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TORUS SUM FORMULA OF SIMPLE INVARIANTS
FOR 4-MANIFOLDS

BY YUKIO KAMETANI

1. Introduction.

The topology of moduli spaces of anti-self-dual (ASD) connections is closely
related with differentiable structures on 4-manifolds. In his celebrated paper
[6], Donaldson has defined the polynomial invariants to distinguish differentiable
structures on a 4-manifold. Though a significant result on the vanishing has
been obtained at the same time, these invariants remain to be very difficult to
determine completely. In fact, many examples have been calculated using an
identification of irreducible ASD connections and stable vector bundles by Don-
aldson ([6], [7], [9], [12], [18]). But there are another direct approaches in the
case that the dimension of ASD moduli is zero and that the invariant is just a
number of the points in the moduli. For example Gompf and Mrowka have
defined an invariant for 4-manifolds with torus end, using 0 or 1 dimensional
ASD moduli, and proved that the invariant of the glued manifolds with solid
torus can be emerged as the number of ASD connections which can be extended
to over the solid torus. From a topological argument on K3 surface with
elliptic fibration, they calculated the above numbers for fake K3 surfaces ob-
tained by performing logarithmic transformations on embedded 2-tori. After
that, Kromheimer has observed that the ASD moduli of Kummer surface comes
down to the flat moduli as all (—2) curves tends to infinity, so the invariant
could be computed algebraically [13]. The invariant obtained by 0-dimensional
ASD moduli is said to be a simple invariant.

In this paper we give a torus sum formula of simple invariants for 4-mani-
folds. Our idea and formula are simple. Suppose that we have two simply
connected closed 4-manifolds which contain a 2-torus with the trivial normal
bundle. We assume that the complements are simply connected and the second
Stiefel-Whitney class to define the SO(3) bundle does not vanish on the 2-torus.
Then any ASD connection converges to some ASD connections as the 2-torus
tends to infinity. On the other hand, any ASD connection over the new 4-
manifold obtained by torus sum also converges to some ASD connections as the
bi-collar of the intermediate 3-torus is stretched to infinity. Hence we prove
that the simple invariant of the new 4-manifold is the product of that of the
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given 4-manifolds. This formula is a variant of a relation of Donaldson in-
variants to Floer homology in Atiyah's exposition [1].

We can apply this formula to compute the simple invariant for regular
elliptic surfaces. The rational elliptic surface has the least Euler number among
them. The K3 surface is obtained by gluing two rational elliptic surfaces as
fiber sum [17]. Gluing more rational elliptic surfaces yields all the other re-
gular elliptic surfaces without multiple fibers. On the other hand, the simple
invariant of the K3 surface has been known to be 1 for all second Stiefel-
Whitney classes ([5], [13]). Hence the value is 1 for second Stiefel-Whitney
classes whose restriction to the fiber are non-zero. In particular, if the geo-
metric genus is even, then all the value is 1.

We remark that these calculations improve two known facts the first, Sato
and the author have shown that the value is non-zero for a second Stiefel-
Whithey class, by using stable vector bundles [11]. The second, Ue has shown
that the value of the above is independent of the choice of second Stiefel-
Whitney class with the additional condition, by analyzing the action of the
diffeomorphism groups on second cohomology groups [21].

I would like to thank Professor M. Furuta for valuable communications
with me.

2. Review of simple invariant and main result

We recall the simple invariant γ defined by Donaldson ([6], [7, Chapter 9])
let X be an oriented closed smooth 4-manifold with the following properties;

(Al) πι(X)=l,
(A2) b+(X)^3 and b+(X) is odd,

where b+ denotes the dimension of the maximal positive subspacee for the inter-
section on HZ(X). Then there is a well defined lift of mod 2 cup square called
the Pontrjagin square HZ(X Z2}-+H\X; Z4). Composing this map with evalua-
tion on the fundamental class defines a quadratic map HZ(X Z2)-^Z4. Let
P^X be the principal SO(3) bundle with w2(P)^η and />ι(P)=/. They satisfy
η2=l (mod 4). A theorem of Dold and Whitney [4] tells us that SO(3) bundles
over a compact 4-manifold are determined completely by η and /. Conversely,
given η and / with η2=ί (mod 4), we can easily construct the corresponding
SO(3) bundle over X. We give X a Riemannian metric. Then the affine space
Jip of LI connections has a natural Banach structure from the LI norm. The
LI gauge group QP is a Banach Lie group. The Lie algebra of QP is L4(Ad P).
Let JL^dJlp denote the subset of irreducible connections. Then the quotient
<B$=J.$/Gp is a C°°-Banach manifold such that the projection π: Jl^-*^ de-
fines a principal £P-bundle ([8], [7,4.2]). The tangent space to [A]e.0£ is
isomorphic to {αeLi(£?|(Ad P))|djfl=0}. We say an element [A] in $% to be
regular if the operator ά\ is surjective. Let JMχ(l, η, g) denote the moduli
space of g -ASD connections on P. Then the formal dimension is equal to



140 YUKIO KAMETANI

[2], We choose lx so that -2/jr-3(l+&+(^))=0. Let Cx

denote the space of Cr-metrics on X. By ([8], [7, 4.3]), there is a Baire
set C'χ in ££ such that for all g^CX) Jlίx(lx, η, g) is a finite set consisting of
irreducible regular connections. We fix g^Cx. Then we can define a sign at
any [-4]e^z(/z, >?, #) using a line bundle over ^?. For ΛeJ?, we consider
the deformation complex

^=dίθdί : L!(βi(Ad P)) — ̂  Ll((βlφβJ)(Ad P)) .

We choose a linear map S : RN -> L2

2(Ωί(Ad P)) so that δA®S is surjective. Then
we define the determinant line of δA@S by

This line has an intrinsic sense by the exact sequence

0 — > Ker δA — > Ker (δA®S) > RN — > Coker δA — > 0 .

Since the surjectivity holds in a neighborhood of A, these lines are patched
together to get a locally trivial line bundle over Jl*. It descends to the deter-
minant line bundle ΛP^^ by the free action of QP. The bundle ΛP-^&^ is
topologically trivial ([5], [7, 5.4]). Since δA is an isomorphism for any

, g), we can define a section on ΛP at [/I] by

where 0!, ••• , £# form a basis of /2^. This defines an orientation 0([A]) of the
the line bundle Λp-^£}*. For a later use, we remark that this section is defined
on a connected region U(\_A~]) consisting of irreducible regular connections about

On the other hand, for an orientation Ω of H+(X) and an integral lift c of
η, there is another orientation o(Ω) determined at a connection obtained by
attaching some standard instantons over S4 with reducible connection deter-
mined by c ([5], [7, 7.1.6]). Then the sign e([>Γ|) at \_A]^MX(1X) η, g) is
given by o(\_A])= ε([A])o(Ω) and the simple invariant is defined by

ϊx(η}=

This function 7^ is independent of the choice of the element g in C'x and satisfies
the following ([6], [7]) : If φ : X-^X' is an orientation preserving diffeomor-
phism, then ϊχ(φ*(η'))=ε(φ)γx(η'), where ε(φ) is —1 if either 0* is an orienta-
tion reversing map from H+(X') onto H+(X) or ((c-0*(c'))/2)2Ξ=l (mod 2) but
not both and is 1 otherwise. (Here cr denotes the integral lift of η' and c is
the integral lift of φ*(-η') used in orientaring their respective moduli spaces.)
Hence the absolute value l^l can be thought of a function on

η2=lx (mod 4)}.
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We return to our main theorem. Let K be a compact oriented smooth 4-mani-
fold with boundary Z—T*, satisfying the following;

(Bl) jrΛ/0^1,
(B2) b+(K)^2 and b+(K) is even.

For two such manifolds Kly K2 and an orientation reversing diffeomorphism
φ:dKl-^dK2) the oriented 4-manifold X=K1\JψK2 always satisfies (Al), (A2).
Let σ: Z-^X, σ*\ K^X (j=l, 2) be the inclusion. For each η&Cx with σ*(η)
^0, we can define an orientation reversing diffeomorphism φi : 3Ki—>Z such that
φ*(η) can be extended to a class η*<=H2(K*; Z2). The oriented closed 4-mani-
fold K*=Kt\JΦiW also satisfies (Al), (A2). Here W is the solid torus T2x£>2.

THEOREM 2.1. // 07* satisfies (η*)*=lκ*t (mod 4) for each ι = l, 2, ί/zβn

THEOREM 2.2. // η* does not satisfy (η*)2=lκ*τ (mod 2) for some i=l, 2,
then γx(η)=Q.

Remarks. (1) Let P. D. be the mod 2 Poincare dual. Then j??+P. D. [T2xO]
satisfies (η*+P.Ό. [T2χO])2ΞΞ()?*)2+2 (mod 4) and by the exact sequence

0 — > H\W, Z H\K* Z.) ίl Za) ,

it is only another choice for 77*. So the conditions of Theorem 2.1 and 2.2 are
complementary to each other.

(2) In our application, if K^ and η* (*'=!, 2) are chosen, then we will write
and η = tf\ηϊ.

3. Setting up gauge theory

We first argue the ASD moduli over a 4-manifold with torus end. Accord-
ing to Taubes [20], we study a gauge theory on a convenient subspace of con-
nections to apply a known analysis and to contain all ASD connections by some
gauge. The uniqueness of flat connections over the torus enable us to apply
his argument directly. For n= 2, 3, we denote by I(Tn) the set of the con-
jugacy classes of representations from n,(Tn) to 5O(3). The topology of %(Tn)
has been discussed in [10, Proposition V. 2.1]. Given a representations p, we
form the associated flat 7?3 bundle ξp. Then we define a map

α> 2 :1(T n ) —> H2(Tn Z2)

by ω8(/o)=ω8(ίj9). This is surjective. We denote by Ia(Tn) the preimage of
cxe//2(Tn Z2). Then the decomposition
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decomposes %(Tn) into connected components. %Q(Tn) is homeomorphic to Tn/±l
and the other 7 components are isolated points whose stabilizers are isomorphic
to Z2XZ2. Any representation p in the isolated points is regular, that is
#*(Tn; Aάp)=0 (0^ι^2).

For the unique non-zero element a^H2(W; Z2), we let Q, Γ and 31 be the
corresponding flat bundle, flat connection and stabilizer respectively. We write
Q=Q\Z and Γ=Γ\Z Then the stabilizer of Γ is just Si.

Let K denote a compact oriented smooth 4-manifold with boundary Z,
satisfying (Bl) and (B2). Let σ:Z-^K be the inclusion. Define Y=K\jZx
[0, oo). We choose η^H2(K; Z2) with τ*(η)ΦQ. Let P0 be the SO (3) bundle
over K with w^(PQ)=η and p1(P0)=Q^H4(K'f Z)=0. Fora bundle isomorphism
ί. (7*(Λ)->0, define P=PG\Jcπ*Q, where TT : Zx[0, oo)-»Z is the projection.
We give F a metric which is the product metric h + dt2 on Zx[0, oo), where
h is a metric on Z. Let r : Y-+R be a smooth function such that τ(x, t)=t on
Zx[l, oo) and r=0 on K. We fix a smooth connection ΛQ on P such that A0

is equal to π*Γ over Zχ[0, oo). We write (-l/4π2)ί Tr(F^0ΛF^0)j y

For />^1, ^^0 and ^>0, we define the weighted norm Ll§(Y) by

Then we consider the following class of connections and gauge group on P

SP= { u e Li. loc(Aut P) I \\VAΰu Ikf, acn < °°}

By the argument in [20, Section 7], we see that there is a well defined map
r : Qp-^Sl given by

r(u)— lim u t ,
t-»00

where the limit is in C°-convergence. We note that the automorphisms in QP

are continuous by the Sobolev embedding theorem Li,ιoc— >C°.

LEMMA 3.1. The automorphism a^Sί over dK can be extended to all over
K continuously if and only if α = l.

Proof. The primary difference b(l|a#, α) [19, §36] between the identity
leC°(AutP0) and aφ\ is a non-zero element in Hl(dK; Z2). If a can be ex-
tended to K, then by the extension theorem [19, 37.11], there is an element v
in Hl(K; Z2) such that σ*(v)=\>(l\dκ, α). But this contradicts to Hl(K; Z2)=0. D

COROLLARY 3.2. The image oj the map r is {1} and there are no reducible
connections in <Bp.
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A gauge theory on 4-manifolds with cylindrical end has been studied by
Taubes [20, Section 7]. Using his argument, we can prove the following two
lemmas (see also [16]). We topologize JIP, QP by the norm IHUf δ> ll^β \L\ δ

respectively . Then

LEMM 3.3. QP is a Banach Lie group. The Lie algebra of QP is

QP acts smoothly on JIP. The set {weL2,ι0c(Aut P) uJLp=Jίp) is QP.

LEMMA 3.4. The quotient ^P—J(PIQP is a C°°-Banach manifold such that
the projection JLP-*<BP defines a principal QP-bundle. The tangent space to [A~\

is isomorphic to

LEMMA 3.5. For bundle isomorphisms c, t' : o*(Po)-*Q> we consider SO (3)
bundles P=P0U, π*Q, P'=PιSJt π*Q, and Cm (m^N)-connections A0, A'0 on P, Pf

such that AO, A'o are equal to π*Γ over Zx[0, oo) respectively. Then the follow-
ing two conditions are equivalent.

(1) The automorphism (c'Ylrc over dK can be extended to all over of K con-
tinuously for some r^Sl with b(l, (O"VO=0.

(2) (-

Proof. We consider SO(3) bundles P*=P0U0, (P')*=AU,'0 over K\jW
and Cm-connections A*, (A')* extended by Γ respectively. If the condition (1)
holds, then the connections A0 and A'Q have the same integral by Chern-Weil
formula. Conversely if the condition (2) holds, then obviously ίιCP*)=/>ι(CP')*) and,
moreover, wt(P*)=Wt((P')*) for we can write w2(P*)=w2((P')*)+?. D. [T8xO],
which induces pί(P*) = pί((P')*)+2 (mod 4), a contradiction. _ By Dold-Whitney
theorem, there exist bundle isomorphisms /: P0-»Λ and A : Q->Q with c'f=hc.
We prove that A is homotopic to some r^&. It suffices to prove that A Γ2 is
homotopic to some r^Si. We remove an open 2-disk Dz in T2. By the homo-
topy classification theorem [19, 37.12], the assignment of the primary difference
b(l, •) in Hl(T2\D*;Z2} = H\T2;Z2}^& to each homotopy class in [T2\£>2;
Aut Q] sets up a 1-1 correspondence between each sets. So A | T2\D2 is homo-
topic to some r^Sl by a homotopy //£ (0<^1). We extend Ht to all over to
T2, using the collar of 3D2. Since [(D2, 3D2) (SO(3), id)] = π8(SO(3))=l, H,\D2
is homotopic to r relative to 3D2, and so (c')~lrc is homotopic to /. We see
that b(l, (c'Ylrt) is zero by the argument in Lemma 3.1. D

COROLLARY 3.6. <BP depends only on η and /.
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We return to the moduli of ASD connections. By [15, Theorem 1.1], there
exists (5>0 such that for 0<<5<<5, p^2 and &^0, if A is an ASD connection
on P, then the AHS complex

dA d+

A
0 — > Ωγ(Aά P) — > Ωγ(Aά P) — > Ωγ (Ad P) — > 0

defines a Fredholm complex

dA ά\
0 — > L£+2,,00 — > L5+li,(n — -> L5.aOO — ̂  0 .

We denote by H\ (O^z'^2) the cohomology of the above complex. Then its
index is given by [10, VI. 3]

-dim

Let Cy (r^3) be the space of all conformal classes of Cr-metrics on Y
which a ie fixed metric h + dt2on Zx[0, oo). If we fix a metric [go]^CY, then
C£ is identified with

(m: Λ+-^Λ~ C r-bundle map, sup |m|<l, m| y\^o=0},

where Λ* is ± self-dual space with respect to g0 and KQ is the interior of K
([7, 1.1.5]). We choose lγ with -2/r-3(2+ft+(r»=0.

PROPOSITION 3.7. T/zβrβ ί's α Sα/re s^ί CrC^f swc/z that for all lγ<
and g<^Cγ, the ASD moduli

MY(l, η, g)=

is a finite set consisting of irreducible regular connections. Any element in
Mγ(l, η, g} has a smooth representative. Its dimension is equal to — 21— 3(2+b+(Y)).
In particular if /F</<0, then Mγ(l, η, g) is empty. Here the regularity at \_A~]

Λ f], §) means that HA=®.

Proof. The regularity follows from the same argument as in [7, 4.3] (see
also [14, 5 (Hi)]). By the argument in [7, 4.2.3], we see that the representa-
tive in Coulomb gauge relative to some nearby smooth gauge is also smooth.
We will prove the compactness in Appendix 2. Π

Remark. The proposition above has been stated in [10, Theorem V.3.3].
But we do not know how they orient the ASD moduli JMY(lYt η, g) in spite of
the non-existence of reducible connections in &P.

Let η^Cx, ^feCtf* and η%^Cκl satisfy the assumption of Theorem 2.1.
Let P* be the SO(3) bundle over X with wz(P*}=η and />ι(P?)=/*ί, and let
P* be the SO (3) bundle over #? with Wz(P:f)=η1 and />1(P?)=//fJ. We write
p*=Pol\jtιQ for some bundle isomorphism cl : PQι\z-^Q and write P*=PoιU,-ι,Po2
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for some bundle isomorphism * 2: P081 *-><?• We^put P1=Poz\JίzQ. We fix a
smooth connection At on Pf which is f on Q (ί=l, 2), and a smooth con-
nection A* on P which is ^4ί on PQt. Then

and u>a(Pί)=^$ If not, then it must be u>a(P|)=5$+P.D. [T*Xθ], which
induces /^*=/^*+2 (mod 4). This is a contradiction. We define Yτ=Kt\jZχ
[0, oo) and Pi=PQi\JCiπ*Q for each *'=!, 2. We fix a connection At on Λ by

4* over #t ,

ττ*Γ over Zχ[0, oo).

Using At and 0<d0<3, we define the space JlPi, the gauge group £Pt and the
quotient <BPi.

We move on the gauge theory on 4-closed manifolds. We choose a lift
φ: Q->Q of ψ .dK^dKz so that φΓ=Γ. For neJV, let Zn be the oriented
closed 4-manifold defined by

Φn

where ψn is the diffeomorphism on Zx[n— 1, n-f 1] defined by using φ and the
reflection on [n — 1, n + 1]. Let Pn be the 5O(3) bundle over Xn defined by

where ^n is the automorphism on Qx[n — 1, w + 1] defined by using φ and the
reflection on [n— 1, n-f 1]. We put

f Λi over KiUZxEO, n-f 1] ,
A — j

\ A02 over K2vjZx[0, n-f 1] .

Let Cχn (r^3) be the space of all conformal classes of Cr -me tries on Xn which
are the fixed metric h + dt2 on Zχ[0, n + l]U0nZx[0, n-f 1]. If we fix a metric
CδTβ] in ^ίn, then Cr

Xn is identified with

{m:^ί+-^J-; Cr-bundle map, s u p | m l < l , m\Xn^κ^κ^=0} ,

where Λ± is ± self-dual space with respect to g0. Then we have the follow-
ing theorem, whose proof is also the same as in ([7, 4.3], [14, 5 (Hi)]).

PROPOSITION 3.8. There is a Baίre set CχndCχn such that for all g<ΞC'χn,
the ASD moduli Mχn(lχn, η, g) is a finite set consisting of irreducible regular
connections.
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For each n&N, we fix a metric gn in C'xn such that gn is independent of
n on K%UK°2 and the metric

n on Kl ,

h + dt2 on Zχ[0, oo),

lies in C'YV for ι = l, 2. We can find these metric tenUejv, because the inter-
section of countable Baire sets is again a Baire set. For n^N 'we fix a function
τn : Xn->R by

τl on rϊXCO, n-e]),

to a small 0<e<l. We use the weighted norm Lp

kt$(Xn) defined by

We note that if s is supported in τΓ'dO, n+lj), then llsllziyjr^Hs

,,), an(l if the support of s is contained in (̂[O, n — 1]), then

. We fix p>4, q>8 and 0<<50, δ<d by

where ^2 is the first eigenvalue of ΔΓ on Ker d£cβ^(Ad Q). The second in-
equality implies that Li,j0(Ft)cί,f.β(rt) [15, Lemma 7.2].

4. Decay estimate.

In [22], Uhlenbech has proved that the curvature of ASD connections con-
trols the uniform norm of the connection matrices in Coulomb gauge. Taubes
has extended the result to ASD connections on the trivial bundle over 4-mani-
folds ([20] see also [3, Appendix A]). We show that his argument is appli-
cable to ASD connections on flat bundles with an unique flat connection in the
same way.

LEMMA 4.1. Let U be an oriented open noncompact Riemannian ^-manifold.
Let Uf(^U be an interior domain with compact closure U'. We let Q0-+U be a
flat SO(3) bundle and Γ0 be a canonical flat connection. Suppose that Q*\ΰ'^>U'
cannot admit any other flat connection topologically. Then there are constants
ε>0 and ζm,t7'>0 which depend on Uf and m^N with the following significance:

Let A be an ASD connection on P with \ FA\
z<ε. Then there exists Λe

o l f f O such that
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Proof. We fix a locally finite open cover of U by geodesic balls {Bt}iGN

such that the small balls {Bt}i(=N with 1/2 radius cover U and the metric on
Bt is close to the Eucledian metric. Then by ([22], [7, Proposition (2.3.7),
Theorem (2.3.8)]), there exists {hiELC~QsQ(Q*\Bi, 5tXSO(3)))}<ejy such that
al=hlA obeys d*aτ—0 and

l^i l 2 . (4.1)
ί,

Here B( is the ball of radius 3/4(radius (Bl)) and 7 is the covariant derivative
defined by the product structure. We denote by {(BiΓ\B'j)k] the connected
components of B'iΓ\Bf

3. To obtain a desired gauge, we modify ht, inductively.
First we put h[=hι. Suppose that for j<i we defined /&ieC°°(Iso(Qol^, B3X
5O(3))) such that a'j=h'3A obeys

(4.2)
_, V ϊ=ft J J R .
BJ

for some modified constant ζί>0. On B'iΓ\B'3, Λ^=A<(A})-1eCββ(S{Πβ; SO(3))
obeys

By bootstrapping, we see that d/z^ has the same Cm-bound as (4.1). If we
choose ε>0 so small, we can write /ii<7=exp(f^ft)^^ft for some constant z'ljk^
50(3) on (Bίr\Bί)k. We define «eC~(Iso«?0 Bi, BlxSO(m by

^*#,*)λt on (B(r\Bύk ,

on 5ί\Bί,

where φijk is a cut-off function equal to 1 on (BiΓ\B^)k and is supported in
(B'ifΛB'j)k. Then a^—h^A obeys the estimate (4.2) for a modified constant ζί>0.
In the construction above, we also obtained that h'i(h'jYl=z'ljk on (BiΓ\Bj)k

The data {BiΓ\Uf, z(jk] define a flat bundle Q'Q-^U' and a flat connection Γ'Q
on Oί. The data {Btr\Ό', h(\^u>} define an isomorphism h' : Q0\ΰ->QΌ. By
the assumption, there is an isomorphism h" : QΌ-+Qo\ϋ such that h"Γ'*=Γ^
(4.2) guarantees that h — h f f h f obeys the desired estimate. Π

PROPOSITION 4.2. There are constants ε>0 and ζ— ζm>0, independent of
following significance Let A bean ASD connection on Qx

(0, T) M /ίΛ ί /^r<e, ί/zen there exists /ιeC°°(Aut(<?X(l, T-ϊ)))such that
J Z x c o . Γ )
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sup Σ|7«i/ (AΛ-s*Γ)| £ζ \FΛ\\
Zχ[t-ι, ί + i] U=o J JZχ[ί-8, ί+8]

Proof. The proof is essentially the same as that of [20, Lemma 10.5].
We apply Lemma 4.1 with ί7=Zx(/-l, y+8) and t7'=Zx[y, j+T] for each

Then there exists hj<=C°°(Aut(QxU, /+?])) such that

sup Σ|^lΓ(M-7r^Γ)|2ζ ^il f (4-3)
Zχtj,j + H \l=Q ) J^χC;-ι,; + 8]

On Zx[;+4, y+7], AΛ,+4=A,λ7i4eC%Aut(0x[y+4, ;+7])) obeys

By bootstrapping, we see that A.,,,+4 has the same estimate as (4.3). If we
choose ε>0 so small, the argument in Lemma 4.1 can be repeated with the
data {hjtj+i} to produce AJeC^Aut^xCy, ;+7])) such that

on Zχjj+5, y+6] and for some ζ'>0,

sup
Zχ[.7,^+

Now we change A; to

Then A^ obeys the same bound as above and hj(hj+4)~l=l. We define Ae
C°°(Aut(Ox[l, T))) by A ^ A j on Zx[; + l, y+6]. Then A satisfies the desired
estimate. Π

We prove the decay estimate of the curvature of ASD connections over the
cylinder Zχ[0, oo) by the parallel discussion in [7, 7.3]. The following three
lemmas can be proved by replacing the trivial connection in the argument of
[7, 2.3.4, 2.3.5, 2.3.6, 2.3.7, 2.3.8] by the flat connection Γ. We prove the first
only.

LEMMA 4.3. There are constants N, η >0 such that if B is a connection on
Q in Coulomb gauge relative to Γ (i.e. d*Γ(B—Γ}=$) and satisfies \\B— Γ\\L4<η,
then \\B-Γ\\L2=\\B--Γ\\L2+\\Vr(B-n\\LZ^N\\FB\\L2.

Proof. Since Hl(Z Ad Q)=0, the basic elliptic estimate for the operator
on 1-forms gives a bound

Using the Sobolev multiplication theorem, we get
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If \\B— ΓΊ|14<l/(2c1c2), then we can rearrange it as

\\B-Γ\\Lί{l-clC,\\B-nLt} ^dllίilU ,

to get \\B-Γ \\Ll^2Cί\\FB\\Lΐ. Π

For a connection B on Q and /^l, put:

LEMMA 4.4. There is a constant η' >0 swc/z ί/wtf z'/ ί/z0 connection B of

Lemma 4.3 /zαs ||J3— /Ί|L4<>?', ί/^n /or βαc/z /^l, α bound,

holds for a universal continuous function ft, independent of B, with /l(0)=0.

In the lemma below, by a one-parameter family we mean that they are
smooth in the Z variable, and all partial derivatives are continuous in both
variables.

PROPOSITION 4.5. There is a constant ε>0 such that if B't (0<^1) is a
one-parameter family of connections on Q with ||/vJ|L2<ε for all t and with

Bo=Γ, then for each t there exists a one-parameter family of gauge transforma-
tions ut such that uύ=l and ut(Bt)=Bt satisfies

d*(Bt-n=0,

\\Bt-Γ\\Ll<2N\\FBt\\LZ,

where N is the constant in Lemma 4.3.

PROPOSITION 4.6. There are constants ε>0 and ζ>0 independent of T such

that if A is an ΛSD connection on (?X(— T, T) with \ \FA\
2<>ε, then for

all (x, Oe=Zx[-T+8, T-8],

Proof. We apply Proposition 4.2 over Zx(—T, T) to obtain a gauge trans-
formation /ιeC°°(Aut«?x(-T+l, T-l))) such that for -

We henceforth omit h for simplicity. We write At for the restriction of A to
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Zx{t\ (_τ+8^f^T-8). We take the path

from Γ to At. By (4.4) we can assume that \\FAt>s\\Lz<ε for small ζ>0. Then
we apply Proposition 4.5 to get a gauge transformation lt on Q which is homo-
topic to the identity and satisfies

\\ltAt-Γ\\Ll<2N\\FAt\\LZ. (4.5)

We use the 'Chern-Simons invariant relative to Γ' defined by

TZ(Γ, At)=\ Ύr(dΓ(At-Γ)f\(At-Γ}+^(At-Γ}/\(At-Γ}/\(At-r)}.
z Γ t - t -

jz 6

A direct calculation shows that

TZ(Γ, ltAJ=Tz(Γ, At)+j deg/ t . (4.6)

Here the last term

deg/ t=( Ύr(drltlΊ
lf\dΓltlΊ

l/\drltlΊ1}
jz

is a homotopy invariant by Stake's theorem. So we have deg/ί— 0. For
^f^T— 8, we write

JZχ(-ί.ί)

Then we can easily verify that

and

v(t)=Tz(At, Γ)-Tz(A.tf Γ)

We need a simple lemma; any ae£?!(AdQ) satisfies

)^~\ \dra\\ (4.7)

We prove it quickly. If a is replaced by a + drf for some /eβ°(AdQ), each
of the integrals is unchanged, so we may assume that a satisfies dj,a=0. Then

and [ dra\2=<a, AΓay. So \\dΓa\\L^λ\\a\\L^ Since E\Z\ Ad Q)=0, we see
JZ
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that f Tr^ΓflΛα)^-1^ \dra\2.
JZ JZ

Using (4.5), (4.6), (4.7) and the Sobolev embedding theorem Lf^L4, we get

where the constant c depends only on Q. So we have

We also know that v and dι>/dt are small by (4.4). We use an elementary
inequality; if y + Cy*/2^2λx for some C, and x and y are small, then y^2λx
— C'x*/2 for another constant C' '. Hence (4.8) gives

We choose ε>0 so small that δ— ε1/2<^(l/2)Λ. Then the inequality above gives
t^(2λ—δ)v, which we can integrate to get an exponential bound

Feeding back this into the differential inequality, we get

^

dt

^ — « .
2x— o dt

It follows that

log p(T)-lo

Taking exponentials, we have the bound

with /£=exp(4cΛ/(2Λ— 5)). Finally we use the following for any element / in
£?2(Ad(<5x(-l, 1))) with d:

Af=dAf=Q, we have an elliptic estimate:
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I / I 2 .

Since A obeys the uniform C ̂ estimate by (4.4), we can take c which is inde-
pendent of A. Applying this to f=FA on Zχ(-T+8, T-8), we get

and the proof is completed. Π

We apply the above proposition over Zχ(n0, 2t—nQ} to obtain that

COROLLARY 4.7. // A is an ASD connection on π*Q with \ \
JZxCn 0,c»)

for some nQ<Ξ:N, then for all (x, O^Xθo+1, <*>),

\FA c«.»^C*

5. Gluing ASD connections.

According to [7, 7.1], we shall construct a gluing map from MYl(lγv σjO?), gj
X c5HF2(/F2, ol(η), gύ to 3iZn(lχn, η, gn). To obtain the gluing map globally,
we need a technical lemma below. In this section, we use c for a constant
independent of n and use cτ for a constant with respect to Ft.

LEMMA 5.1. There are constants e>0, t^ί0,m>0 and p^pm>0 with the
following significance: Let A be an ASD connection on π*Q. Suppose that

nQ^N exists such that ( \FA\
z<ε. Then there exists /ιeC°°(Aut(Qx[n0+J#x[tt l ,oo)

1, oo))) such that for f^nβ+fβ,

sup

a h is unique up to Sί. Moreover, if A satisfies

\ Σ V^r(^-τr*Γ)|2<^,
J^x(0, oo) Z=0

then we can choose h so that h\t^n^ is homotopic to the identity, and such a h is
unique.

Proof. By Proposition 4.2 and Corollary 4.7, there exists /ιeC°°(Aut(Qχ
[flo+1, oo))) such that for ί^w0-f-8,
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sup
Zx[ί-l, ί

Solve the ordinary differential equation for Λ<=C°°(Aut(QX[?2o-fl, °o))) :

with initial condition lim^oo/ί—1. From the differential equation we have

-~(drh)=drhid/dt(hA-π^n^hdr(id/dt(hA-π^n^ (5.1)

This gives us

which integrates over [ί—1, «>) to get an inequality

ll^rΛ| |§o(^χCί-ι,oo))^cβ-^ ( ί-n°Kii^rΛ| |5o(Zχcί-ι.oo))

For £>n0+£o with ce~2λt°<l/2, we can rearrange this to get

ll^rΛ| |coczχcc-ι> £ +o^liί/rΛ| |co^χc ί-ι,oo))^2^-^ ί-^).

Now we can bootstrap the equation

h(hA)-π*Γ=-dΓhh-l-htd/dt(hA-π*Γ)h-l+ίί(hA-π*Γ)h-\ (5.2)

Then we see that hf—hh satisfies the desired properties.
If h' also satisfies the properties of Lemma 5.1, then h'h~l is independent

of t and satisfies

This implies that /I'/r1 converges to a flat gauge as £->oo. So h'h~l must be
an element in Si.

If A satisfies the additional condition, then by the equation

and the Sobolev embedding theorem L|->C°, we get

ι:) — >0 (f->oo).

Hence A factors as h=r(h)expξ with r(A)e& and feC^AdCOxCwi, oo))) for
some ΐii&N. So h'=r(hγlh has the desired properties and it is unique, since
the primary difference b(l, r) is non-zero for any non-identity element r^Sί. Π

The above unique gauge is said to be exponential gauge. We combine
Lemma 5.1 with Lemma 3.1 to deduce
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COROLLARY 5.2. // B% is an ASD connection in J(P% then there are
and Ut^Qpτ such that Ai—UiBi satisfies the following conditions.

(i) A is smooth over TTHEwo+l, °°))
(ii) For t^

( m

sup 4 Σ \Ψίlr(Ai-π*
Zx[t-l , ί + 1] I l = Q

// A( also satisfies the above condition, then Al=A[ over τ^dtto-Ko, °°))

Let βif γt and μl be smooth cut off functions satisfying

1 on r7J([0, n + 1]'),

βt(x, 0=H (n+N+l-t)/N on r;1

0 on τ^dn+N+l, oo)),

1 on ΓT^CO, n-1]),

0 on TlHCw + l, oo)),

1 onriKCO, n-ΛΓ-2]),

^~^ 0 on TTi([n-JV-l, oo)),

for a small 0<ε<l. Then a direct calculation shows that

where A" is independent of a and N. For ^ejZpt, we define a connection ^U
on Pt by A'^μάAi-^D+Q-μ^Γ and a connection A' on Pπ by

Aί over τ^([0, n + 1]),

LEMMA 5.3. // ^4t /s an ^4SD connection in JiPl satisfying the conditions (i)
(ii), then there is a constant c>0 such that

(1) \\At-

(2) Mi-

(3) l l F l I

Proof. This is obvious. Π

We are in the position to argue the right inverse to ά\<. For an ASD con-
nection A% in J(pv we take the Laplacian
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The condition HAl= 0 implies that Δ^t is invertible [15, Lemma 7.3]. Then there
is the right inverse Pt to the operator ά\

which satisfies ||Piξ|Up cF^Ctillllz^cFi) for some constant cτ. Composing with

the Sobolev embedding

[15, Lemma 7.2], we have \\Piξ\\L

(l cy^cJfllL'αv We also need Holder's

inequality, for 1-forms α, ft,

ll(0Λft)+IUj^v^||fl|U;^

over ί̂n or Ft. Now let (?t : Lξ(Xn)-+Lftδ(Xn) be the operator defined by

Then we obtain a bound | | 0 < >

LEMMA 5.4. T/zβrβ is a constant ε^ε^N, n)->0 as n-^oo a^rf Λ^-^oo m order
such that

Proof. If we write A(=Ai+ai9 then

By Lemma 5.3, we get

The result now follows by letting εt=Cie2δ(e-^n-N^KN^q-1)/q). Π
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We put

The operator R—d^Q—l obeys a bound

We choose ΛT0 and n0=n0(NQ) so that e<CΛ/o, n)^l/3 for all n^n0. Then the
operator norm of R is at most 2/3. So !+/? is invertible and the norm of the
inverse is at most 3. Thus the right inverse P=Q(l+R)~l to d\ satisfies

^
(5.3)

with c=3ezδ(cι+c2). Combining with the Sobolev embedding, we get
ax )^c\\ξ\\L?<.x ). We seek a solution A'+a to the ASD equations inn nqg/p

the form a=P(ξ}. If we write q(ζ)=(Pζ /\PξY , the ASD equation becomes

-Fϊ , (5.4)

By Holder's inequality,

lk(5ι)-^.)llLfcxn)^Λ/^c'll^-f.lU|cχn){||^IUj(x

LEMMA 5.5. ([7, Lemma (7.2.23)] L#ί 5 : B->B be a smooth map on a Banach
space and IIS&-S&H ^ *{||MI + ||f,||} ||fι-£,|| /or s^mg k>0 and all ξίf ζz^B.
Then for each η^B with ||ιy||<l/(10fe) there is a unique ξ with j|£||^l/(5&) such
that

We apply Lemma 5.5 to the above equation with S— q, η = —F^> and kl>

c\ Then

PROPOSITION 5.6. Let AI be an ASD connection in JiPι satisfying the con-
ditions ( i ), (ii). Then there exists N<> and wβ=w 0(Λ/o) such that for all n^>n0,
we can find an ASD connection In(Alf A2)=A'+a on Pn with | |α| |Lβ., cχ«>^

Qδί p n

N^. a is the unique such solution which can be written
in the form Pξ. If ulAl also satisfies the conditions ( i ), (ii) for some
then

Moreover we can choose N0 and n0— nQ(N0) so that for all n^nΰ, At—A'+ta,
φ^t^l) is regular, that is lA'^U(In(Aίf Az)).

Proof. By bootstrapping (5.4), we see that the solutions we solved are in
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C°° if so are A%. The second part is obvious from the gauge equivalence of
the above construction. We prove the last part. By (5.3), we have

iiwίί-^eiUfcT^
If we choose nQ so large that ce~a~δ/p:>(in^~N^^l/2f then for n^nQ, the operator
norm of (d+

At-d+

A,)P is at most 1/2 and d^tP = l+(d$t-d$.)P is invertible. So
A't is regular. Π

Now we obtain the gluing map

ίn: 3iYl(lYl, p*t(η),

for large N^>NQ and n^n0(N0). Here NQ, nQ(N0) are the maximal values of all
[Λt] in 3Aγ(lYv σ*(η), gi). We may suppose that N0=0.

We prove that In is injective for large n. Let At, B% be as above. Suppose
that In(Aι, A2)=A'+a is gauge equivalent to In(Bl9 B2)=B'+b by some gauge
un^QXn. We expand the equation un(A'+a)=B'+b over τl\[n— 3, n— 2]).
Then

By Lemma 5.3,

Hereafter || I lU^.^co is the integral over the restriction. This implies that for
large n, un factors as un=r(Un)exphιn over τ^l([n— 3, n— 2]), where r(
satisfies

Lemma 3.1 asserts that r(un) is the identity. Since the exponential map on
§o(3) is a local diffeomorphism, we get

We put
ί un over TTHCO, n—3]),

I exp(δ<Λ tn) over τ~τ

l([n—3, oo)),

where d( is a cut off function such that δi=l on rlXEO, n—3]) and d*—0 on
rlXCn—2, oo)). By estimating all the term in the right hand side of the equation

' —unaunl+b over ττl([0, n—3]),

uιnAi-Bi=\
' " " ' ' " '"' over rll([n-3, w-2]),

over rTx([n—2, oo)),
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we see that uinAl converges to Bτ in Lp

d(Yτ) as w-»oo. On the other hand,
3&γj}τίv <J*(v)}> gi) consists of isolated points with respect to the metric (c. f .
[7, Lemma (4.2.4)])

dPi(LA], [B])= inf \\A-u
ueSPι

This implies that [Λ] = [Sι]
We will prove that In is surjective for larger n. For a moment, we work

with the space of L? connections Jt'Pn, Lf gauge group Q'Pn and the quotient
&'pn=jLpn/βpn. Let dpn be the metric in &Pn given by [7, Lemma (4.2.4)]

dpn(LA], [5])- inf H
u^S'i,Γ n

We define

Jn : ^FI(/FI, σίOy), gι)X<yiγfl

by /n(Wι], [Λ])=[/nWι, Λ)] = WΊ For v>0, let £/(p)c^n be the open set

The solutions we have constructed lie in U(v), if n^n0=nQ(ι>) with Ce~a~δ/p:>nQ<
ι>. Conversely.

PROPOSITION 5.7. There is a constant vQ>ΰ such that for Q<ι><ι>0, some nϋ—
nM^N satisfies the following If n>nQ, then \_A]<E:U(v) can be represented by
a connection A of the form A'+Pξ with ξ^Lp

δ(Xn) and \\ξ\\Lfyxn)<l/(5k)

Proof. Let B be an element of U(v). Then there is a connection
Im/n with

ii^'-βli'ί,,,cχ.)<v.
We write E—A'^-b and consider the path

Bt = A'+tb (O^ί^l),

then \\A'-Bt\\L(xnϊ<v and

So

IIΉjL fc/pcxn>^(l-0^^

Thus we can find v0>0 with the following: For 0<v<v0, there is a constant
such that if n>n0, then [5f] (O^ί^l) is contained in ί/(ι/). W^e
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define Sc[0, 1] to be the set of times for which there are ut^Q'Pn and [A']e
lmjn such that

utBt=A'+Pξ

with ||?||L|<Λrw><l/(5&). We will prove that S is closed and open. Suppose

that t i s inS. We may take M t = l. Then the representation Bt=A'+Pξ gives

This gives a bound

ιιnj^^

Arranging this, we get

This implies that for larger n0e TV and smaller v0>0, ||£||L§αrn)^l/(10£). That

is, H£llL§crn)<l/(5*) implies ||?IU§c;rn>^l/(10fc), so this open condition is also

closed. We. will prove that S is closed. Suppose that {ti} is in S with £*— >ί.
Then we have connections Atί=A/JrPξι with ||£ilU$crn>, and Ui^Q'Pn with

UiBtl~Ati. By the uniform convergence bound on the £< above, we may sup-
pose that, taking a subsequence, the ξτ converge to a limit ξ , weakly in Lp

d(Xn),
with H£lUι>cjrn><l/(5£) Then the connections At% converge weakly in Lp

ί,§(Xn)

and the equation

dBtui=ui(Btt-Bt)-(Atι-Bt)ul

implies that, after taking a subsequence, uτ converges to a limit u weakly in
Ll,d(Xn)> The gauge relation is preserved under weak limit, so

uBt=A'+Pξ

and t is in 5. We will prove that S is open. Suppose that t is in S. Then
Bt = A'+Pξ with ||£IUscrn><l/(10£). W e define a map

M : βln(Ad Pn) X βJn(Ad Pn)
by

Let B! be the completion of ί?in(AdPn)xflίn(AdPn) in the norm :

Since ̂  is irreducible by the unique continuation theorem [7, Lemma (4.3.2)],
we have an elliptic estimate
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for some constant cn>0 (c.f. [7, (7.2.30)]). So Bl is a norm. Let B2 be the
completion of Ωjfn(AάPn) in the norm:

Then M can be extended to a map from Bl to £2 and the derivative at (0, 0)
is given by

Tft >?)=

By definition, T is a bounded map from #ι to £2.

LEMMA 5.8. There is a larger n^N such that if n>nQ then

. Let a=dA>7.+Pη, so that rfJ»α=[FJs JQ+iy. Since

dJ«.r%=^'Z+r«[(^-ίr*Γ),Z]

on τ71([n—2, n — 1]), we have an elliptic estimate

For n>n0 with cβ~;n°<l/2, we can rearrange this to get

Noting that the support of [FJ*, %] is contained in τ^l([n— 2, w — 1]), we see
that

Thus, for n>n 0 with c£-c/Uδ/p)π°<l/2, we obtain

ll9llL5cxw)^3| |α| |s£.

This gives us then

1 . Ώ
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On the other hand, the operator P is a pseudo-differential operator and the
symbol is homotopic to that of (diO^l-fA^)""1- It follows that dA'+P is Fred-
holm and its index equals that of u^'-KdJO*. So

index (T)=2/Zn+3(l+&+(*»))=0.

Thus T is an isomorphism from Bl to B2 with operator norm ||T~1||^4. This
implies that M is invertible near (0, 0) and 5 is open. It follows that S— [0, 1]
and the proof is completed. D

COROLLARY 5.9. For Q<v<v0 and n>n0(v), the intersection U(v)Γ\Mχn(lXn,
t], gn) is equal to the image of In.

Suppose that In is not surjective for any large n. Then there are a subse-
quence {n} (now we relabeled) with n-»oo and a sequence of gvASD connec-
tions {An} not coming from the map In. Uhlenbeck's compactness principle
([22], [7, 4.4]) and the preservation of w2(P) under weak limit imply that, after
taking a subsequence, the following data exists :

(1) A bundle P/-^F1ΠF2 with u;a(P/|r1)=^?(9), wt(P'\y^σί(η\

(2) ASD connections A, on P'\YI and A2 on P'\γ2 with (-l/4ττ2)f Tτ(FAl

Al)=l, and (~
JF2

(3) A collection of points { x l f ••• , xa\&Yι, {*α+ι,
(4) C°°-gauge transformations {kn} over Xn\{xlf ••-, xa+b}>
(5) fen/L^ converges to Alt A2 in C°° on compact subsets of FAi^ i , ••• , xa

(6)
Since σΐ(^)^0 and o f(^)^0, there are no flat connections on P'\YI, P' γ2,

which implies that /!<0 and /2<0. Lemma 5.1 and Lemma 3.5 supply h^C00

(AutP) such that [_hlAl~] lies in Mγ(lτ, σ^(ή)t gt). By Proposition 3.7, we obtain

lι—lγ Iz—lγ and α— 6=0.

LEMMA 5.10. There are constants ε>0, ί0— ^o, m>0 αnύf jθ=/om>0, independent
of T, with the following significance Let A be an ASD connection on Qx

(-Γ, T) with ( \FΛ\
2<ε. Then there exists /ireC°°(Aut(<?X(--T+l, T-

JZx(-Γ,Γ)

1)) swc/z ίΛαί /or -

sup Σ
zχ[ί-ι, ί + i] I ι=o

-ί Y» iW.W/^/l —^Γ^W^-2^-!'!)

Proof. The proof is very similar to that of Lemma 5.1. We apply Pro-
position 4.2 over Zχ(—T, T) to obtain a gauge transformation h e C°°(Aut(ζ> X
[-T + 1, T-1])) such that for -
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sup 111 \
Zχcί-ι, ί + i] U=o

Solve the ordinary differential equation for ΛeC°°(Aut(Qx[-T+l, T— 1])):

with initial condition h\t=0=l. Then by (5.1) we have

If ί^O, then we integrate over [0, ί-f 1] to get an inequality

l l^r/ i l lcoczxco. i+i^^c^-^^-^i l ld/rAl lgoc^xco. i + i^ + l l^r

For ί0>0 with ce-λt*<l/2 and 0^f^T-f0-l, we obtain

In the case ί^O, we can also prove the above by the parallel discussion. So by
bootstrapping (5.2), we see that hτ—hh satisfies the desired properties for
some p>Q. D

We choose τ2 0e^V'so that

Since

we have

Γ 2<ε
i r- lcC-e-nD)'^" 1

for some n^n^. By Lemma 5.10, we can find ΛneCo β(Aut(Qx[n0+l,H+13\J?n

Qχ[n0+l, n+1]) such that for

SUP 1 >' \VWn(h.~A~ — π*/')\zK/)β-2λ<t-no'>.
Zχcί-ι, t f

So the connection (hnAny=ri(hnAn-π*Γ)+(l-rt)π*Γ over rT'CCwo+l, «>)) also
satisfies the same condition as above for n^t^t^n — l. Now we can apply
Ascoli-Arzela's theorem with diagonal argument to deduce that, after taking a
subsequence, (hnAny converges to an ASD connection A'l in Cm~l over compact
sets in τ~l([nQ+tQ, <*>)). So A'l satisfies
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, sup sl^H^t-^Γ)!2^^-2^^^, (5.5)
τ^CΓί-l, « + !]) U=0 J

*d/3t(A»-π*Γ)=0

for f^n0+ί0 By Lebesgue convergence theorem we have

IK(A»^n) /-^; /)lr-icc»β + ί β.«))llLβ ί / J ϊcr<>— ̂ 0 (n->oo) . (5.6)

WQ bootstrap the equation

to deduce that there is a subsequence {hnkn1} (now we relabeled) such that
hnknl converges to some HI in Cm on ^((wo+^o, Wo+ίo+l)) BY Lemma 3.5,
if we replace {hn} by {rihn} for some r^Sί, we can suppose that #t can be
extended to w* over (̂[0, 72β+f0+l)) and b(l, fit)=0. Then for large neΛΓ,
b(l, r iΛnf tΰ 1 ) - b(l, βt) - 0. So we have b(l, r^I1) = b(l, r2hnkn1(r1hnkn1)'ί) =
b(l, rzΛn^Λ+bα, r1Λn^ή1)=0. Since (r2r~1

ί)Γ=Γf we see that n=r2. Now we
can apply the argument of [7, Lemma (4.4.5)] (see also Appendix 1) to patch
gauge transformations kn and Tihn over τ^l((n0+t0, w0+ίo+l)) Then taking
a subsequence, we can find Cm-1 gauge transformations {wn} on Xn such^that
un—hn on r^Oo-Ko+l, n]) and ι/n^4n converges to an ASD connection ^4t on
Pτ in Cm~ 2 over compact subsets of Yt, which is in the exponential gauge. If
we choose m^5, then Aτ is gauge equivalent to a C°°-connection and the uni-
queness in Lemma 5.1 implies that Aτ is smooth over Zx [w0 + ίo, °°) and
satisfies the condition (ii) for fϊ>n0+t0. So we obtain

\\UnAn- Jn(Άίf A z ) \ \ L < ι t X n ϊ — >0 (n-^oo).

Now by Corollary 5.9, \_An~\ — [In(Alf Ά^tΞjlίxβx^ η, gn) for large n, which
is a contradiction.

Next for n<=N, we consider the oriented 4-manifold Kfn defined by

, n + 1] U
$^tn

and the SO (3) bundle Ptn over K*n defined by

for each z — 1, 2. Here 0ίn and 0ίre are defined by using φi and a lift φt : Q->
Q with φiΓ—Γ as before. Let ££*n(r^3) be the space of all conformal classes
of Cr -me tries on Kfn which are a fixed metric on W and h-\-dt2 on Zx[0, n
+ l]^0tn^X[0, w + 1]. If we fix a metric [#<0] in Cέjn, then C^*π is identified
with

{m: Λ+^Λ~] Cr-bundle map, suρ|m|<l, m\κ*n\κ\= 0} ,



164 YUKIO KAMETANI

where A± is ± self-dual space with respect to gio. Then we have the follow-
ing theorem, whose proof is also the same as in ([7, 4.3], [14, 5 (iii)]).

PROPOSITION 5.11. There is a Baire set Cf

κ\ncLCΎ

κ\n such that for all g<Ξ
C'κ\n, the ΛSD moduli Mκ\n(lκ\n, ι?ί, g) is a finite set consisting of irreducible
regular connections.

For each weTV, we fix a metric gιn in C'κ\n such that gιn is independent
of n on K°t and the metric

gtn on Kt,

h + dt2 on Zx[0, oo),

lies in CΎ^ for ι = l, 2.
We extend Q and f naturally over W\jZx[Q, oo), which we also denote

by Γ and Q respectively. We replace Y2 by WuZx[0, oo) and set a function
τ2 : F2-»/2 as before. Then we can define the gluing map

7ln : MYl(lYv (τίO?), gύx {f} — > Mκ*ln(lκ\n, 9ί, gίn)

for large we TV just as before. We can prove that 7ln is bijective in the same
way as that of /. But in the proof, we need to correct it at some points.
First, after Corollary 5.9, we treat a sequence of connections {Λn\. Then we
obtain lι=lYl, /2=0 and a=b=Q. So u\A^—Γ for some C°°-gauge u\ on W\jZ
X[0, oo) and ulknAn converges to Γ in C°° on compact subsets of W\jZx
[0, oo). Second, after (5.6), on τiHCwo+fo, n0.+ί0+l)), if we replace {hn} by
\r\hn} for some r^Si, we can suppose that Tιhnk^ converges to HI over
ϊΊ^Cno+ίo, n0+ίo+l)) ^e bootstrap the equation

^Hr lAn(uί*0-1)=r1A»(MίfeO-Xttϊ*»^»-w*Γ)-r1(An^n-

to obtain that, if we choose nQ so large, then there is a subsequence
{n/inOt&J'1} (now we relabeled) such that rih^u^knY1 converges to some uz

in Cm~l on r^CCwo-Ko, ^o+^o+l)) and, since the right hand side is so small, u2

can be extended to u\ over r^CCO, n0+ί+l)). Now we can apply the argument
of [7, Lemma (4.4.5)] to patch gauge transformations kn (resp. u^kn) and Γι/ιn

over TiXCno+ίo, n0+ί0+l)) (res/). riXCtto+fo, w0+ίo+l))). Then as was shown
there, we see that Iίn is surjective for large weTV. (This bijection has been
stated in [10, Theorem V. 3.4].) Of course, the same holds for Y2 and 72n

defined as before. Composing three bijections, we have a bijection

Kn: 3tκ*ίn(lκΐn, 7?, g

for large n^ N. Hence Theorem 2.1 follows from the lemma below.

LEMMA 5.12. If [β<β], ΓSiJeΛ^/^, 07*, ^t») sαίίsyZes <?([B<i])=e<o([B<e])
(ί=l, 2), then 0(Mfln], [S.ι]))=e1βto(/fn([Slβ]> [B,β])).
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Proof. We write LBi9] = Uιn(Ai9, /U [5<ι] = [Λ»(Λ4ι, f)] for some [Λ<0],
[^ίj^c^y//^, σ*0?), #z). We choose any path Λit (O^f^l) in jϊpt from ^4ίo

to An. Define a connection Af

it on Pt7l by

A«i)ff*Γ over r^OΌ, n + 1]),

" I f over PFuZx[0, n + 1],

and a connection A't on Pn by -At=/n(^i£, A2t). Since [^ί0] (resp. [Λi]) lies
in U([AiQ]) (resp. ί/([-Aίβ])) for large neΛΓ, we have a nowhere zero section
s* over lAίt] (O^ί^l) such that

Since KerδJ^ is supported in τ^l([0t w — 1]), we can choose a linear map St : RNl~>

Ll((Ω0

κ*n®Ωϊ*n)(AάPιn)) so that for all O^f^l, δA.it®St is surjective and the

image of St is supported in τ^([Qt n — 1]). So K.er(δA'it®St) is supported in

τTKCO, n-l])X/rt(ί=l, 2) and Ker(β^φS1φS2) is supported in rnXCO, n-l])X
RNι+N*. Then we have a natural isomorphism

(ίi, ίs)' - ^ίi+ίs,

by which we obtain a nowhere zero section (Λmax dt)(s1®s2) on ^P/ι over [^4{]
(O^ί^l). Since KerδJ'j is supported in Tnl([0f n — 1]), ̂  Θ^tφSg is surjective.
Now we get

This implies the desired equality. Π

Proof of Theorem 2.2. Suppose that Ίχ(η}Φ§. Then for each n there is
an ASD connection \_An~] in MXn(lχny η, gn}- (Here, in the construction of
Pn, d and c2 are chosen so that w^(Pn)=η9 pι(Pn)—lκn are only satisfied.) Then
after taking a subsequence, we have the data from (1) to (6) in the above. As
was shown there, we see that ll—lγl and /2=/r2. The resulting connection Aτ

on Pτ can be thought of an element in MYi(lYi, σάη), gt}. The following lemma
contradicts to the assumption. Π

LEMMA 5.13. For any connection A on P which is isomorphic to π*Γ on
Zx[n, oo ) for some
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ΞΞ(τ?*)2 (mod 2).

Proof. Define P=P\r-icco.^WQ. σ*(w2(P))=σ*(η*) implies that w2(P)=η*
or w2CP)=)?*+P.D.[T2Xθ]. In any case, we obtain

^\γΎr(FAΛFA)=Pl(P)=(w2(P)Y~(η*γ (mod 2). Q

Remark. The vanishing of γx(η) can be observed for more general ele-
ments η^Cx. In a forthcoming paper, we will treat it.

6. Explicit calculations on elliptic surfaces.

In this section we calculate values of the simple invariant for the regular
elliptic surfaces without multiple fibers. Let π : Sk->CPl be a regular minimal
elliptic surface with pg = k — l and without multiple fibers. Then Sk satisfies
π^S^)—1, b+(Sk)=2k — 1 and lSk — —3k. It admits a differentiate section Σ* •
CPl-^Sk, which has the self-intersection number (Σ!*)2^ — k. We take a general
fiber / in Sk. Then we can interpret this surface Sk as a fiber sum up to fiber
preserving diffeomorphism as follows [17]: Given Sl and Sk-i(l^i^k — 1),
identify the tubular neighborhood of a general fiber in each with T2xD2 so
that the fibrations correspond to projection onto D2. Remove the interior of
tubular neighborhoods from Sl and Sk-lf and glue the two remaining manifolds
together by an orientation reversing and fiber preserving diffeomorphism on
the boundaries. Then we get an oriented manifold S^Sk-t, a fibration π:
S^Sk-i-^CP1, and a section ΣΛΣ*-t: CPί->S^Sk-l. We note that S2 contains
the Kummer surface, which is one of the K3 surface.

We use a well known result by Donaldson ([6], [7], [13]).

PROPOSITION 6.1. (Donaldson) If we fix the orientation of H+(S2) determined
by the complex structure of S2, then γS2(η)=l for any η<^C$2.

LEMMA 6.2. I rss(P.Iλ([Σs]+ [/])) 1=1.

Proof. Because S6=S3\\SS=^S2^\S2\\S2 and Σβ^Σs^3=^2^2^:
S6, we apply Theorem 2.1 three times to deduce that

;]+2[/]))|-lr53(P.D.([Σ3] + [/]))|2

So |r53(
p D ([Σ3] + [/]))|-l. G

COROLLARY 6.3. For integer k^2,

lrs*(P.D.[Σ*])l=l if k is even,
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lra,(P DΛ[Σ*] + [/])))l==l if k is odd.

Remark. In a recent paper [11], we found that for integer &^2,

l 7 5Λ(P.D.[Σ*])I^O if k is even,

jJ + [/])) 1*0 if * is odd.

using the moduli of stable vector bundles.
For k odd, we can determine the image of

LEMMA 6.4. 1^(5)1=1 for any

Proof. Since the characteristic element is u/2(S8)=P.D.[/] (mod 2), <τ?, [/]>
Ξ^ ^Ξl(mod 2). We construct η\η^Cs6, by identifying a tubular neighborhood
of a general fiber in two copies of S3. If we identify S3 with S2ήSι, then η e
Cs3 factors as η = η^r]ι for some η^Hz(S2; Zz) and ηί^H2(Sί; Z2) with Q^ΞΞ
0?2)

2+0?ι)2 (mod 4). If 0?2)
2Ξθ(mod4), then (^2+P.D.[/])2-()72)

2+2^2(mod4).
So we may assume that τ? 2 ^Cs 2 , ^eC^. In the same way as above we
have an element ηάηι^CSz. Now by Theorem 2.1 and Proposition 6.1, we get

\rs2(ηzms2(η^ηMrs,(ηz)\=l. D

We can apply the above argument on S*=S2lι lιS2t|S3 to deduce that

COROLLARY 6.5. // k is odd and &^3, then \Ysk(ιj)\=l for any

COROLLARY 6.6. // k is even, then l^O?)! =1 for η^CSk with(η, [/]>Ξ=
I(mod2).

Remark. In fact, Ue has obtained that the value \Ysk(i))\ is independent
of η^Ck with <)?, [/]> = ! (mod 2), by analyzing the action of diffeomorphism
group of Sk on CSk [21].

Appendix 1

Lemma (4.4.5) in [7] omits a necessary hypothesis on extension of gauge
group. We write a precise statement, but omit its proof, since it is same as
that of Lemma (4.4.5).

Lemma (4.4.5X. We fix m<=N. Suppose that An is a sequence of unitary
Cm -connections on a SO (3) bundle P over a base manifold Q (possibly non-
compact), and let Ω^Ω be an interior domain. Suppose that there are gauge
transformations un^Cm+1(AutP) and un^Cm+ί(AutP\o) such that unAn con-
verge in Cm over Ω and unAn converges in Cm over Ω. Then we may assume
that; taking a subsequence {n'\ , the un>u^} converge in Cm over Ω to a limit ΐί.
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// u extends over Ω, then for any compact set KtzΩ we can find gauge trans-
formations uveCm(AutP) such that wn' — ϋn> in a neighborhood of K and the
connections wn<An> converge in Cm~l over Ω.

In Section 5, we apply the above lemma with O=τ71([0, n 0+fo+l)X ^~
TT'ίίno+fo, *o+fo+(3/4))) and /f =r71([nβ+ίβ+(l/4), nβ+fo+(l/2)]).

Appendix 2.

We prove the compactness in Proposition 3.7. For /r</<0, it is vacuous.
Let {D4tJ} be a sequence in JMY(lYt η, g). Then after taking a subsequence,
the following data exists :

(1) A bundle P'->r with w*(P')=ij,

(2) An ASD connection A on P' with (-l/4π2)ί
JF

(3) A collection of points \xlt ••• , xα}eF,
(4) C°°-gauge transformations {kn} over F\{XJ, ••• , xa

(5) &n-4rc converges to A in C°° on compact subsets of Y\{xlf •••, ^«},
(6) 4fl-/^-/F.

Since 77 ^0, there are no flat connections on P' ', and /<0. By Lemma 5.1 and
Lemma 3.5, there is /ιeC°°(AutP) such that [hA] lies in J«r(/, 77, g). So we
have l=lγ, α=0. We choose i0e^ so that

a >

:Jr-l([ί0,oo))

where we choose ε>0 by Lemma 5.1. Since

limf
n-»oojτ-l([ί 0 ,o

we have

( , l^»l'<«Jr-l<[ί 0 ,oo)> n

for some n^N. Then there exists hn^Cco(A\λt(Qx[to, oo))) such that

{ m

Σ
_- _. . . -, ^=0

for ί^ί0. Now we apply Ascoli-Arzela's theorem with diagonal argument to
deduce that hnAn converges to an ASD connection A' in Cm~l over compact
sets in r'KBo, TO)) So

sup

for f j^ f 0 . By bootstrapping the equation
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we see that there is a subsequence {hnkή1} (now we relabeled) such that hnkn1

converges to some u in Cm~l on τ~\(t0, f0+l)) By Lemma 3.5, if we replace
{hn} by {rhn} for some re &, we can suppose that ϋ can be extended to w*
over τ'XCO, f0+l)) So we can apply the argument of [7, Lemma (4.4.5)] (see
also Appendix 1) to patch gauge transformations kn and rhn over r'1^, ί0+l))
Then taking a subsequence, we can find Cm~1-gauge transformations {un} on
Y such that un—hn on τ'HC ίo+l, °°)) and M n A n converges to an ASD connec-
tion A" on P in Cm~ 2 on compact subsets of Y. If we. choose m^5, then

\\unAn- A'hlw— >0 (n->oo),

and [ttn-An], W]^*3ίr(/y, η, g). Now by Lemma 3.3, {wn} is in £P. Π
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