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ON THE VALUE DISTRIBUTION OF fi{(f®)"
By C.K. TsE AND C.C. YANG

Abstract

Quantitative estimations on the value distribution of f!(f )™ are studied
in this paper. As a result of this, some known results are improved.

1. Introduction

Let f denote a transcendental meromorphic function, and the usual symbols :
T, f), N, f), N(r, ), m(r, f), S(r, f) of Nevanlinna value distribution theory
see, e.g. [7], are used throughout the paper.

A complex value a is said to be a Picard value of f, if and only if, f(z)—a
has at most finitely many zeros. W.K. Hayman [8] conjectured that the only
possible Picard value of f"f’ is zero, and he himself proved the case when
n=3 in [10], and left the cases of n=1, 2. Later on, Mues [11] proved the
case for n=2, and afterwards Clunie [4] proved the case for n=1 when f is
entire. An affirmative answer to the case when f is meromorphic and n=1
is yet to be resolved. Since then a stream of studies on questions of possible
Picard values of differential polynomials of f has been launched, and many
related results have been obtained, see e.g. [1]-[5] and [10]-[19]. In 1981,
Steinmetz [12] proved:

THEOREM A. Let f be a transcendental meromorphic function mn the plane.
If no, -+, np20, moz2, m+-+ny 2l and P=fro(f')"(f®)"k—1, then

i s 8

In 1982, Doeringer [5] proved the following:

>0.

THEOREM B. Let f be a transcendental meromorphic function, Q(f) and P(f)
be two non-zero differential polynomials and ¢=/r"Q(f)+P(f). Then for any
natural number n with n=347,(rp: the weight of P(f)),

lim sup NG, 1/¢)
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Remark. Particularly, when n=3, r,=0(i.e. P(f) is a non-zero small func-
tion of f), we can derive from this that

liril*iup—iv,f({’r—l;@- = —12—

Thus Theorem B, in some sense, is an improvement and extension of
Theorem A. Futhermore, it gives a quantitative estimation of the number of
zeros of ¢. Recently, in [17], the following result has been obtained:

THEOREM C. Let f be a transcendental entive function and n, k be two
non-negative integers with n=2, k=0. Then f(f®)" assumes every non-zero
finite value infinitely many times.

Hence it is natural to ask:

PROBLEM D. Does Theorem C also hold when f is a transcendental mero-
morphic function?

In this paper, as an attempt in resolving Problem D, we obtain some
quantitative estimations on the zeros of f!(f*)"—1 with /=1, 2 and &k, n=2
by argument different from that of Theorems B and C, and give an affirmative
answer to problem D when 2=0 and n>9e+1.

2. Main Result

THEOREM. Let f be a transcendental meromorphic function in the plane and
F=fYf®)"—1 with I, b and n being three positive integers and (<2.

(i) If /=1 and n>9e+1, then there exists some constant K >1, a set
M(K) of upper logarithmic density at most 6(K)=min((2¢X'—1)7!, (14+e(K—1)
exp(e(1—K))), and a set D of finite linear measure such that n—9¢eK—1=¢>0
and

(e—oT(r, f9)S2N(r, 5),  reEEK)

where E(K)=[0, «o)\M(K)\UD(note that for K >1, m(E(K))=o0),
Particularly F assumes zero infinitely often.
(ii) If {=2 and k, n=2, then

(5 -7)TC, H=N(r, 3)+St, 1),

for every 0<n<(1/2).

Remark. The case of /=3 has been taken care of by Theorem B.
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In order to prove the above theorem, we shall make use of the following
lemmas.

LEMMA 1 (Frank [6]). If k is a positive integer and e>(), then
= 1
NG, HZN(r, —fw)+u+e>zv<r, HHSE, £).

LEMMA 2 (Hayman-Miles [9]). Suppose that f(z) is a transcendental mero-
morphic function and K, a constant, >1. Then there exists a set M(K) with upper
logarithmic density at most

(K )=min((2eX*—1)"%, (1+e(K—1) exp (e(1—K)))),
such that for every posttive integer k,

lir{lj}up —7%‘% <3eK, r&EMK).

In particular when v is large and r&M(K), then
—3eKT(r, f*)=—1—o(INT(r, /). 2.1)
LEMMA 3. If F=f(f*)"—1; n, k=1 and g=(F'/F), then
m(r, H@z))=S(r, f)+S(r, f*),
where H(@)=nf* D 4(f'/))f B —gf®.

Proof. From g=(F’/F), we have
I 0 —

FIt—gf®)=—g. (2.2)
Let E, be the set of § in [0, 2a] for which | f(re!?)| <1, E, be the set of @

in [0, 27] for which | f(re*!)|=1 and | f*®(re'?)| =1, and E, be the set [0, 27]\
E\JE,. It is easy to see that for 6=E, and z=re'’,

f(f(k))n—l(nf(k+l)+

’ (k)
log" | H(z)| S log* |g(2) | +log"| L2 | +210g| 212
fekn (2.3)
+n log* 7@ +0(1),
and
(k+1) /
log"| H(z)| <n log" —’ij;—(,,—,(%lmg* %.-}—log*lg(z)]—}-O(I), (2.4)

for = E,; and z=re*?. Now, by (2.2), we have
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log*| H(z)| <log* | g(2)| +1log*| f(z) f®(2)| *+0O(),
so for 0= E, and z=re'?,
log*| H(z)| <log*| g(2)| +0(1). (2.5)
Hence

S”logwﬂ(ref")ldezg 1og+|H(rew)|d0+§ log*| H(re*?)| d6
0 E; Eq

+ i0
—|—SEalog | Hre'")| d6.

From this, (2.3), (2.4) and (2.5), and by the well-known lemma on the logari-
thmic derivative [7], we have,

m(r, Hz)=0(m(r, g))-}-O(m(r’ i;(k_’))+0(m . f_(j:_i»

(k+1)

L) +ow

<S(, f)+S@, f®),

—I—O(m(r,

and this also completes the proof of the lemma.

LEMMA 4. With F, g and H as defined in Lemma 3, we have
(n—DT(r, FOSSTr, )+2N(r, B)+S(r, N+, F0).

Proof. From the definition of H(z), we see immediately that the possible
poles of H(z) occur only at the poles of f and the zeros of Fand f. Now note
that g can have only simple poles, and hence by (2.2), it is easily verified that
any pole of f, say z,, cannot be a pole of H(z). Consequently

N(r, H)§N(r, %)+Nl)<r, %)

Now combining this fact with lemma 3, (2.2), and by Nevanlinna’s first funde-
mental theorem [7], we have

(n=DT(r, f)STC, DT, O+T, H).
Consequently
(= DT(r, FOIZT, R, H+2N(r, )+ Mol )
+S(r, HStr, fP),

where N,)(», 1/f) denotes the counting function corresponding the simple zeros
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of f. It follows that

(n=DT(, FONIT(r, 42N (r, ) S, NS(r, f9).

3. The Proof of the Theorem

Proof of (). Choose K >1 such that n—1—9¢K >0. We note that S(r, f)
=o(1)T(r, f) outside a finite linear measure A, and S(r, f®)=0(1)T(r, f*)
outside a finite linear measure B, also by Lemma 2

T(r, H=0W)T(r, f*),  r&EMK).

Therefore S(r, f)+S(r, f®)=0oL)T(r, f*) on E(K)=[0, o)\M(K)UAUB. Now
from lemma 4,

(n=DT(, f®)=3T(r, NS (r, 2 +oDT, F®), reBK).
Thus, it follows from this and (2.1) of Lemma 2 that

(n—1—9eK—o(1)T(r, f<k>)gzzv(r, %) re EK)

and, therefore, there exists a positive constant e<n—1—9¢K such that
(e—o(I)T(r, f"”)gZN(r, %) reEK). (3.1)

Now if F assumes zero finite times, then

N, (1/F))
Tr f®)
and it follows that ¢<0 from (3.1). This is a contradiction and hence, F must
have infinitely many zeros.

—> 0, as r—oo, reE(K)

Proof of (ii). Let F=f¥f"®)*—1 with k, n=2. Then we have

f \n F'F
fflL.+2:( })) —fn+2F"

It follows that
1 F F’
m(r, W)é m(r, F)—Fm(r, ’ﬁ‘g)‘l‘s(?ﬁ .
Note that F’ is a homogenous differential polynomial in f of degree n42.
Hence m(r, (F//f***)=S(r, f) and

m(r, ~f—i;2—>§ m(r, fF,«)-i-S(r, f).
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Thus, again by the first fundemental theorem, the above can be rewritten as

n(r fﬂ*z) m(r, )N () =N () +50, 0.

Note m(r, F’'/F)=S(r, F)=S(r, f). The above yields

m(r, f”+2)<N( ?) N(r, F/)J“S(’ .
Consequently
m(r, %)gN(r, %)4—17(7’, f)—N(r, %)Jrsu, . 3.2)

On the other hand, from F/=f(f®)" Y nff**D L2 f®) we have

N(r, f)+(n DN(r, f(,,)) N(r, F) 3.3)

Substituting (3.3) into (3.2) and then adding N(#, (1//™*%)) to both sides of (3.2),
we get

T(r, i) SN(r, ) +8, P+N(r, —55) ~N(r, )

~(n=DN(r, <55) +5(r, 1.
Hence

(1270, NEN(r, 5)+80, H+a+DN(r, 7)

—(n=DN(r, i) +50, .

Now by combining this and lemma 1, we have for any given 0<e<1,

(14270, NEN(r, )+ 5 N(r, )+ 5= NG, D+t DN(r, )

—(n—DN(r, 7W)+s<r, 5.

Thus,

(DT, NEN(r, 3)+(n 114270, pse, p,

which leads to

(3= )7, D=N(r, &)+, 1.
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This also completes the proof of the theorem.

Remark. It is easily seen the results can be extended to the case when
the value 1 for F is replaced by any non-zero small function of f.
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