ON THE VALUE DISTRIBUTION OF $\boldsymbol{f}^{l}\left(\boldsymbol{f}^{(k)}\right)^{n}$

By C. K. Tse and C. C. Yang

Abstract

Quantitative estimations on the value distribution of $f^{l}\left(f^{(k)}\right)^{n}$ are studied in this paper. As a result of this, some known results are improved.

1. Introduction

Let f denote a transcendental meromorphic function, and the usual symbols: $T(r, f), N(r, f), \bar{N}(r, f), m(r, f), S(r, f)$ of Nevanlinna value distribution theory see, e.g. [7], are used throughout the paper.

A complex value a is said to be a Picard value of f, if and only if, $f(z)-a$ has at most finitely many zeros. W. K. Hayman [8] conjectured that the only possible Picard value of $f^{n} f^{\prime}$ is zero, and he himself proved the case when $n \geqq 3$ in [10], and left the cases of $n=1,2$. Later on, Mues [11] proved the case for $n=2$, and afterwards Clunie [4] proved the case for $n=1$ when f is entire. An affirmative answer to the case when f is meromorphic and $n=1$ is yet to be resolved. Since then a stream of studies on questions of possible Picard values of differential polynomials of f has been launched, and many related results have been obtained, see e.g. [1]-[5] and [10]-[19]. In 1981, Steinmetz [12] proved:

TheOrem A. Let f be a transcendental meromorphic function in the plane. If $n_{0}, \cdots, n_{k} \geqq 0, n_{0} \geqq 2, n_{1}+\cdots+n_{k} \geqq 1$ and $\psi=f^{n_{0}}\left(f^{\prime}\right)^{n_{1} \cdots\left(f^{(k)}\right)^{n_{k}}-1 \text {, then }}$

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, 1 / \psi)}{T(r, \psi)}>0 .
$$

In 1982, Doeringer [5] proved the following:
Theorem B. Let f be a transcendental meromorphac function, $Q(f)$ and $P(f)$ be two non-zero differential polynomials and $\psi=f^{n} Q(f)+P(f)$. Then for any natural number n with $n \geqq 3+\gamma_{p}\left(\gamma_{p}\right.$: the weight of $\left.P(f)\right)$,

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, 1 / \psi)}{T(r, \psi)}>0
$$

Received July 7, 1993.

Remark. Particularly, when $n \geqq 3, \gamma_{p}=0$ (i.e. $P(f)$ is a non-zero small function of f), we can derive from this that

$$
\lim _{r \rightarrow \infty} \sup \frac{\bar{N}(r, 1 / \psi)}{T(r, f)} \geqq \frac{1}{2} .
$$

Thus Theorem B, in some sense, is an improvement and extension of Theorem A. Futhermore, it gives a quantitative estimation of the number of zeros of ψ. Recently, in [17], the following result has been obtained:

Theorem C. Let f be a transcendental entire function and n, k be two non-negative integers with $n \geqq 2, k \geqq 0$. Then $f\left(f^{(k)}\right)^{n}$ assumes every non-zero finite value infinitely many times.

Hence it is natural to ask:
Problem D. Does Theorem C also hold when f is a transcendental meromorphic function?

In this paper, as an attempt in resolving Problem D, we obtain some quantitative estimations on the zeros of $f^{l}\left(f^{(k)}\right)^{n}-1$ with $l=1,2$ and $k, n \geqq 2$ by argument different from that of Theorems B and C, and give an affirmative answer to problem D when $k \geqq 0$ and $n>9 e+1$.

2. Main Result

Theorem. Let f be a transcendental meromorphcc function in the plane and $F=f^{l}\left(f^{(k)}\right)^{n}-1$ with l, k and n being three positive integers and $l \leqq 2$.
(i) If $l=1$ and $n>9 e+1$, then there exists some constant $K>1$, a set $M(K)$ of upper logarithmic density at most $\delta(K)=\min \left(\left(2 e^{K-1}-1\right)^{-1},(1+e(K-1)\right.$ $\exp (e(1-K))$), and a set D of finite linear measure such that $n-9 e K-1 \geqq \varepsilon>0$ and

$$
(\varepsilon-o(1)) T\left(r, f^{(k)}\right) \leqq 2 \bar{N}\left(r, \frac{1}{F}\right), \quad r \in E(K)
$$

where $E(K)=[0, \infty) \backslash M(K) \cup D($ note that for $K>1, m(E(K))=\infty)$,
Particularly F assumes zero infinitely often.
(ii) If $l=2$ and $k, n \geqq 2$, then

$$
\left(\frac{1}{2}-\eta\right) T(r, f) \leqq \bar{N}\left(r, \frac{1}{F}\right)+S(r, f)
$$

for every $0<\eta<(1 / 2)$.
Remark. The case of $l \geqq 3$ has been taken care of by Theorem B.

In order to prove the above theorem, we shall make use of the following lemmas.

Lemma 1 (Frank [6]). If k is a positive integer and $\varepsilon>0$, then

$$
k \bar{N}(r, f) \leqq N\left(r, \frac{1}{f^{(k)}}\right)+(1+\varepsilon) N(r, f)+S(r, f)
$$

Lemma 2 (Hayman-Miles [9]). Suppose that $f(z)$ is a transcendental meromorphic function and K, a constant, >1. Then there exists a set $M(K)$ with upper logarithmıc density at most

$$
\delta(K)=\min \left(\left(2 e^{K-1}-1\right)^{-1},(1+e(K-1) \exp (e(1-K)))\right)
$$

such that for every positive integer k,

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{T\left(r, f^{(k)}\right)} \leqq 3 e K, \quad r \notin M(K)
$$

In particular when r is large and $r \notin M(K)$, then

$$
\begin{equation*}
-3 e K T\left(r, f^{(k)}\right) \leqq-(1-o(1)) T(r, f) \tag{2.1}
\end{equation*}
$$

LEMMA 3. If $F=f\left(f^{(k)}\right)^{n}-1 ; n, k \geqq 1$ and $g=\left(F^{\prime} / F\right)$, then

$$
m(r, H(z))=S(r, f)+S\left(r, f^{(k)}\right)
$$

where $H(z)=n f^{(k+1)}+\left(f^{\prime} / f\right) f^{(k)}-g f^{(k)}$.
Proof. From $g=\left(F^{\prime} / F\right)$, we have

$$
\begin{equation*}
f\left(f^{(k)}\right)^{n-1}\left(n f^{(k+1)}+\frac{f^{\prime}}{f} f^{(k)}-g f^{(k)}\right)=-g \tag{2.2}
\end{equation*}
$$

Let E_{1} be the set of θ in $[0,2 \pi]$ for which $\left|f\left(r e^{i \theta}\right)\right|<1, E_{2}$ be the set of θ in $[0,2 \pi]$ for which $\left|f\left(r e^{i \theta}\right)\right| \geqq 1$ and $\left|f^{(k)}\left(r e^{i \theta}\right)\right| \geqq 1$, and E_{3} be the set $[0,2 \pi] \backslash$ $E_{1} \cup E_{2}$. It is easy to see that for $\theta \in E_{1}$ and $z=r e^{\imath \theta}$,

$$
\begin{align*}
\log ^{+}|H(z)| \leqq & \log ^{+}|g(z)|+\log ^{+}\left|\frac{f^{\prime}(z)}{f(z)}\right|+2 \log ^{+}\left|\frac{f^{(k)}(z)}{f(z)}\right| \\
& +n \log ^{+}\left|\frac{f^{(k+1)}}{f(z)}\right|+O(1) \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
\log ^{+}|H(z)| \leqq n \log ^{+}\left|\frac{f^{(k+1)}(z)}{f^{(k)}(z)}\right|+\log ^{+}\left|\frac{f^{\prime}(z)}{f(z)}\right|+\log ^{+}|g(z)|+O(1) \tag{2.4}
\end{equation*}
$$

for $\theta \in E_{3}$ and $z=r e^{i \theta}$. Now, by (2.2), we have

$$
\log ^{+}|H(z)| \leqq \log ^{+}|g(z)|+\log ^{+}\left|f(z) f^{(k)}(z)\right|^{-1}+O(1)
$$

so for $\theta \in E_{2}$ and $z=r e^{i \theta}$,

$$
\begin{equation*}
\log ^{+}|H(z)| \leqq \log ^{+}|g(z)|+O(1) \tag{2.5}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\int_{0}^{2 \pi} \log ^{+}\left|H\left(r e^{i \theta}\right)\right| d \theta= & \int_{E_{1}} \log ^{+}\left|H\left(r e^{i \theta}\right)\right| d \theta+\int_{E_{2}} \log ^{+}\left|H\left(r e^{2 \theta}\right)\right| d \theta \\
& +\int_{E_{3}} \log ^{+}\left|H\left(r e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

From this, (2.3), (2.4) and (2.5), and by the well-known lemma on the logarithmic derivative [7], we have,

$$
\begin{aligned}
m(r, H(z)) \leqq & O(m(r, g))+O\left(m\left(r, \frac{f^{(k)}}{f}\right)\right)+O\left(m\left(r, \frac{f^{(k+1)}}{f}\right)\right) \\
& +O\left(m\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)\right)+O(1) \\
\leqq & S(r, f)+S\left(r, f^{(k)}\right)
\end{aligned}
$$

and this also completes the proof of the lemma.
Lemma 4. With F, g and H as defined in Lemma 3, we have

$$
(n-1) T\left(r, f^{(k)}\right) \leqq 3 T(r, f)+2 \bar{N}\left(r, \frac{1}{F}\right)+S(r, f)+S\left(r, f^{(k)}\right)
$$

Proof. From the definition of $H(z)$, we see immediately that the possible poles of $H(z)$ occur only at the poles of f and the zeros of F and f. Now note that g can have only simple poles, and hence by (2.2), it is easily verified that any pole of f, say z_{0}, cannot be a pole of $H(z)$. Consequently

$$
N(r, H) \leqq \bar{N}\left(r, \frac{1}{F}\right)+N_{1}\left(r, \frac{1}{f}\right) .
$$

Now combining this fact with lemma 3, (2.2), and by Nevanlinna's first fundemental theorem [7], we have

$$
(n-1) T\left(r, f^{(k)}\right) \leqq T(r, f)+T(r, g)+T(r, H)
$$

Consequently

$$
\begin{aligned}
(n-1) T\left(r, f^{(k)}\right) \leqq & T(r, f)+\bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{F}\right)+N_{1}\left(r, \frac{1}{f}\right) \\
& +S(r, f)+S\left(r, f^{(k)}\right),
\end{aligned}
$$

where $N_{1}(r, 1 / f)$ denotes the counting function corresponding the simple zeros
of f. It follows that

$$
(n-1) T\left(r, f^{(k)}\right) \leqq 3 T(r, f)+2 \bar{N}\left(r, \frac{1}{F}\right)+S(r, f)+S\left(r, f^{(k)}\right)
$$

3. The Proof of the Theorem

Proof of (i). Choose $K>1$ such that $n-1-9 e K>0$. We note that $S(r, f)$ $=o(1) T(r, f)$ outside a finite linear measure A, and $S\left(r, f^{(k)}\right)=o(1) T\left(r, f^{(k)}\right)$ outside a finite linear measure B, also by Lemma 2

$$
T(r, f)=O(1) T\left(r, f^{(k)}\right), \quad r \notin M(K)
$$

Therefore $S(r, f)+S\left(r, f^{(k)}\right)=o(1) T\left(r, f^{(k)}\right)$ on $E(K)=[0, \infty) \backslash M(K) \cup A \cup B$. Now from lemma 4,

$$
(n-1) T\left(r, f^{(k)}\right)-3 T(r, f) \leqq 2 \bar{N}\left(r, \frac{1}{F}\right)+o(1) T\left(r, f^{(k)}\right), \quad r \in E(K)
$$

Thus, it follows from this and (2.1) of Lemma 2 that

$$
(n-1-9 e K-o(1)) T\left(r, f^{(k)}\right) \leqq 2 \bar{N}\left(r, \frac{1}{F}\right), \quad r \in E(K)
$$

and, therefore, there exists a positive constant $\varepsilon \leqq n-1-9 e K$ such that

$$
\begin{equation*}
(\varepsilon-o(1)) T\left(r, f^{(k)}\right) \leqq 2 \bar{N}\left(r, \frac{1}{F}\right), \quad r \in E(K) \tag{3.1}
\end{equation*}
$$

Now if F assumes zero finite times, then

$$
\frac{\bar{N}(r,(1 / F))}{T\left(r f^{(k)}\right)} \longrightarrow 0, \quad \text { as } \quad r \rightarrow \infty, r \in E(K)
$$

and it follows that $\varepsilon<0$ from (3.1). This is a contradiction and hence, F must have infinitely many zeros.

Proof of (ii). Let $F=f^{2}\left(f^{(k)}\right)^{n}-1$ with $k, n \geqq 2$. Then we have

$$
\frac{1}{f^{n+2}}=\left(\frac{f^{(k)}}{f}\right)^{n}-\frac{F^{\prime} F}{f^{n+2} F^{\prime}}
$$

It follows that

$$
m\left(r, \frac{1}{f^{n+2}}\right) \leqq m\left(r, \frac{F}{F^{\prime}}\right)+m\left(r, \frac{F^{\prime}}{f^{n+2}}\right)+S(r, f)
$$

Note that F^{\prime} is a homogenous differential polynomial in f of degree $n+2$. Hence $m\left(r,\left(F^{\prime} / f^{n+2}\right)\right)=S(r, f)$ and

$$
m\left(r, \frac{1}{f^{n+2}}\right) \leqq m\left(r, \frac{F}{F^{\prime}}\right)+S(r, f)
$$

Thus, again by the first fundemental theorem, the above can be rewritten as

$$
m\left(r, \frac{1}{f^{n+2}}\right) \leqq m\left(r, \frac{F^{\prime}}{F}\right)+N\left(r, \frac{F^{\prime}}{F}\right)-N\left(r, \frac{F}{F^{\prime}}\right)+S(r, f)
$$

Note $m\left(r, F^{\prime} / F\right)=S(r, F)=S(r, f)$. The above yields

$$
m\left(r, \frac{1}{f^{n+2}}\right) \leqq N\left(r, \frac{F^{\prime}}{F}\right)-N\left(r, \frac{F}{F^{\prime}}\right)+S(r, f)
$$

Consequently

$$
\begin{equation*}
m\left(r, \frac{1}{f^{n+2}}\right) \leqq N\left(r, \frac{1}{F}\right)+\bar{N}(r, f)-N\left(r, \frac{1}{F^{\prime}}\right)+S(r, f) . \tag{3.2}
\end{equation*}
$$

On the other hand, from $F^{\prime}=f\left(f^{(k)}\right)^{n-1}\left(n f f^{(k+1)}+2 f^{\prime} f^{(k)}\right)$, we have

$$
\begin{equation*}
N\left(r, \frac{1}{f}\right)+(n-1) N\left(r, \frac{1}{f^{(k)}}\right) \leqq N\left(r, \frac{1}{F^{\prime}}\right) . \tag{3.3}
\end{equation*}
$$

Substituting (3.3) into (3.2) and then adding $N\left(r,\left(1 / f^{n+2}\right)\right)$ to both sides of (3.2), we get

$$
\begin{aligned}
T\left(r, \frac{1}{f^{n+2}}\right) \leqq & N\left(r, \frac{1}{F}\right)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{n+2}}\right)-N\left(r, \frac{1}{f}\right) \\
& -(n-1) N\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
\end{aligned}
$$

Hence

$$
\begin{aligned}
(n+2) T(r, f) \leqq & N\left(r, \frac{1}{F}\right)+\bar{N}(r, f)+(n+1) N\left(r, \frac{1}{f}\right) \\
& -(n-1) N\left(r, \frac{1}{f^{(k)}}\right)+S(r, f)
\end{aligned}
$$

Now by combining this and lemma 1 , we have for any given $0<\varepsilon<1$,

$$
\begin{aligned}
(n+2) T(r, f) \leqq & N\left(r, \frac{1}{F}\right)+\frac{1}{2} N\left(r, \frac{1}{f^{(k)}}\right)+\frac{1+\varepsilon}{2} N(r, f)+(n+1) N\left(r, \frac{1}{f}\right) \\
& -(n-1) N\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) .
\end{aligned}
$$

Thus,

$$
(n+2) T(r, f) \leqq N\left(r, \frac{1}{F}\right)+\left(n+1+\frac{1+\varepsilon}{2}\right) T(r, f)+S(r, f)
$$

which leads to

$$
\left(\frac{1}{2}-\frac{\varepsilon}{2}\right) T(r, f) \leqq N\left(r, \frac{1}{F}\right)+S(r, f)
$$

This also completes the proof of the theorem.
Remark. It is easily seen the results can be extended to the case when the value 1 for F is replaced by any non-zero small function of f.

References

[1] C.T. Chuang, On differential polynomials, Analysis of One Complex Variable, World Scientific Publishing Co., 1987, pp. 12-32.
[2] C.T. Chuang and X.H. Hua, On the growth of differential polynomials, Sci. Sinica, vol. 33, no. 9 (1990), pp. 1025-1033.
[3] C.T. Chuang and X.h. Hua, On a conjecture of Hayman, Acta Mathematica Sinica, New series, vol. 7, no. 2-(1991), pp. 119-126.
[4] J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 37 (1962), pp. 17-27.
[5] W. Doeringer, Exceptional values of differential polynomials, Pacific J. Math., vol. 98, no. 1 (1982), pp. 55-62.
[6] G. Frank and G. Weissenborn, Rational deficient functions of meromorphic functions, Bull. London Math. Soc., 18 (1986), pp. 29-33.
[7] W.K. Hayman, Meromorphic Functions, Oxford, 1975.
[8] W.K. Hayman, Research Problems in Function Theory, London Univ. Press, 1967.
[9] W.K. Hayman and J. Miles, On the growth of a meromorphic function and its derivatives, Complex Variables, 12 (1989), pp. 245.
[10] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math., 70 (1959), pp. 9-42.
[11] E. Mues, Über ein Problem von Hayman, Math. Z., 164 (1979), pp. 239-259.
[12] N. Steinmetz, Über die Nullstellen von Differential Polynomen, Math. Z., 176 (1981), pp. 255-264.
[13] L.R. Sons, Deficiencies of monomials, Math. Z., 111 (1969), pp. 53-68.
[14] C.C. Yang, On deficiences of differential polynomials, Math. Z., 116 (1970), pp. 197-204.
[15] C.C. Yang, On deficiences of differential polynomials II, Math. Z., 125 (1972), pp. 107-112.
[16] C.C. Yang and H. X. Yi, Some quantitative estimations of the zeros of differential polynomials, Science in China Ser. A, vol. 23, no. 1 (1980), pp. 820 (in Chinese).
[17] C.C. Yang, L. Yang and Y.F. Wang, On zeros of $f\left(f^{(k)}\right)^{n}-1$, to appear.
[18] H.X. Yi, On differential polynomials, Acta Mathematica Sinca, vol. 33, no. 3 1990 (in Chinese).
[19] H.X. Yı, On the value distribution of $f f^{\prime}$, Kexue Tongbao, 10 (1989), pp. 727730 (in Chinese).

