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1. Introduction.

The topology of moduli spaces of anti-self-dual (ASD) connections is closely
related with differentiable structures on 4-manifolds. In his celebrated paper
[6], Donaldson has defined the polynomial invariants to distinguish differentiable
structures on a 4-manifold. Though a significant result on the vanishing has
been obtained at the same time, these invariants remain to be very difficult to
determine completely. In fact, many examples have been calculated using an
identification of irreducible ASD connections and stable vector bundles by Don-
aldson ({61, [7], [9], [12], [18]). But there are another direct approaches in the
case that the dimension of ASD moduli is zero and that the invariant is just a
number of the points in the moduli. For example Gompf and Mrowka have
defined an invariant for 4-manifolds with torus end, using O or 1 dimensiona
ASD moduli, and proved that the invariant of the glued manifolds with solid
torus can be emerged as the number of ASD connections which can be extended
to over the solid torus. From a topological argument on K3 surface with
eliptic fibration, they calculated the above numbers for fake K3 surfaces ob-
tained by performing logarithmic transformations on embedded 2-tori. After
that, Kromheimer has observed that the ASD moduli of Kummer surface comes
down to the flat moduli as all (—2) curves tends to infinity, so the invariant
could be computed algebraically [13]. The invariant obtained by 0-dimensional
ASD moduli is said to be a simple invariant.

In this paper we give a torus sum formula of simple invariants for 4-mani-
folds. Our idea and formula are simple. Suppose that we have two simply
connected closed 4-manifolds which contain a 2-torus with the trivial normal
bundle. We assume that the complements are simply connected and the second
Stiefel-Whitney class to define the SO(3) bundle does not vanish on the 2-torus.
Then any ASD connection converges to some ASD connections as the 2-torus
tends to infinity. On the other hand, any ASD connection over the new 4-
manifold obtained by torus sum also converges to some ASD connections as the
bi-collar of the intermediate 3-torus is stretched to infinity. Hence we prove
that the simple invariant of the new 4-manifold is the product of that of the
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TORUS SUM FORMULA FOR 4-MANIFOLDS 139

given 4-manifolds. This formula is a variant of a relation of Donaldson in-
variants to Floer homology in Atiyah’s exposition [1].

We can apply this formula to compute the simple invariant for regular
elliptic surfaces. The rational elliptic surface has the least Euler number among
them. The K3 surface is obtained by gluing two rational elliptic surfaces as
fiber sum [17]. Gluing more rational elliptic surfaces yields all the other re-
gular elliptic surfaces without multiple fibers. On the other hand, the simple
invariant of the K3 surface has been known to be 1 for all second Stiefel-
Whitney classes ([5], [13]). Hence the value is 1 for second Stiefel-Whitney
classes whose restriction to the fiber are non-zero. In particular, if the geo-
metric genus is even, then all the value is 1.

We remark that these calculations improve two known facts the first, Sato
and the author have shown that the value is non-zero for a second Stiefel-
Whithey class, by using stable vector bundles [11]. The second, Ue has shown
that the value of the above is independent of the choice of second Stiefel-
Whitney class with the additional condition, by analyzing the action of the
diffeomorphism groups on second cohomology groups [21].

I would like to thank Professor M. Furuta for valuable communications
with me.

2. Review of simple invariant and main result

We recall the simple invariant y defined by Donaldson ([6], [7, Chapter 97)
let X be an oriented closed smooth 4-manifold with the following properties ;

(Al) m(X)=],

(A2) b.(X)=3and b.(X)is odd,
where b, denotes the dimension of the maximal positive subspacee for the inter-
section on H*X). Then there is a well defined lift of mod 2 cup square called
the Pontrjagin square H*X Z,)—»>H*X;Z,). Composing this map with evalua-
tion on the fundamental class defines a quadratic map H*X Z,)—Z,. Let
P—Xbe the principal SO(3) bundle with w.,(P)=%and p,(P)=I. They satisfy
»*=[ (mod 4). A theorem of Dold and Whitney [4] tells us that SO(3) bundles
over a compact 4-manifold are determined completely by % and /. Conversely,
given n and / with n*=/ (mod4), we can easily construct the corresponding
SO(@3) bundle over X. We give X a Riemannian metric. Then the affine space
JAp of L2 connections has a natural Banach structure from the L% norm. The
L% gauge group Zp is a Banach Lie group. The Lie algebra of Gp is Li(Ad P).
Let A} c Ap denote the subset of irreducible connections. Then the quotient
BE=J¥/Gpis a C=-Banach manifold such that the projection 7: AF—B¥ de-
fines a principal Gp-bundle ([8], [7, 4.2]). The tangent space to [A]E B¥% is
isomorphic to {a€ L3(R2}(Ad P))|d%¥a=0}. We say an element [A] in B% to be
regular if the operator dj is surjective. Let Mx(l,#n, g) denote the moduli
space of g-ASD connections on P. Then the formal dimension is equal to
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—2/—-314+b,(X)) [2]. We choose Iy so that —2/y—3(14+b,(X))=0. Let C%
(r=3) denote the space of CT-metrics on X. By ([8], [7, 4.3]), there is a Baire
set Cy in C% such that for all geCk, HMx(x,n, g) is a finite set consisting of
irreducible regular connections. We fix g&C% Then we can define a sign at
any [AleMx(x, 5, g using a line bundle over B%. For A€ ¥, we consider
the deformation complex

04=d%Dd%: LiQ1(AdP)) — > Li(Q3DL21)(AdP)).

We choose a linear map S : RY—Li(R2%(AdP)) so that 0,PSis surjective. Then
we define the determinant line of d,BS by

Ap, a=(A">Ker (04DS)(AYRY)* .

This line has an intrinsic sense by the exact sequence

T
0 — » Kerd,— > Ker (0,PS)> RY — > Coker 84— > 0 .

Since the surjectivity holds in a neighborhood of A, these lines are patched
together to get a locally trivial line bundle over A%. It descends to the deter-
minant line bundle Ar— B by the free action of G¢p. The bundle Ap—B%¥ is
topologically trivial ([5], [7, 5.4]). Since 04 is an isomorphism for any [A]e
Mx(Ux, 7, g, we can define a section on Ap at [A] by

(w7 e) A - Ariem)Q(er A -+ Nen)*,

where e, -+, ey form a basis of R¥. This defines an orientation o([A]) of the
the line bundle Ap—®%. For a later use, we remark that this section is defined
on a connected region U([A])consisting of irreducible regular connections about
[A].

On the other hand, for an orientation £2 of H*(X)and an integral lift ¢ of
7, there is another orientation o(2) determined at a connection obtained by
attaching some standard instantons over S' with reducible connection deter-
mined by c¢ ([5], [7, 7.1.6]). Then the sign &([A]) at [AJeMxUxy, g is
given by o([A])=e([A])o(2)and the simple invariant is defined by

7x(n)= 2 e([AD.
[AleMxdx 9 &)
This function 7y is independent of the choice of the element g in Ck and satisfies
the following ([6], [7]): If ¢:X—X’ is an orientation preserving diffeomor-
phism, then 7x(@*(n"))=e(@)rx(n’)where (@) is —1 if either ¢* is an orienta-
tion reversing map from H*(X’) onto H*(X) or ((c—¢*(c"))/2)*=1 (mod 2) but
not both and is 1 otherwise. (Here ¢’ denotes the integral lift of %’ and c is
the integral lift of ¢*(»’) used in orientaring their respective moduli spaces.)
Hence the absolute value |7x| can be thought of a function on

Cx={nEH X; Z,)|n+#0, n*=ly (mod4)}.
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We return to our main theorem. Let K be a compact oriented smooth 4-mani-
fold with boundary Z=T?, satisfying the following;

B =(K)=1,

(B2) b.(K)=2and b,(K)is even.
For two such manifolds K,, K, and an orientation reversing diffeomorphism
¢: 0K, —0K,, the oriented 4-manifold X=K,J,K, always satisfies (Al), (A2).
Let ¢:Z—X, g.: K;—X (=1, 2) be the inclusion. For each y&Cx with ¢*(p)
#0, we can define an orientation reversing diffeomorphism ¢;: dK;—Z such that
¢%(n) can be extended to a class p¥eH*K*;Z,). The oriented closed 4-mani-
fold K¥=K,\J4,Walso satisfies (Al), (A2). Here W is the solid torus T*Xx D2

THEOREM 2.1. // u* satisfies (9¥)?=lx* (mod 4) for each 1=1, 2, then
[7xI=17ciD 720D

THEOREM 2.2. // 5% does not satisfy (p¥)?=lx*(mod2) for some i=1, 2,
then 7 x(9)=0.

Remarks. (1) Let P. D. be the mod 2 Poincaré dual. Thenn¥+P. D. [T?X0]
satisfies (p¥+P.D. [T*X0])?*=(9¥)?+2 (mod 4) and by the exact sequence

*

a;
0—s>HW,Z Z,)— HXK¥ Z,)— H*, Z,),

it is only another choice for 77*. So the conditions of Theorem 2.1 and 2.2 are
complementary to each other.

(2) In our application, if K¥ and 5¥ (=1, 2) are chosen, then we will write
X=K*¥K¥ and 7= tf\ni.

3. Setting up gauge theory

We first argue the ASD moduli over a 4-manifold with torus end. Accord-
ing to Taubes [20], we study a gauge theory on a convenient subspace of con-
nections to apply a known analysis and to contain all ASD connections by some
gauge. The uniqueness of flat connections over the torus enable us to apply
his argument directly. For n=2, 3, we denote by X(T™)the set of the con-
jugacy classes of representations from =,(T") to SO@3). The topology of X(T™)
has been discussed in [10, Proposition V. 2.1]. Given a representations p, we
form the associated flat R® bundle §,. Then we define a map

0, : X(T™) —— H¥T™ Z,)

by w.(0)=w(,). This is surjective. We denote by X.(T") the preimage of
asHYT™ Z,). Then the decomposition

XUT™)=\Uacnzrn.zpXa(T™)
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decomposes X(T™) into connected components. Xo(7™)is homeomorphic to 77/ +1
and the other 7 components are isolated points whose stabilizers are isomorphic
to Z,XZ,. Any representation p in the isolated points is regular, that is
HYT™; Ad p)=0 (0<:<52). 5

For the unique non-zero element acH*(W ;Z,), we let Q, I'and R be the
corresponding flat bundle, flat connection and stabilizer respectively. We write
Q=0|zand I'=I"|; Then the stabilizer of I is just R.

Let K denote a compact oriented smooth 4-manifold with boundary Z,
satisfying (Bl) and (B2). Let ¢:Z—K be the inclusion. Define Y=K\UZX
[0, ). We choose peHK ;Z,) with t*(3)+#0. Let P, be the SO(3) bundle
over K with wy(Py)=% and p,(P)=0=H*K Z)=0. For a bundle isomorphism
¢: 0%(P)—Q, define P=P\J,n*Q, where = : Zx[0, «0)—Z is the projection.
We give Y a metric which is the product metric h +dt* on ZX[0, oo), where
h is a metric on Z. Let ¢: Y—Rbe a smooth function such that z(x, #)=t on
ZXx[1,00) and 7=0 on K. We fix a smooth connection A, on P such that A,

is equal to a*I' over Zx[0, 0o). We write (—1/41r2)J(YTr(FAO/\FAO)=I(EZ).
For p=1, £=0 and >0, we define the weighted norm LZ ;YY) by

k i/p
- )
Ishzg per=({, * 2 19851°)"
Then we consider the following class of connections and gauge group on P

Ap={As+alac L§ 10c(23(Ad P)), lla] 12 jor<oo},

Gp={u & Li10c(AutP) I [V ulz2 ;o< oo}

By the argument in [20, Section 7], we see that there is a well defined map
r: @p—R given by

rw)=1limu .,
tsco

where the limit is in C°-convergence. We note that the automorphisms in Gp
are continuous by the Sobolev embedding theorem L3 j0c— >C°.

LEMMA 3.1. The automorphism a<R over dK can be extended to all over
K continuously if and only if a=1.

Proof. The primary difference d(1|sx, a) [19, §36] between the identity
1€C°(Aut P)) and a+1 is a non-zero element in H'0K ;Z,). If a can be ex-
tended to K, then by the extension theorem [19, 37.117, there is an element v
in H'(K ;Z,) such that ¢*@)=>bd1|sx, a@). But this contradicts to H'(K ;Z,)=0. D

COROLLARY 3.2. The image oj the map r is {1} and there are no reducible
connections in @p.
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A gauge theory on 4-manifolds with cylindrical end has been studied by
Taubes [20, Section 7]. Using his argument, we can prove the following two
lemmas (see also [16]). We topologize Ap, Gp by the norm Il-lnga, V4, 225
respectively. Then

LEMM 3.3. Gp is a Banach Lie group. The Lie algebra of Gp is
8p=1{0E Li 10e(Ad P)[ (V4,01 1 ;) <0}
Gp acts smoothly on Ap. The set {usLioc(AutP) udp=dJAp)is Gp.

LEMMA 3.4. The quotient Bp=Ap/Gpis a C>-Banach manifold such that
the projection Ap— Bp defines a principal Gp-bundle. The tangent space fo [A]
& Bp is isomorphic to

{a€ L3 10e(2$(Ad P))lla]l 13 yopy <oo, e d%ea=0}.

LEMMA 3.5. For bundle isomorphisms c¢, t': 6+(Py)—Q, we consider SO(3)
bundles P=P\J, n*Q, P'=P\J, n*Q, and C™ (m&N)-connectionsA,, Ason P, P’
such that A,, A are equal to m*I" over Z X [0, oo) respectively. Then the follow-
ing two conditions are equivalent.

(1)  The automorphism (¢')~'rc over dK can be extended to all over of K con-

tinuously for some r< R with b(l, (¢/)"'re)=0.

@ AR TrF AP =(—1/47) | Tr(FAFy.

Proof. We consider SO(3) bundles P*=P,\J,Q, (P)*=P\J,.Q over K\ UW
and C™-connections A*, (A’)*extended by I’ respectively. If the condition (1)
holds, then the connections A, and Aj have the same integral by Chern-Weil
formula. Conversely if the condition (2) holds, then obviously p.(P*)=p,((P’)*) and,
moreover, wy(P¥)=w,((P")*)for we can write w,(P¥)=w.(P)*)+PD. [T?*x0],
which induces p,(P*)=p,((P")*)+2(mod 4), a contradiction. _ By Dold-Whitney
theorem, there exist bundle isomorphisms f: P,—P, and h: Q—Q with ¢/ f=he.
We prove that A is homotopic to some r&®R. It suffices to prove that A rsis
homotopic to some r&R. We remove an open 2-disk D? in T2. By the homo-
topy classification theorem [19, 37.12], the assignment of the primary difference
b(, ) in H(T\D?; Z,=H T?; Z,)= R to each homotopy class in [T*\D?;
Aut Q] sets up a 1-1 correspondence between each sets. So A | pzpezis homo-
topic to some r R by a homotopy H, (0<¢t<1). We extend H, to all over to
T?, using the collar of D% Since [(D? 0D* (SO@), id)] =#(SO®R)=1, H,|pe
is homotopic to r relative to dD? and so (¢)~'7¢ is homotopic to /. We see
that b(l, (¢/)~'r¢)is zero by the argument in Lemma 3.1. D

COROLLARY 3.6. @p depends only on n and /.
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We return to the moduli of ASD connections. By [15, Theorem 1.1], there
exists 6>0 such that for 0<d<4d, p=2 and k=0, if A is an ASD connection
on P, then the AHS complex

+

d
0— > QUAdP) — > Q4(AdP) — > 2% (Ad P) — » 0

defines a Fredholm complex
d+

da
0— > L2 s(V)— > LBy s )— > L2 s(Y)— >0 .

We denote by Hj (0<7<2) the cohomology of the above complex. Then its
index is given by [10, VI. 3]

-dim H4+dim Hi—dim Hi=—2/—3@2+b,(¥)).

Let ¢y (r=3) be the space of all conformal classes of C"-metrics on Y
which a1e fixed metric A +dt?on ZX [0, ). If we fix a metric [g,]EC%, then
Cy is identified with

{m:A4*—>A~ C7-bundle map, sup|m| <1, m|p\go=0},

where A* is * self-dual space with respect to g, and K°is the interior of K
([7, 1.1.5]). We choose Iy with —2ly—32+b.(Y))=0.

PROPOSITION 3.7. There is a Baire set CycCy such that for all 1,<1<0
and g€Cy, the ASD modul:

—1
Sy, 1, O={[A1E Byl Fum=—s,Fay 3| Tr (FanF=1}

is a finite set consisting of irreducible regular connections. Any element in
My, 7, 8) has a smooth representative.  Its dimension is equal to —2l—3(2+b.(Y)).
In particular if 1y<I<O0, then My(l, u, g) is empty. Here the regularity at [A]
My, 1, & means that H5i=0.

Proof. The regularity follows from the same argument as in [7, 4.3] (see
also [14, 5 (ii)]). By the argument in [7, 4.2.3], we see that the representa-
tive in Coulomb gauge relative to some nearby smooth gauge is also smooth.
We will prove the compactness in Appendix 2. [J

Remark. The proposition above has been stated in [10, Theorem V.3.3].
But we do not know how they orient the ASD moduli Hy(ly,5, g) in spite of
the non-existence of reducible connections in Bp.

Let p=Cyx, p¥eCk* and 5¥<=Ck;satisfy the assumption of Theorem 2.1.
Let P* be the SO(@) bundle over X with w.(P¥)=n and p,(P¥)=lg* and let
P* be the SO(3) bundle over K1 with w.(PY)=nand p,(PY)=lgr. We write
P*=P01U,1§f0r some bundle isomorphism ¢, : Py, | z—@Q and write P*=P,,\U -, }PM

o e
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for some bundle isomorphism ¢:: Poe| z—Q. We_put Pz—PMU;zQ We fix a
smooth connection Af on P¥ which is f on Q ~(i=1,2), and a smooth con-
nection A* on P which is A¥ on P,,. Then

-1 -1
PAPY=T5|, Tr (FnF =] Tr FaAFO— T3 Tr PanF
] Ky

=lx—Ilgi=lg},

and W(PH=%9% If not, then it must be w(PH=%F+P.D. [T?*x0], which
induces lx*=/x*+2 (mod 4). This is a contradiction. We define ¥,=K,\JZX
[0, o) and P;=Fy,\J,;n*Q for each /=1, 2. We fix a connection 4, on P, by

A¥ over K, ,
A=
a*l’ over ZX[0, ).

Using Aq and 0<3,<6, we define the space Ap,, the gauge group Gp, and the
quotient Bp,.
~ We move on the gauge theory on 4-closed manifolds. We choose a lift
¢ :Q—Q of ¢:0K,—0K,so that JI'=I". For neN, let X, be the oriented
closed 4-manifold defined by

X, =K\ 0uZX[0, n+1]\U ZX[0, n+11UK,,

9n

where ¢, is the diffeomorphismon ZX[n—1, n+1] defined by using ¢ and the
reflection on [n—1, n+1]. Let P, be the SO(3) bundle over X, defined by

Po,=Py U QX[0, n+11U QX [0, n+11\U P,
131 ¢'n tg

where ¢, is the automorphism on @X[n—1, n+ 1] defined by using ¢ and the
reflection on [(n—1, n+1]. We put

A )f Ay, over K,UZx[0, n+1] ,
o \ Az over K,uZX%[0, n+1] .

Let C%, (r=3) be the space of all conformal classes of C"-metrics on X, which
are the fixed metric & +dt*on ZX [0, n+11\U,,Z %[0, n411. If we fix a metric
[go] in Ck,, then C%,is identified with

{m: A*—A~; C"-bundle map, sup|m|<I1, m|x \ xlrxdH=0},

where A* is * self-dual space with respect to g,. Then we have the follow-
ing theorem, whose proof is also the same as in ([7, 4.3], [14, 5 (ii)]).

PROPOSITION 3.8. There is a Baire set Cx,CCk,such that for all geCxk,,
the ASD moduli My ,(x,.m, &) is a finite set consisting of irreducible regular
connections.
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For each neN, we fix a metric g, in C%, such that g» is independent of
n on KITIKSand the metric

{gn on K,,
8= R
h +dt on Zx[0, o),

lies in Cy, for =1, 2. We can find these metric tenUejv, because the inter-
section of countable Baire sets is again a Baire set. For neN we fix a function
.. Xn—R by
{ 7,  on ([0, n—e]),
Tp=

g on tz'([0, n—e]),

to a small 0<e<l. We use the weighted norm L% 5(X,)defined by
k 1/p
Isllegscen =(] e 5 198.517)

We note that if s is supported in z7'([0, n+1]), then HsHLga(xn)gHsHLga(yi)
<e”|slzp cx,> and if the support of s is contained in 77([0,n —11), then
||S||L,§{5<X,,)=“S||L,§’_5<Y¢)- We fix p>4, ¢>8 and 0<d,, 6<3 by

1,1 1 g b 8 _2

g g P’ 2 "p "2’

where 2% is the first eigenvalue of Ar on Ker d%<Q4(Ad @). The second in-
equality implies that L3 ; (Y ) LY ,) [15, Lemma 7.2].

4. Decay estimate.

In [22], Uhlenbech has proved that the curvature of ASD connections con-
trols the uniform norm of the connection matrices in Coulomb gauge. Taubes
has extended the result to ASD connections on the trivial bundle over 4-mani-
folds ([20] see also [3, Appendix AJ). We show that his argument is appli-
cable to ASD connections on flat bundles with an unique flat connection in the
same way.

LEMMA 4.1. Let U be an oriented open noncompact Riemannian 4-manifold.
Let U'@Ube an interior domain with compact closure U'. We let Q,—U be a
flat SO(3) bundle and I'y be a canonical flat connection.  Suppose that Q|5 —U’
cannot admit any other flat connection topologically. Then there are constants
e>0 and &m.p >0 which depend on U’and me N with the following significance :

Let A be an ASD connection on P with :\U Fq|*<e. Then there exists he
C=(Aut Q,ly') such that
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sup{ 3} (VAT SCmor| IFal”

Proof. We fix a locally finite open cover of U by geodesic balls {B;}ien
such that the small balls {Bi}ie,v with 1/2 radius cover U and the metric on
B, is close to the Eucledian metric. Then by ([22], [7, Proposition (2.3.7),
Theorem (2.3.8)]), there exists {h:&C>(Is0(Qslz,, B.XSO@3)))}ex such that
a,=h,A obeys d*a,=0 and

sgf{;:;) IV”’azlz}é C;SB‘LIFAIZ. @.1)
Here B; is the ball of radius 3/4(radius (B,)) and V is the covariant derivative
defined by the product structure. We denote by {(BiN\B}):}the connected
components of BiN\Bj. To obtain a desired gauge, we modify h,, inductively.
First we put hA;=h,. Suppose that forj<¢ we defined h;&C=(Is0(Q, |5, B,X
SO(3))) such that a;=h}A obeys

sup{ 5 1voas et 1R (42
gy =0 JR;

for some modified constant £;>0. On BiNB;, hij=hi(h})'€CBiNB; SO(3))
obeys
dky,=h;;ai—ahs, .

By bootstrapping, we see that dh;, has the same C™-bound as (4.1). If we
choose €>0 so small, we can write hi,=exp(£i;x)z.;x for some constant z:;, <
50(3) on (BiNB:):. We define hi€C=(Iso(Q, 5, B.XSO(@3)))by

B {exp(_gbijkégjk)hz on (BiNB)s,
o h, onB\Bj,

where ¢;;, is a cut-off function equal to 1 on (Eiﬂﬁj)k and is supported in
(BiNBj)i. Then a;=h;A obeys the estimate (4.2) for a modified constant £;>0.
In the construction above, we also obtained that hi(h))™'=zi0on (BiNB))s
The data {BiﬂU’,z{j&} defme a flat bundle Q¢—U’ and a flat connection 77§
on Q. The data {B:N\U’, h}|3~5'} define an isomorphism h’: Qy|5—Qi. By
the assumption, there is an isomorphism A”: Qi—Q,|5 such that hA”I¢=1I,.
(4.2) guarantees that h— h”h’ obeys the desired estimate. [

PROPOSITION 4.2. There are constants €>0 and {={,>0, independent of
8<T < oo, with the following significance Let A be an ASD connection on QX
0, T) uith J(Z . Fy|%<e, then there exists heC>(Aut(QX (1, T—1))) suchthat

x(0,T)
for 8<t<T—8,
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r m h} r

(1) — ik < 2
zxggpz-h:u;o IV (hA—xz r)IJ =Csz[t-s. ¢+8] | Fal®

Proof. The proof is essentially the same as that of [20, Lemma 10.5].

We apply Lemma 4.1 with U=Zx(j—1, j+8) and U’'=ZXx[j, 74+7] for each
je4N. Then there exists h;eC(Aut(QX[7,7+7])) such that

"3 (VG p(h, A—*T) I;}gg" Fy)? @.3)

Zx[SJI.J 71 \1=0 Zxr1-1,7 18]
On ZX[j+4, 471, hj,;5a=h;h75 . EC(Aut(@ X [j+4, j+T7])) obeys
derhy, y50=h,, 1a(Byss A—m* ) — (R, A—a* )Ry, jas.

By bootstrapping, we see that A, ,., has the same estimate as (4.3). If we
choose €>0 so small, the argument in Lemma 4.1 can be repeated with the
data {h;,,;+4 to produce hj€C=(Aut(QX[j, 7+71) such that hj(hj.d =2, j+4
€R on ZX[j+5, 74+6] and for some {’>0,

m

() IA % 2 ’ 2
B era-mnrfsel, e

Now we change hj to
HjZZo_4 2j..4,jh; .
Then h~, obeys the same bound as above and ﬁj(fzjﬂ)“:l. We define he

C=(Aut(Q@x[1, T))) by h=Hh, on Zx[j+1, j4+6]. Then A satisfies the desired
estimate. [

We prove the decay estimate of the curvature of ASD connections over the
cylinder ZX [0, o) by the parallel discussion in [7, 7.3]. The following three
lemmas can be proved by replacing the trivial connection in the argument of
[7, 2.34, 2.3.5, 2.3.6, 2.3.7, 2.3.8] by the flat connection I. We prove the first
only.

LEMMA 43. There are constants N, 7 >0 such that if B is a connection on
Q in Coulomb gauge relative to I' (i.e. d¥(B—I")=0)and satisfies \\B—1I'||,.<7,
then ||B—1I"|2=|B—I"l|Ls+IIVr(B—I")l|2< N|| Fgll 1.

Proof. Since H'(Z Ad Q)=0, the basic elliptic estimate for the operator
d%+dr on l-forms gives a bound

IB=I'lg=cilldr(B—1I")Ls .
Using the Sobolev multiplication theorem, we get

I1B—I"l| s=<c\llFpllzatcrcel B=I" [lar| B—Tl 5 -
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If \\B—TI"llzs<1/@2¢c,c,), then we can rearrange it as

IB—I"]l ;g{l—ccol B—I e} el Fell
to get \\B—I"HL%_S_Zc,IIFBHm. O

For a connection B on Q and /=1, put:

QuUB)=IFsllit 3198 Falza.

LEMMA 4.4. There is a constant 7'>0 such that if the connection B of
Lemma 4.3 has |B—T"||pa<7’, then for each [=1, a bound,

L
1B=L"ll3,,= ZIVPB =)= f(QuB))
holds for a universal continuous function f,, independent of B, with f,(0)=0.

In the lemma below, by a one-parameter family we mean that they are
smooth in the Z variable, and all partial derivatives are continuous in both
variables.

PROPOSITION 4.5. There is a constant €>0 such that if B; (0<t<1) is a
one-parameter family of connections on Q with IIFB;||L2<5 Jor all t and with
By=TI", then for each t there exists a one-parameter family of gauge transforma-
tions u. such that u,=1 and u,(Bi)=B, satisfies

d*B,—1I)=0,
1Be—I"l| ;3<2NI|Fp, |22,
where N is the constant in Lemma 4.3.
PROPOSITION 4.6. There are constants €>0 and T>0 independent of T such

that if A is an ASD connection on QX(—T, T) with .“;z
all (x, YeZx[—-T+8, T—-8],

|Fq|*<e, then for
x(-T,T)

l FA | 2)1/2.

Proof. We apply Proposition 4.2 over Zx(—T, T) to obtain a gauge trans-
formation A= C=(Aut(QX(—T+1, T—1))) such that for -T+8=t<T-8§,

| Fal e zgemi@100(|

Zx(-T,T)

» wgzp(hA—n*rm}ch |F,. 4.4)

sup {
Zx(t-1,t+1]\ 1=0 Zx[t-8,t+8]

We henceforth omit 4 for simplicity. We write A, for the restriction of 4 to
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ZX At} (—T+8Lt<T—8). We take the path
Ay s=I'+s(A,—-T) (0=sz1)

from I to A;. By (44) we can assume that [F,, Jlze<<efor small ¢>0. Then
we apply Proposition 4.5 to get a gauge transformation [, on Q which is homo-
topic to the identity and satisfies

1o Ac—T ;3 <2N| Fa, e (4.5)
We use the ‘Chern-Simons invariant relative to /"’ defined by
T, ALJ);‘ 7 ’}7\\n'z—'—\—/\(Acl—5F)+%(AL—P)/\(AL—F)/\(Ac—F))~
A direct calculation shows that
Tl L A)=T (T, A)+5degl, . (4.6)
Here the last term

degli=\  Tr@rir Adrids Adrldih

JzZ

is a homotopy invariant by Stoke’s theorem. So we have deg!,=0. For
—T+8<t<T—8, we write

v(t)z‘SZx(-z, t)lFAIZ.
Then we can easily verify that

d
d_’;=2(nFAtnzz+IIFA_tlliz)

and
v()=Tz(A,, I'—Tz(A.,T)

We need a simple lemma; any a=2%(Ad Q) satisfies
‘[ 2
SZTr (d['a/\a)g—igm ldral®. 4.7)

We prove it quickly. If a is replaced by a +drffor some fe£2°(Ad @), each
of the integrals is unchanged, so we may assume that a satisfies d*¥a=0. Then

| Tr@renozialuidralz

and _Sz dral*=<a, Ara). So ||drallz2=2]al:. Since H(Z ; Ad Q)=0, we see
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that { Tr@ranay=ai| idrar.
Jz r4
Using (4.5), (4.6), (4.7) and the Sobolev embedding theorem L3—L* we get

ITAT, AD|S 5 I tstelte AT 2y

1
éTIIFAl"22+8CN3||FAz||i2;
where the constant ¢ depends only on Q. So we have

dy dy\%/?
—> —ocl —
z2v—c(5) 4.8)
We also know that v and dy/dt are small by (4.4). We use an elementary
inequality; if y+Cy»**=2Axfor some C, and x and y are small, then y=24x
— C’x**for another constant C’ '. Hence (4.8) gives

2 op—err,

dt
We choose €>0 so small that d=¢'*<(1/2)A. Then the inequality above gives
dy/dt=(24—0)v, which we can integrate to get an exponential bound

Y(t) < e -Dy(T),
Feeding back this into the differential inequality, we get

dy
Wngu—céem“”“'“”v
Cae(zi—a)(z—T)/z dl)
27—a dt -’

=>2v—

It follows that

T dr
¢ 1+ce(21—6)(t-T)/2

log(T)—log y(t)gZZS

22251'(1— ce?t -0t _T)lz)df
t

=24(T—1) _Zi% .

Taking exponentials, we have the bound
v(t)S Ku(T)e**¢-D>

with K=exp(4ci/(24—0)). Finally we use the following for any element / in
Q*Ad(@x(—1, 1)) with d%f=d,.f=0,we have an elliptic estimate :
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su "Sc§ 2,
Zx(%)lfl - Zx<-1,1)lf|

Since A obeys the uniform Cl-estimate by (4.4), we can take ¢ which is inde-
pendent of A. Applying this to f=F4 on Zx(—T+8, T—8), we get

[Fal oS cv@) P cet -y (T) 2
and the proof is completed. []

We apply the above proposition over Z X (n,,2t—n,) to obtain that

r

COROLLARY 4.7. // A is an ASD connection on n*Q with }z 0 )\FA|2<5
Jor some n.=N, then for all (x, )EZX[n,+1, ), "

1/2
\FA . o=Ce '“(Szm - |FA|2) :

5. Gluing ASD connections.

According to [7, 7.1], we shall construct a gluing map from My, (ly,,0%(9),g)
X My, (ly,, 0%(), &) to Mx,(x,. 1, 8). To obtain the gluing map globally,
we need a technical lemma below. In this section, we use ¢ for a constant
independent of n and use ¢, for a constant with respect to Y,.

LEMMA 5.1. There are constants €>0, t,=to,m>0 and p=pn>0 with the
following significance: Let A be an ASD connection on a*Q. Suppose that

seinnoy |F4l" <& Then there exists he C™(Aut(QX [no+
X[nyq, 00
1, o)) such that for t=ne+t,,

no=N exists such that S

sup {3 [V@r(hA—zrD) 7S pet oo,

Zx(t-1,t+11U1=0
ia/a;(hA—ft*F)=0.

Such a h is unique up to R. Moreover, if A satisfies
> Vhr(A—a*l)|*<oo,
JZx(0,00) i=0
then we can choose h so that h|.,-n, is homotopic to the identity, and such a h is
unique.

Proof. By Proposition 4.2 and Corollary 4.7, there exists A€ C*(Aut(Qx
[n,+1, o)) such that for t=n,+8,
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m
—24Ct-n
290, {2 TR A=)t} s om0
Solve the ordinary differential equation for heC2(Aut(QX [ny+1, o)) :
z'a,at(ﬁ(hA)—n'*l’)zz——gt—ﬂﬁ“+5ia,a,(h/1-n*l“)ﬁ“=0

with initial condition lim,..A=1. From the differential equation we have

a .
—07(dPh)=drhia/az(hA—ﬂ*r)+hdr(za/az(hA—ﬂ*P))' G.1)
This gives us

—a%ldrﬁlzéce"““”“)(l drk|*+|drhl),

which integrates over [f—1, o) to get an inequality
Id r&l|goczxie-1.on < ce™ ¢ (| d rhlldoczxci-s, o+ 1d rhlcozxci-1,m)
For t>n,+t, with ce 2 %0<1/2, we can rearrange this to get
Id rhllcoczxce-1 e S 1d rhllcozxce-y, < 2ce 20>
Now we can bootstrap the equation
h(hA)—z*['=—drhh~'—hiya(hA—m* '+ h(hA—z*[)h™.  (5.2)

Then we see that h’=hh satisfies the desired properties.
If h’ also satisfies the properties of Lemma 5.1, then A’h~' is independent
of ¢ and satisfies

dr(h’h)=h'h i35 (hA—n*")—isa(h' A—m*")h'h~* .

This implies that A’A~' converges to a flat gauge as t—oo. So A’A~! must be
an element in R.
If A satisfies the additional condition, then by the equation

desrh=h(A—n*")—(hA—n*I")h
and the Sobolev embedding theorem L;—C° we get
ldarhlcocs, o1y — >0 (f—o0).

Hence A factors as h=r(h)exp éwith r(h)eR and £=C=*(Ad(QX[n,, <)) for
some n,&N. So hA’=r(h)~*h has the desired properties and it is unique, since
the primary difference b(l, r) is non-zero for any non-identity element r&®. [

The above unique gauge is said to be exponential gauge. We combine
Lemma 5.1 with Lemma 3.1 to deduce
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COROLLARY 5.2. // B, is an ASD connection in Ap, then there are n,&N
and u;E8p,such that A;=u,;B, satisfies the following conditions.

(i) A is smooth over T7'([no+1, o0))

(ii) For t=Zn,+t,,

(m
P, 42 [VRr(A—r¥) P} S pe-ticro,

su
Zxrt-1,i+13Lr=0

torar(As—n*1")=0.
// Al also satisfies the above condition. then A,=A; over t3'([no+t, o))

Let B: 7. and g, be smooth cut off functions satisfying

1 on ;X[0, n +11),
Bi(x, Y= (n+N+1—1)/N on t7'([n+1+e, n+N+1—¢]),
0 on t7/([n+N+1, ),

1 on ([0, n—1]),
r’:{ 0 on '+l o)),
g I on z3%[0, n—N—-2]),
= 0 on 7Y{([n—N—1, «)),
7:(x, )+7.(n—x, H)=1 if (x, Her;!((n—1, n+1]),
for a small 0<<e<l. Then a direct calculation shows that
IVBill ey y s KN-@D/2,

where K is independent of a and N. For A;€Jp,, we define a connection A;
on P, by Ai=pi(A;—=n*")+(1—p)x*['and a connection A’ on P, by

Al over w7([0, n+ 1]),

jn(Al, A2)=A,:{
A} over t3([0, n+1]).

LEMMA 5.3. // A, is an ASD connection in Ap, satisfying the conditions (i)
(i), then there is a constant ¢>0 such that

1) NAi—Ail 2y <ce *r-M

) “Ai—‘Aﬂng(Yi)‘i‘”vn*l"(Ai—‘Aé)”Lg’(Yi)<ce_(2’a/p)(n'N),

©)] ||F§%||Lg<yi)<¢'e_d—5”’)("'1\”-
Proof. This is obvious. [J

We are in the position to argue the right inverse to d}.. For an ASD con-
nection A, in JAp,, we take the Laplacian
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Ay =die 0 (dh ) e s LE (V) —> LE(Y ).

The condition H3,=0 implies that A,, is invertible [15, Lemma 7.3]. Then there
is the right inverse P, to the operator dj

Po=e¥(di)*e" (A" s LE(YV) —> LEs(Y ),

which satisfies |P:éllzr vp=cill&ll LBy for some constant ¢,. Composing with
the Sobolev embeddiﬁ;gv
L{:a(Y,) _—> Lg&lp(yi)

[15, Lemma 7.2], we have |Piélrt wp=cilélidw, We also need Holder’s
inequality, for 1-forms a, ft,

I@AB 2= v/ 2 alzz, b= v/ 2 lallzg, 6]

) /pl 2/’

over X, or Y,. Now let Q,: L{(X.)—L?sX.be the operator defined by
Qi5=.3ipt7'i(5) .

Then we obtain a bound ||Q:&ll.? jcx,p=cie®lI§llL2cx -

LEMMA 5.4. There is a constant g;=e, (N, n)—0 as n—oo and N—co in order
such that

7:&— djéQié“Lg’(Xn) <&, n) ”§”L§(Xn)

Proof. 1f we write A,=A;+as, then
5(Qi)=0d%;+0,(B:Pu(1:8)
=Bu(d4,Piré)+(VB)Pi(ri€)+[Bia,, Purié)]
=7&+ BP9+ [Bia,, Pir)].
By Lemma 5.3, we get
I(VBIP(r )5y =N (VB P(r i)l
SV2VBltwp I Pridlee vy

/D
gciKN-(q“’/“e“lléllx.g(xn> )

I[Bia., Pz‘(TiE)]”L";(X,,)é 1LB:a., Pi(r:&)] ”L;’(Yp
= ﬁ”lgiai”l,q(Yi)“Pi(ri's)"Lgd/p(Yi)

gcie“‘"‘N>+25[l§llL§(xn> .

The result now follows by letting &,=c;e®(e **" M+ KN-9-b/), O
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We put
Q=0Q:+Q.: LY(X,) —> LTs(Xa).

The operator R=d%}Q—1 obeys a bound
IR cx = (N, n)+&(N, m)lL2ex,s -

We choose N, and n,=n.N,) so that &;(N,, n)<1/3 for all n=n,. Then the
operator norm of R is at most 2/3. So 1+R is invertible and the norm of the
inverse is at most 3. Thus the right inverse P=Q(+R)™'to d satisfies

”P‘S”LE(,(X,,)g 1Q.(1+R)" 15“1.;’5(1’,,)‘1‘||Qz(1+R)'lel|Lia<xn)
§61825”(1+R)'15”L§<Xn>+02826||(1+R)-1€||L},’<x,,)

scléllezex,y (5.3)

with ¢=3e%(c,+c;). Combining with the Sobolev embedding, we get
]|P$]]L26/pax")goll&lhyy(xn). We seek a solution A’+a to the ASD equations in
the form a=P(&). If we write ¢(&)=(PAP§)*, the ASD equation becomes

§+9)=—-Fi, (5.4)
By Hélder’s inequality,

lgE)—aEdlrrex p= \/~2_62||$1—$z||1.§<xn> {I€llpex o+ Hfz”Lg’(x,,)} .

LEMMA 5.5. ([7, Lemma (7.2.23)] Let 5: B—B be a smooth map on a Banach
space and [S&,—S&| = k{lI&,]+ 6.0} 1§:—6.ll for some k>0 and all §,,6.€B.
Then for each n<B with |Inll<1/(10k) there is a unique & with |§I<1/(5k) such
that

§+SE)=1.

We apply Lemma 5.5 to the above equation with S=¢, y=—F} and k=
v/ 2¢2 Then

PROPOSITION 5.6. Let A, be an ASD connection in g, satisfying the con-
ditions (1), (ii). Then there exists Ny and ny=n(N,) such that for all n=n,,
we can find an ASD connection I,(A,A)=A'+a on P, with ”a”L%a/p‘Xn’-S—
c[lallLf_g(X")_S_ce‘”‘a“”‘"'NO’. a is the unique such solution which can be written
in the form PE If u,A, also satisfies the conditions (i), (ii) for some u;=Gp,,
then

Tn(u, Ay, us Ag)=u,\Ju)I(A,, As).

Moreover we can choose N, and n,=no(N,) so that for all nzn, A=A +ta,
0=tL]) is regular, that is [A'JeUU.(AAY)).

Proof. By bootstrapping (5.4), we see that the solutions we solved are in
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C= if so are A,. The second part is obvious from the gauge equivalence of
the above construction. We prove the last part. By (5.3), we have

I(dh,—di)élL8ex y=ltla, ENlLBex pSce AP NN & n x5,
If we choose n, so large that ce~*-¥/Po-¥o><1/2then for n=n,, the operator

norm of (d%,—d%)Pis at most 1/2 and d},P=1+(d},—d})Pis invertible. So
A't is regular. O

Now we obtain the gluing map

I My (y,, 0X(), 8)X My (v, 0%), g82) —> Mx,(x,, 1, &n),

for large N=N, and n=n(N,). Here N,, n,(N,) are the maximal values of all
[A.] in HMy(y, a%(n), g). We may suppose that N,=0.

We prove that I, is injective for large n. Let A,, B, be as above. Suppose
that I,(A4,, A;)=A’+a is gauge equivalent to I,(B,,B,)=B’+b by some gauge
u,=8Gyx,. We expand the equation u,(A’+a)=B'+b over t7'([n—3, n—2]).
Then

a,g*run=u,,(Ai—7r*[')+una—(Bi—-n:*[')u,,—bun.

By Lemma 5.3,
lderallcocsicn-sn-23> =l dasrtinle; tcn-s, n-2n 1P yarp < ce™ A0

Hereafter || 1{.2 ;. is the integral over the restriction. This implies that for
large n, u, factors as u,=r(u,)exph,,over z;'([n—3, n—2]), where r(u,)ER
satisfies

I7(w2) "t —1llcoce7  tn-s, n-23 = ll das PUallcoces 1 ccnms, n-amy = ce™A-0Pm,
Lemma 3.1 asserts that »(u,) is the identity. Since the exponential map on
80(3) is a local diffeomorphism, we get

1henllcoces n-s, n-21>F | dexrhinllcoce; Leenms, n-21y < co™A=0/P"

We put
(U, over =7;Y([0, n—37]),
Uyn—
exp(0;h,,)  over t7Y([n—3, o)),

where d; is a cut off function such that é,=1 on =3[0, n—3]) and d:=0 on
3}([n—2, «)). By estimating all the term in the right hand side of the equation

" —unpauzt+b over =7%[0, n—3]),

—dar(€xXp(0ihin))uia

UpAi—Bi=

Fun(Ag—nm" T over 7Y([n—3, n—2]),

(Ai—n*")—(B;—=*I") over z7Y([n—2, o)),
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we see that u;,A, converges to B, in L3 ,) as n—o. On the other hand,

My, (y,,0%(n), &) consists of isolated points with respect to the metric (c. f.
[7, Lemma (4.2.4)])

dPi(I:A]; I:B])= ll}f ”A_uB”L%(Yi)'
ue P,

This implies that [4.]=[B.]

We will prove that I, is surjective for larger n. For a moment, we work
with the space of L% connections Ap,, L} gauge group ¢p, and the quotient
Bp,=Ap,/Gp,. Let dp, be the metric in Bp, given by [7, Lemma (4.2.4)]

dr,([A], [BD)= inf |A—uBlrg

uedp, wrp
We define
Ju: My (v, 01(), §)X My, 0%(9), &) —> Bp,
by Ja([A:], [A:D)=[Ja(4:, A)] =[A’] For v>0, let U(v)= B, be the open set
U)={lAle 8p,|dr, ([A], Im [ o) <v, [IFillLpcx > <p*/}.

The solutions we have constructed lie in U(v), if n=n,=n,() with ce~2-9/Pno
y. Conversely.

PROPOSITION 5.7.  There is a constant v,>0 such that for 0<y<y,, some n,=
no()E N satisfies the following  If n>n,, then [AJ€U()can be represented by
a connection A of the form A'+P¢ with §€LYX.) and |§|ircx,,<1/(5k)

(k=+/2c?).
Proof.  Let B be an element of U(v). Then there is a connection [A’]e

Im J, with
I|A"—BllLq

qa/p(Xn)<” .

We write B=A’+b and consider the path
B,=A"+tb 0<tL1),
then [|A’—B.lLa

33X <vand

5, =U=OF5 +tFE+ - (bAb)*.
So
”FL“Lg;/pcxn)é(l—t)”FX' (13 gwp(x,,ﬁ'f”Fft”Lg‘s/pcx,,)-i-Vf(t—t2)||bll§ga/p(xn)
S(L—t)ce™ A0Imn L 324 /D (t—12)2,

Thus we can find v,>0 with the following: For 0<yv<y,, there is a constant
ne=n,w)EN such that if n>n,, then [B,] (0<t<1) is contained in U(y). We
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define Sc[0, 1] to be the set of times for which there are u,€95, and [A']e
Im J, such that

u;B;':AI""P&
with [[§llzzcx,><1/(Bk). We will prove that S is closed and open. Suppose
that ¢ isin S. We may take u,=1. Then the representation B,=A’+P¢& gives

F3,=Fi+6+(PENPE)".
This gives a bound
16l2cx < 1F B Bcx I F Y HLngnH"/7”135”%35/;»“"'»)
Sy ce P2 el ERex -

Arranging this, we get
1€l 50x,> S 5 (414 comi-0mm),

This implies that for larger n,& N and smaller vo>0, [§llz2cx,><1/(10k). That
is, I€llzzcx,><1/(5k) implies lfflng(Xn)gl/(IOk), so this open condition is also
closed. We will prove that S is closed. Suppose that {f;} is in S with t;— »t.
Then we have connections A, =A’+P&, with [§illzzcx,), and w;E4p, with

u;B,,=A,,. By the uniform convergence bound on the & above, we may sup-
pose that, taking a subsequence, the &, converge to a limit & weakly in L(X,),
with IIE]IL§<Xn)<1/(5k) Then the connections A;, converge weakly in L% 5(X,)

and the equation
dp,ui=uiB;,—B)—(A:,—Bou,

implies that, after taking a subsequence, u, converges to a limit u weakly in
LY 5(X,). The gauge relation is preserved under weak limit, so

uB,=A"+P§

and 7 is in 5. We will prove that S is open. Suppose that ¢ is in S. Then
B =A"+P¢ with [§llz5x,»<1/(10k). We define a map

M: 2% (AdP,) X 2%,(AdP,) —> 2},(AdP,)
by
M@, p)=@ExpX)(A’+PE+n)—B..

Let B, be the completion of £2%,(Ad P,)X £2%,(Ad P,) in the norm :

X, 77)”31=“dA'x”Lga/p<xn)+”77”L§(Xn)-

Since A’ is irreducible by the unique continuation theorem [7, Lemma (4.3.2)],
we have an elliptic estimate
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lcocxp=cnlldaXlistcx pScalldaXie &3 p X

for some constant ¢,>0 (c.f. [7, (7.2.30)]). So B, is a norm. Let B, be the
completion of 2} (AdP,)in the norm:

lalz,=llalLe (x,p—l-l!dz'alngm,,).

as/p

Then M can be extended to a map from B, to B, and fhe derivative at (0, 0)
is given by
T, 9)=DMq,n»X, 77)=dA'X+P77.

By definition, T is a bounded map from B, to B..

LEMMA 58. There is a larger n,=N such that if n>n, then
I, D, <4ITX, Dls,-
Proof. Let a=d,X+Py, so that rfJ»a=[FJs X]+%. Since
darX=d X+7:[(Ai—7*T"), X]
on 77}([n—2, n—1]), we have an elliptic estimate
”x"CO(r;‘([n—z.n—ll))
SclldwrX| et @n-o n-10lzx
SclldaXlegtcn-z n-1llL3cxp+ce Xl cocer 1 ns, n-13% -
For n>n, with ce~*"0<1/2, we can rearrange this to get
[Xlloocer  cen-2, n-13>=2¢lldaX] o5t cn-2. n-12 1292 > -

Noting that the support of [F}., X] is contained in 7;'([n—2, n—1]), we see
that
I9legcx > < llells,+ I LFi, 1] l2Bex

= ”a”32+ ”FX'”L%(xnﬂlx"cm;‘([n-z,n-ﬂ))

= ”a||32+08'(2'6/p)"” daXlezi@n-2.n-10lLe

q5/p<X7)

§IIa”BZ-i-ce‘“""””"lla—PﬂNLga,pu’n)
é||a”32+ce'd'5“’)"(”a”32+||77||L§<X,,>)~
Thus, for n>n, with ce~¢*-%/Pn0<1/2 we obtain
I9llzzcx,»<3lalls,.

This gives us then
X, Dlls,=4lleals,. O



TORUS SUM FORMULA FOR 4-MANIFOLDS 161

On the other hand, the operator P is a pseudo-differential operator and the
symbol is homotopic to that of (di)*(14A44)~'. It follows that d4 +P is Fred-
holm and its index equals that of d4 +(d%.)*. So

index(T)=2lx,+3(1+b.(X,))=0.

Thus T is an isomorphism from B, to B, with operator norm ||7T7'|<4. This
implies that M is invertible near (0, 0) and 5 is open. It follows that S=]0, 1]
and the proof is completed. D

COROLLARY 5.9. For 0<y<v, and n>n,(v), the intersection UWNMx,(x,,
N, 8a) Iis equal to the image of I,.

Suppose that I, is not surjective for any large n. Then there are a subse-
quence {n} (now we relabeled) with n—oco and a sequence of g,-ASD connec-
tions {A,} not coming from the map I,. Uhlenbeck’s compactness principle
([22], [7, 4.41) and the preservation of w,(P) under weak limit imply that, after
taking a subsequence, the following data exists :

(1) A bundle P’-Y IIY: with wo(P’|y)=0%(), we(P’|y,)=0%(),

(2) ASD connections A, on P’|y and A, on P’|y, with (—1/47r2)( Tr(Fy,
Jry
AF,)=1, and (-1/47t2)gy Tr(Fa, AFa)=1s,
2

(3) A collection of points {xy, ", X} €Y1, {Xasr, **, Xasp} €Yy,

(4) C=-gauge transformations {k,} over X,\{xy, ", Xq+s},

(5) fen/L" converges to A,, A, in C* on compact subsets of Y ,\{x,, *** , x,}
Y \Mxaus, o, Xaso},

©6) dat4b—l,—ly<—ly,.

Since a%()#0 and ¢%(5)#0, there are no flat connections on Py, P’ 5,
which implies that /,<0 and /,<0. Lemma 5.1 and Lemma 3.5 supply h,eC*
(Aut P) such that [h,A,] lies in HMy(l,, 6¥(9),g.). By Proposition 3.7, we obtain
L=ly l=ly_and a=b=0.

LEMMA 5.10. There are constants >0, ty=t,, »>0 and p=p,>0, independent
of T, with the following significance Let A be an ASD connection on QX

(=T, T) with fz - |Fy|2<e. Then there exists hrs C(Aut(QX(—T+1, T—
1)) such that for -T+t,<t<T —t,,
sup L3 198 (hpA—ar) S petictoin,

Zxrt-1,t+11i=0

T3100(hp A—m*[")=0.

Proof. The proof is very similar to that of Lemma 5.1. We apply Pro-
position 4.2 over ZX(—T, T) to obtain a gauge transformation e C*(Aut(QX
[-T+ 1, T—11])) such that for -T+8=t<T -8,
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sup 5L\ Ve h A=t D) 7} <com i1,

zxrt-1, t+110 (=0

Solve the ordinary differential equation for A< C=(Aut(QX[—T+1, T—1])):
fara(R(hA)—a* ") =0

with initial condition A|,-e=1. Then by (5.1) we have
%|drﬁlzéce"“r“‘“’(ldrﬁ|2+ldrﬁl)-
If t=0, then we integrate over [0, t+1] to get an inequality

”df‘ﬁ"nguo.z+n>§Ce_x(T"”(“dl‘};"éo(zmo,z+u)+||d1‘5”00(z><[o,¢+u))-
For t,>0 with ce~**<1/2and 0<t<T—t,—1, we obtain

Ild rhllcozxce-1 en = ld rhllcoczxco, crin<2ce= 3 F-1e0,

In the case t<0, we can also prove the above by the parallel discussion. So by
bootstrapping (5.2), we see that hp=~hh satisfies the desired properties for
some p>0. D

We choose n,=N so that

|Fuli<pe.

gzgl(tno,w))

Since

limg .
n->00 1; ng. 2D

IFA,,:2=§ ))IFA,P+S |Fy,l?,

75 HCrg. oo 171 (Cngs )

we have

[ i L IFalP<e >n)

Ty ([ngnl)

for some n:>n,. By Lemma 5.10, we can find h.€ C*(Aut(Q X[n,+1,n+11U3,
QX% [n,+1, n+1]) such that for no+t,<t<n,

f m )
SUP IV IV A X728 < po=22C-n0)
Zx[t-1,t+1]1 L 1=0 - J " )

torar(haAy—n*1")=0.

So the connection (h,A,) =7i(h,Ar—a*[)+1—7)x*bver t7'([n,+1, o)) also
satisfies the same condition as above for n,+{,<¢t<n—1. Now we can apply
Ascoli-Arzela’s theorem with diagonal argument to deduce that, after taking a
subsequence, (h,A,) converges to an ASD connection A” in C™! over compact
sets in 737 ([ny+t,, #)). So AT satisfies
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rm-1
< (l‘) N__ ek 2l <. -2A(t-ng)
oA o4 > |V (A —x F)I}=cte , (5.5

1pli=0
iarat(AY—m*I")=0
for t=zn,+t, By Lebesgue convergence theorem we have

I((hnAz) — A |5t angrtgonlle e, wp — > 0(n—00). (5.6)

9/ p

We bootstrap the equation
dAi(hnk;l):hnk;l(knAn_At)—(hnAn_At)hnk;bl:

to deduce that there is a subsequence {h,kz'} (now we relabeled) such that
hakz' converges to some u,in C™ on 77 ((no+te, no+t,+1) By Lemma 3.5,
if we replace {h,} by {r;h,} for some r;&R, we can suppose that #, can be
extended to u¥ over z7'([0, n,+2,+1)) and b(l, fi)=0. Then for large n€EN,
b(l, ihakz) = b(l, %) = 0. So we have b(l, 7277 = b(l, 72l k' #1hak7") =
b(l, 72hnkz)+d1, r,hak7')=0. Since (ror7)I'=Iwe see that r,=7;. Now we
can apply the argument of [7, Lemma (4.4.5)] (see also Appendix 1) to patch
gauge transformations %k, and 7;h, over ;' ((no+to, no+t,+1)) Then taking
a subsequence, we can find C™-! gauge transformations {u,} on X, such_that
Un=h, on t;*([ne+te+1, n]) and u,A, converges to an ASD connection A. on
P, in C™-? over compact subsets of Y,, which is in the exponential gauge. If
we choose m=5, then A, is gauge eqliivalent to a C=-connection and the uni-
queness in Lemma 5.1 implies that A, is smooth over Z X [n,+ t, <) and
satisfies the condition (ii) fort=n,+¢,. So we obtain

I An— Ju(A1 A5 20 >0 (n—o0).

S S

Now by Corollary 5.9, [An]—[I,,(Al,;lg)jeﬂxn(lxnn, g.) for large n, which
is a contradiction.
Next for n€N, we consider the oriented 4-manifold K¥,defined by

K=K, JZX[0, n+ 11U ZX[0, n+1]UW,

in

and the SO(3) bundle P,, over K¥, defined by

Pia=PoJOXL0, n+11 1 QX0, n+11UQ
for each z—1, 2. Here ¢;, and Zz&m are defined by using ¢, and a lift ¢7,~: Q—
0 with gZiF:Fas before. Let Ckr,(r=3) be the space of all conformal classes
of C7-metrics on K¥,which are a fixed metric on W and h+4dt® on ZX[0, n
+11Uy,,Z2 %[0, n+1]. If we fix a metric [g:] in Ck*,, then Ck*, is identified
with

{m: A*—A"; C"-bundle map, sup|m| <1, m|g*,\x2=0},
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where A* is * self-dual space with respect to g;. Then we have the follow-
ing theorem, whose proof is also the same as in ([7, 4.3], [14, 5 (iii)]).

PROPOSITION 5.11.  There is a Baire set Ckt,=Ck*, such that for all g€
Ck*,, the ASD moduli Mx*,(x*,, 0%, g) is a finite set consisting of irreducible

wm?

regular connections.

For each neN, we fix a metric g,, in C%*, such that g,, is independent
of n on K9 and the metric

{ 8an on Ku
8=
h+df on Zx[0, ),

lies in Cy, for 1=1, 2.

We extend Q and f naturally over W\UZX[0,00), which we also denote
by I'and O respectively. We replace Y, by WUZX[0, 0o) and set a function
7,: Y,—R as before. Then we can define the gluing map

Lin : My Uy, 0%¥(), g)X AL} — > Mgt Ukt 0%, &1n)

for large n< N just as before. We can prove that I,, is bijective in the same
way as that of /. But in the proof, we need to correct it at some points.
First, after Corollary 5.9, we treat a sequence of connections {A,}. Then we
obtain /;=ly,, {,=0 and a=b=0. So u¥A,=T for some C=-gauge u¥ on WUZ
X [0, oo) and u¥k,A, converges to T in C* on compact subsets of WUZ X
[0, 00). Second, after (5.6), on zi((ne+ts, not+ie+1)), if we replace {hx} by
{r.h,} for some r,=R, we can suppose that r,h,k;' converges to u; over
7' ((no+ty, no+t,+1))  We bootstrap the equation

dn*l"(rlhn(utkn)_l)zrlhn(u’;kn)_l(u?knAn'—n*F)_'7'1(hnAn_7t*F)hn(u§kn)_l

to obtain that, if we choose n, so large, then there is a subsequence
{rih.(u¥k,)'} (now we relabeled) such that r,h,(u¥k,)~* converges to some u.
in C™ ' on 72'((ne+to, ne+t,+1)) and, since the right hand side is so small, u.
can be extended to @% over 73'([0, n,+¢+1)). Now we can apply the argument
of [7, Lemma (4.4.5)] to patch gauge transformations k, (resp. u¥k,) and r.h,
over Ti'((no+to, ne+t,+1) (resp. t3'((no+t,, no+to+1))). Then as was shown
there, we see that I,, is surjective for large n=N. (This bijection has been
stated in [10, Theorem V. 3.4].) Of course, the same holds for Y,and I,,
defined as before. Composing three bijections, we have a bijection

Ko Mt Ukt 0%, gin) X Mi3, (kb 0%, Gan) —> My, (x,, 1, &n)
for large n=N. Hence Theorem 2.1 follows from the lemma below.

LEMMA 5.12. If [Bil, [Bule Mkt Ukt 0%, Gun) satisfies o([By])=¢:0([Biol)
(=1, 2), then o(K([B..], [B21]))=¢18:0(K([B1o], [Bz])).
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Proof. We write [Buwl= [Lin(Aio, 1)1, [Bis]= [L.n(Ass, D] for some [Aiwl,
LAule My, (ly,, o¥(p), 8)). We choose any path A; (0=<t<1) in Ap, from Ay
to Ai.  Define a connection Aj; on P,, by

’

=

{y¢(44it—z*1”)+(l~m)7r*lj over 77%[0, n+ 1),
A over WUZXI[0, n+1],
and a connection A; on P, by Ai=/.(Aw, Ax). Since [Ai] (resp. [Aal) lies

in U([A:])(resp. U([A;:])) for large n=N, we have a nowhere zero section
s, over [A#;](0<t<1) such that

si([Ai])=¢:0([B]), si([AuD)=0([B:)).

Since Kerd%,, is supported in z7*([0,n — 1]), we can choose a linear map S,: RV*—
3(2%s,, @Q}tn)(Ade))so that for all 0=¢=1, 4,,PS. is surjective and the
image of S, is supported in 73'([0,n—1]). So Ker(d4,,8S.)is supported in
774([0, n—1)XR¥+(1=1, 2) and Ker (8.4,BS€PS,) is supported in 77'([0, n—1])X

RY1+¥:, Then we have a natural isomorphism

0. : Ker (0.4,,DS)PKer (3.4;,BS.) —> Ker 34,PS:DS>)
(ty, to) 1 — tyi+1s,

by which we obtain a nowhere zero section (A™**8,)(s,&Qsz) on Ap, over [At]
(0=t<1). Since Kerd¥, is supported in 73'([0,n — 1]), 04 DSPBS: is surjective.
Now we get

(A™2%0,)(s,1Q@s2) (LA D =(A™*0o)(s:([ A1 Qs2([ Az]))
=£,82(A™0)(0([B 11])Q0([B20])) = 18:0([ L0 (Aro, A20)])
=&16,0(Kn([B10], [B2ol),
(A™x0)(5,:Qs)([A1])=0(Kn([Bu.], [Ba])).

This implies the desired equality. 3

Proof of Theorem 2.2. Suppose that 7x(9)+#0. Then for each n there is
an ASD connection [4,] in My, (x,7n, &x). (Here, in the construction of
P,, ¢, and ¢, are chosen so that wy(P,)=1n,p:(P,)=Ik, are only satisfied.) Then
after taking a subsequence, we have the data from (1) to (6) in the above. As
was shown there, we see that /,=ly, and /,=Ily,. The resulting connection A4,
on P, can be thought of an element in My, (y,, a:(), g&.). The following lemma
contradicts to the assumption. II

LEMMA 5.13.  For any connection A on P which is isomorphic to m*I on
ZX[n, ) for some n=N,
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-1
Art SYTr (FANFp)= (77*)2 (mod 2).
Proof.  Define P=P| o U0. *(ws(P))=a*x*) implies that w,(P)=y*
or wy(P)=9*+P.D.[T?*x0]. In any case, we obtain
—1 o o
|, TrFAFy=pP=(Py=0)(moed 2). O
Remark. The vanishing of yx(y) can be observed for more general ele-
ments € Cx. In a forthcoming paper, we will treat it.

6. Explicit calculations on elliptic surfaces.

In this section we calculate values of the simple invariant for the regular
elliptic surfaces without multiple fibers. Let =: S,—CP!be a regular minimal
elliptic surface with p,=Fk—1[ and without multiple fibers. Then S, satisfies
7.(Se)=1, b.(Sp)=2k—1 and [s,——3k. It admits a differentiable section >, .
CP'->S,, which has the self-intersection number (2:)*=—k. We take a general
fiber / in S,. Then we can interpret this surface S, as a fiber sum up to fiber
preserving diffeomorphism as follows [17]: Given S, and S,_;(1Zi<k—1),
identify the tubular neighborhood of a general fiber in each with 72X D?so
that the fibrations correspond to projection onto D’. Remove the interior of
tubular neighborhoods from S, and S.-,,and glue the two remaining manifolds
together by an orientation reversing and fiber preserving diffeomorphism on
the boundaries. Then we get an oriented manifold S;4S,-,, a fibration = :
Si4S,-s—CP?', and a section X;:12,-,: CP*>S;4S,_,. We note that S, contains
the Kummer surface, which is one of the K3 surface.

We use a well known result by Donaldson ([6], [7], [13]).

PROPOSITION 6.1. (Donaldson) If we fix the orientation of H*(S,)determined
by the complex structure of Si, then 7s,(p)=1for any n&Cs,.

LEMMA 6.2. [7s,(P.D.([Za]+ [fI) =1

Proof.  Because Se=Ss8S5:=S,0S5,4S, and Ze=2,02:=20.02,42,: CP'—
Se, we apply Theorem 2.1 three times to deduce that

[756(P.D.LZ: D | =1756(P. D.([Z61+20L/ D 1 = 755P. D.([Z6]+ [fINI*
=|7rs,P.D.[Z.DI*=L.
So [75,PD 2.+ U/M=L.G
COROLLARY 6.3. For integer k=2,
175, P.D.LZ: D=1 if k is even,
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175, ® D.[Z I+ LFDNI=1  if & is odd.
Remark. 1n a recent paper [l11], we found that for integer k=2,
[75,P.D.[Z:D]#0 if k is even,
75, P.D.[Z]+ /D) | #0 if & is odd.

using the moduli of stable vector bundles.
For k odd, we can determine the image of |7s,].

LEMMA 6.4. |rs,(9)|=1for any n=Cg,.

Proof. Since the characteristic element is w.(S5)=P.D.[f] (mod 2), <7, [/]>
=7 p=1(mod2). We construct pinp<Cs,, by identifying a tubular neighborhood
of a general fiber in two copies of S;. If we identify S; with S,4S,, then n<
Cs, factors as n =m,4%, for some 9, =HS,;Z,;) and 5, €H*S,;Z,) with 9’=
(92)*+(n1)* (mod4). If (3,)?=0(mod 4), then (9.+P.D.[f])’=(9,)*+2=2(mod 4).
So we may assume that %, < Cs,, 1< Cs,. In the same way as above we
have an element %,49,£Cs,. Now by Theorem 2.1 and Proposition 6.1, we get

178U = 175, = 15,7 5,87 s,(p2) |=1. D
We can apply the above argument on S,=S,1 S:4S; to deduce that

COROLLARY 6.5. // k is odd and k=3, then |rs,(p)|=Yor any nECs,.

COROLLARY 6.6. // k s even, then |rs,(p)| =1 for neCs, with<{y, [fD=
1(mod 2).

Remark. In fact, Ue has obtained that the value [7s,(9)|is independent
of p=C, with <{, [/]>=1 (mod2), by analyzing the action of diffeomorphism
group of S, on Cs, [21].

Appendix 1

Lemma (4.4.5) in [7] omits a necessary hypothesis on extension of gauge
group. We write a precise statement, but omit its proof, since it is same as
that of Lemma (4.4.5).

Lemma (4.4.5). We fix meN. Suppose that A, is a sequence of unitary
C™-connections on a SOQ3) bundle P over a base manifold 2 (possibly non-
compact), and let Q&R be an nterior domain. Suppose that there are gauge
transformations u,<=C™**(AutP) and #,=C™*(AutP|3) such that u,A, con-
verge in C™ over Q and ii,A, converges in C™ over 2. Then we may assume
that; taking a subsequence {n'}, the @i, uz converge in C™ over Q fto a limit #.
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// u extends over 8, then for any compact set K < we can find gauge trans-
Sformations w, €C™(AutP) such that wa, — i, in a neighborhood of K and the
connections wq A, converge in C™ ! over .

In Section 5, we apply the above lemma with =730, n,+t,+1)), Q=
7 (notto, motte+(3/4))) and K =17 ([ne+to+(1/4), no+t,+-(1/2)D).

Appendix 2.

We prove the compactness in Proposition 3.7. For [y <[<0, it is vacuous.
Let {[A.]} be a sequence in My(ly,n, g). Then after taking a subsequence,
the following data exists :

(1) A bundle P'—Y with w.(P")=7,

(2) An ASD connection 4 on P’ with (—1/47r2)SyTr(FA/\FA)=l,

(3) A collection of points {x,,:-, x,} €Y,

(4) C=-gauge transformations {k,} over Y'\{x,, -+, x4},

(5) knAn converges to A in C* on compact subsets of Y \{x, -, x.},
©6) da—I<—Iy.

Since 5 #0, there are no flat connections on P’ ’, and /<0. By Lemma 5.1 and
Lemma 3.5, there is heC>(AutP) such that [2A] lies in My(l, 7, g). So we
have !/=ly, a=0. We choose t,€N so that

| \Fal*<e,
7=1([ g, 00))

where we choose ¢é>0 by Lemma 5.1. Since

lFAn|2=

lim| { |Fal®,
n-oJ)1-1([tg, 00)) f-l(fto,m))

we have
§ |Fy |2<e (n>n0)
t=1([ ¢y, 00))

for some n,&N. Then there exists h,&C®(Aut(Q X [t, o)) such that

m
sup | = |V (h,Ay— )| S pertictw

el Lol L

for t=t,, Now we apply Ascoli-Arzela’s theorem with diagonal argument to
deduce that h,A, converges to an ASD connection A’ in C™~! over compact
sets in 77 ([t, ™)) So

mz_‘lv;l*)f(A/_n.*F) | 2} < pe?Ai-to

su {
r—l([t—gtuj) 1=0

for t=t,. By bootstrapping the equation
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du(hnkz)=haka'(RaAn—A)—(haAn—Ahrkz',

we see that there is a subsequence {h,kz'} (now we relabeled) such that h, k%!
converges to some % in C™ ' on z7!(({, t,+1)) By Lemma 3.5, if we replace
{ha} by {rh,} for some r& R, we can suppose that # can be extended to u*
over T7X([0, t,+1)) So we can apply the argument of /7, Lemma (4.4.5)] (see
also Appendix 1) to patch gauge transformations k, and rh, over z~!({t,, ¢,+1))
Then taking a subsequence, we can find C™ '-gauge transformations {u,} on
Y such that u,=h, on X[ t+1, «)) and u,A, converges to an ASD connec-
tion A” on P in C™? on compact subsets of Y. If we.choose m=5, then

[unAn—A"|2 5000 — >0 (n—c0),

and [u.A,], [A"]1eMy(y, 5, &). Now by Lemma 3.3, {u,} is in ¢p. O
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