2, and afterwards Clunie [4] proved the case for n = l when / is
entire. An affirmative answer to the case when / is meromorphic and n = l
is yet to be resolved. Since then a stream of studies on questions of possible
Picard values of differential polynomials of / has been launched, and many
related results have been obtained, see e.g. [l]-[5] and [10]-[19]. In 1981,
Steinmetz [12] proved :

THEOREM A. Let f be a transcendental meromorphic function in the plane.
If Wo, •••, n*^0, n0^2, n l + + n Λ ^l and ψ=fn*(f')nι (f <*>)"*-!, then

Γ N(r, ^πhm sup '/ ' ( — >0 .
r^oo ^ T(T, φ)

In 1982, Doeringer [5] proved the following:

THEOREM B. Let f be a transcendental meromorphic function, Q(f) and P(f)
be two non-zero differential polynomials and φ=fnQ(f)+P(f). Then for any
natural number n with n^3+γp(γp : the weight of P(f}},

Γ N(r, l/φ) ^Ahmsup ' .; >Q.
r^oo ^ T(T, φ]
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Remark. Particularly, when n^3, γp— 0(i.e. P(f) is a non-zero small func-
tion of /), we can derive from this that

Thus Theorem B, in some sense, is an improvement and extension of
Theorem A. Futhermore, it gives a quantitative estimation of the number of
zeros of φ. Recently, in [17], the following result has been obtained :

THEOREM C. Let f be a transcendental entire function and n, k be two
non-negative integers with n^2, k ̂  0. Then /(/(*})Λ assumes every non-zero
finite value infinitely many times.

Hence it is natural to ask :

PROBLEM D. Does Theorem C also hold when / is a transcendental mero-
morphic function?

In this paper, as an attempt in resolving Problem D, we obtain some
quantitative estimations on the zeros of f l ( f ( k ) ) n — l with /=!, 2 and k, n^2
by argument different from that of Theorems B and C, and give an affirmative
answer to problem D when &^0 and n>$e+l.

2. Main Result

THEOREM. Let f be a transcendental meromorphic function in the plane and
F = fl(f<k>)n — l with /, k and n being three positive integers and 1^2.

( i ) If /—I and ?2>9g+l, then there exists some constant K>1, a set
M(K) of upper logarithmic density at most δ(K)=mm((2eκ~ί — I)'1, (l+e(K—ΐ)
exρO(l— K))), and a set D of finite linear measure such that n— 9eK—
and

where £(/£") =[0, cx>)\M(/OUΰ(note that for K>1, m(E(K ))=*>),
Particularly F assumes zero infinitely often.
( i i ) If /=2 and &, n^2, then

for every

Remark. The case of /^3 has been taken care of by Theorem B.
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In order to prove the above theorem, we shall make use of the following
lemmas.

LEMMA 1 (Frank [6]). // k is a positive integer and ε>0> then

kN(r, f ) £

LEMMA 2 (Hayman-Miles [9]). Suppose that f(z) is a transcendental mero-
morphic function and K, a constant, >1. Then there exists a set M(K) with upper
logarithmic density at most

tf-l) exp (<1 -

such that for every positive integer k,

limsup-JΓ^'ff, <3eK, rφM(K).- ,
L (T, J )

In particular when r is large and r^M(K), then

(2.1)

LEMMA 3. // F = f ( f ( k > ) n - l ; n, k^l and g=(F'/F), then

m(r, H(z))=S(r,

where H ( z ) = n f ( k + " + ( f ' / f ) f ( k ) - g f < k ) .

Proof. From g=(F' /F), we have

(2.2)

Let Ei be the set of θ in [0, 2π\ for which \ f ( r e i θ ) \ < l , E2 be the set of θ
in [0,2*] for which \f(rei0)\^l and |/ (*>(rOl^l, and Es be the set [0,2ττ]\
Eι\jEz. It is easy to see that for Θ^E± and z—relθ,

log rg log + log+

+ ?ίlog+
+0(1),

and

+ log+

(2.3)

(2.4)

for 0e£3 and z—re10. Now, by (2.2), we have
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so for 0e£2 and z=reiθ,

logΊ #(*) I ̂ logΊ *(*)!+ 0(1). (2.5)
Hence

(**log+\H(reiβ)\dθ = { \og+\H(reiθ)\dθ + { log+\H(rel

J θ J#! JE2

log+\H(reiθ)\dθ.

From this, (2.3), (2.4) and (2.5), and by the well-known lemma on the logari-
thmic derivative [7], we have,

( k )

m(r,

<S(r, /)+ S(r, /<*>),

and this also completes the proof of the lemma.

LEMMA 4. ΐW£/ι F, g and H as defined in Lemma 3, we have

(n-l)T(r,

Proof. From the definition of //(^), we see immediately that the possible
poles of H(z) occur only at the poles of / and the zeros of F and /. Now note
that g can have only simple poles, and hence by (2.2), it is easily verified that
any pole of /, say z0> cannot be a pole of H(z). Consequently

Now combining this fact with lemma 3, (2.2), and by Nevanlinna's first funde-
mental theorem [7], we have

(n — l)T(r, f(k})^T(r, /)+T(r, g)-\-T(r,

Consequently

(n-l)T(r, /(*})^T(r, /)+JV(r, /)+2Λ?(r, 1]

+S(r, /)+S(r, /<*>),

where M)(r, I//) denotes the counting function corresponding the simple zeros
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of /. It follows that

(n-l)T(r,

3. The Proof of the Theorem

Proof of 00. Choose K>1 such that tt-l-9e/f>0. We note that S(r, /)
=0(l)T(r, /) outside a finite linear measure A, and S(r, f(k))=o(l)T(r, / (*>)
outside a finite linear measure B, also by Lemma 2

T(r, /)=0(l)T(r, /<*>), r£M(K).

Therefore S(r, /)+S(r, /<*>)=0(l)T(r, f ( k ) ) on £(/C)=[0, oo)\Af(/OWAuβ. Now
from lemma 4,

(n-l)T(r, /(*})-3T(r, /)^

Thus, it follows from this and (2.1) of Lemma 2 that

and, therefore, there exists a positive constant ε^n — 1— 9e/f such that

(3.1)

Now if F assumes zero finite times, then

N(r,
->0, as r—cx>, r(=£(#)

and it follows that ε<0 from (3.1). This is a contradiction and hence, F must
have infinitely many zeros.

Proof of ( i i) . Let F=/8(/(*))7l-l with A?, w^2. Then we have

1 _ / / ( f e ) F'F

It follows that

Note that F/ is a homogenous differential polynomial in / of degree n+2.
Hence m(r, (FV/n+2))=S(r, /) and
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Thus, again by the first fundemental theorem, the above can be rewritten as

m(r. j^)^m(r, %-)+*(r, %-)-*(r.

Note m(r, F'/F)=S(r, F)=S(r, /). The above yields

m(r, -jt—)^N(r, ~)~N(r, -£

Consequently

/). (3.2)

On the other hand, from F' = f(f<*>)n-l(nff<k+1>+2f'f(k>), we have

N(r, )

Substituting (3.3) into (3.2) and then adding N(r, (l//n+2)) to both sides of (3.2),
we get

T(r, -~)<N(r, ±)+N(r, f)+N(r, ~)-N(r, 1

-(n-\)N(r, -

Hence

Now by combining this and lemma 1, we have for any given 0<ε<l,

(n+2)T(r, f)<N(r, l) + Itf(r,

Thus,

(n+2)T(r, f)^N(r,

which leads to
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This also completes the proof of the theorem.

Remark. It is easily seen the results can be extended to the case when
the value 1 for F is replaced by any non-zero small function of /.
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