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3-DIMENSIONAL SPACE-LIKE SUBMANIFOLDS WITH
PARALLEL MEAN CURVATURE VECTOR
OF AN INDEFINITE SPACE FORM

By SooN MEEN CHOI

Introduction.

Let M3*?(¢) be an (n+ p)-dimensional connected indefinite Riemannian mani-
fold of index p and of constant curvature ¢, which is called an indefinite space
form of index p. According to ¢>0, c=0 or ¢<0 it is denoted by Sz*?(c),
R3*® or H3*?(¢). A submanifold M of an indefinite space form ME*P(c) is
said to be space-like if the induced metric on M from that of the ambient space
is positive definite. Now it is pointed out by many physicians that space-like
hypersurfaces with constant mean curvature of arbitrary spacetimes get in-
teresting in relativity theory. Also, from the differential point of view, an
entire space-like hypersurface with constant mean curvature of an indefinite
space form are studied by many authors (for examples: [17, [2], [3], [4] and
so on). For a complete space-like submanifold M with parallel mean curvature
vector of SE+?(c), it is also seen by Cheng [3] that M is totally umbilic if n=2
and H?<c or if n>2 and n®*H?><4(n—1)c, where H denotes the mean curvature,
i.e., the norm of the mean curvature vector. On the other hand, Aiyama and
Cheng [1] prove recently the following.

THEOREM. Let M be a 3-dimensional complete space-like hypersurface with
parallel mean curvature H in a Lorentzian space form Mi(c). If sup Ric(M)
<3(c—H?), then M is totally umbilic, and c¢>H?.

The purpose of this paper is to research the similar problem to the above
theorem for 3-dimensional complete space-like submanifolds with parallel mean
curvature vector of an indefinite space form and to prove the following.

THEOREM 1. Let M be a 3-dimensional complete space-like submanifold with
non-zero parallel mean curvature vector h of an indefinite space form S3?(c),
p=2. If it satisfies
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R %cgmgc ana  Ric(M)<8,<3(c—H?),

then M is totally umbilic.

Let M be a 3-dimensional complete space-like submanifold with non-zero
paralle] mean curvature vector of an indefinite space form M3*?(c). We denote
by S the square of the length of the second fundamental form of M. It is seen
in Proposition 3.2 that if M is pseudo-umbilic and if H2?>¢, then it satisfies

(1.2) S<3pH*—3(p—1)c

and also in Remark 3.2 a natural example satisfying the equality of (1.2) is
given. Conversely we can prove

THEOREM 2. Let M be a 3-dimensional complete space-like submanifold with
non-zero parallel mean curvature vector h of an indefinite space form M3**(c), c
<0, p=2. If it satisfies

(1.3) Ric(M)=d,< %(p—3)(H2—c) and SzZ3pH*—3(p—1)c,

then the following assertions hold,
(1) ¢<0, and p=4,
(2) M is congruent to

1. H*c)XH'(c),  p=4,
2. HYc)XH'c;)XHcs),  p=4,5,

where H™(c) denotes an n-dimensional hyperbolic space of constant curvature c.

2. Preliminaries.

Throughout this paper all manifolds are assumed to be smooth, connected
without boundary. We discuss in smooth category. Let M3*?(c) be an (n+ p)-
dimensional indefinite Riemannian manifold of constant curvature ¢ whose index
is p, which is called an indefinite space form of constant curvature c¢ and with
index p. Let M be an n-dimensional submanifold of an (n+ p)-dimensional
indefinite space form M3*?(¢c) of index p>0. The submanifold M is said to be
space-like if the induced metric on M from that of the ambient space is positive
definite. We choose a local field of orthonormal frames e, -+, €nyp adapted to
the indefinite Riemannian metric of M2*?(¢) and the dual coframe w;, -, @p4p
in such a way that, restricted to the submanifold M, e,, ---, ¢, are tangent to
M. Then connection forms {wsp} of M%*?(c) are characterized by the structure
equations
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dos+epwas\0p=0,  @sp+w®ps=0,
2.1 dwsp+Xecwac Nwocg=L245,
Qup=— —%ZeceDRﬁsoch A@p,
(2.2) Ripcp=ce4£p(04005c—04c05p),

where Q45 (resp. R4scp) denotes the indefinite Riemannian curvature form (resp.
the components of the indefinite Riemannian curvature tensor) of M3*?(c).
Therefore the components of the Ricci curvature tensor Ric¢’ and the scalar
curvature »’ of M3*?(c) are given as

Rip=c(n+p—1)c4043, r'=(n+p)Xn+p—1ec.

In the sequel, the following convention on the range of indices is used, unless
otherwised stated:

1§A; B; _S_n‘f‘ﬁ; lély .7‘, "'én; n+1§a’y ,By §ﬂ+l).

We agree that the repeated indices under a summation sign without indication
are summed over the respective range. The canonical forms {w4} and the
connection forms {w,p} restricted to M are also denoted by the same symbols.
We then have

2.3) w,=0 for a=n+1, -, n+p.
We see that e, ---, ¢, is a local field of orthonormal frames adapted to the
induced Riemannian metric on M and w,, ---, w, is a local field of its dual

coframes on M. It follows from (2.1), (2.3) and Cartan’s Lemma that
(2.4) 0, =2h50;,  hEH=hi.

The second fundamental form « and the mean curvature vector h of M are
defined by
1
a:_zhgjwiwjea; h=— 7{2(2 h$eq .
The mean curvature H is defined by

@25) He={hi =SS0

Let S=3)(hg)? denote the squared norm of the second fundamental form a of
M. The connection forms {w;;} of M are characterized by the structure equations

dwi+Xw;, Nw;=0, w;j+w;j;=0,
(26) dwij+2wik NG ;= Ql] ’
1
Q,=— E‘ZRt;’klwk Nwy,
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where 2,, (resp. R.j::) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor) of M. Therefore, from (2.1) and
(2.6), the Gauss equation is given by

(2-7) szlz 1= C(ailajk —0; kajl)_‘ 2(hE h?k-h ?kh?z) .

The components of the Ricci curvature Ric and the scalar curvature r are
given by

2.8 Rijy=(n—1)c0;—2h&h§+2hEAT,
2.9) r=n(n—Dc—n*H*+3(h$).

We also have

(2.10) dwa,g—Zw,,r/\wr,@=—%ERaﬂu‘wi/\a’j,
where

Raﬁu:_z(hﬁh{i‘l—kﬁhel) .

The Codazzi equation and the Ricci formula for the second fundamental form
are given by

(2-11) hfjk'—hgk;=0,
2.12) A= h$e=—2htnRmjni— 2hE;Rmin+2hERgar:

where h{;, and hg;,, denote the components of the covariant differentials Va
and V*a of the second fundamental form respectively. The Laplacian Ahg, of
the components hg of the second fundamental form a is given by

Ahf‘jzghf‘j” .
From (2.12) we get
(213) Ah;']:%:hlgktj—Ehngmtjk_Zh%szk]’k‘}"Ehngﬁaik-

The following generalized maximum principle due to Omori [8] and Yau [11]
will play an important role in this paper.

THEOREM 2.1. Let M be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below. Let F be a C*-function bounded
from below on M, then for any >0, there exists a point p in M such that

F(p)<infF+e,  |gradF|(p)<e,  AF(p)>—ce.

By applying this principle the following theorem due to Nishikawa [7] is
proved.

THEOREM 2.2. Let M be an n-dimensional complete Riemannian manifold
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whose Ricci curvature is bounded from below. Let F be a non-negative C*-func-

tion on M. If it satisfies
AF=FkF?,

then F=0 on M, where k is a positive constant.

3. Pseudo-umbilic submanifolds.

This section is concerned with pseudo-umbilic space-like submanifolds of an
indefinite space form M3™?(c). Let M be an n-dimensional space-like sub-
manifold with parallel mean curvature vector h#0 of M3*?(c). Because the
mean curvature vector is parallel, the mean curvature is constant. We choose
¢,41 In such a way that its direction coincides with that of the mean curvature
vector. Then it is easily seen that we have

3.1 Wani1=0, H =constant,
(3'2) Han+1:Hn+1Htt,
3.3) trH"t'=nH, trH*=0

for any a#n+1, where H* denotes an nXn symmetric matrix (h).
A submanifold M is said to be pseudo-umbilic, if it is umbilic with respect
to the direction of the mean curvature vector h, that is,

(3.4) hiri=Ha,, .

We denote by g an nXn symmetric matrix with components defined by pu,,=
h}H—Ho;,. We then have

(3.5) tru=0, | pl?=tr(p)’=2pl,=tr(H"*'Y?—nH?.

So the pseudo-umbilic submanifolds are characterized by the property p=0. A
non-negative function ¢ is denoted by t?=33p.n4+1(h5,)2. Then we have

3.6) S=|pl*+r*+nH?,

which means that S=nH?, where the equality holds at a point if and only if
the point is umbilic. Hence it is seen that [u|* as well as 7° are independent
of the choice of the frame fields and they are functions globally defined on M.
It is also seen that if the pseudo-umbilic submanifold satisfies =0, then it is
totally umbilic.

Now, in general, it is asserted by Cheng [3] that a complete n(=3)-dimen-
sional space-like submanifold with parallel mean curvature vector k of S%*?(c)
is totally umbilic if it satisfies

Hﬂ<i’;§3c.
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PROPOSITION 3.1. Let M be an n-dimensional complete space-like submanifold
with non-zero parallel mean curvature vector of Si*?(c), p=2. If M is pseudo-
umbilic and if it satisfies

3.7 ‘—T—C_S_Hzéc,

then M is totally umbilic.

Proof. From (2.13) and the Gauss equation (2.7) and (2.10) we get
(3.8) Ahf‘J=nch;-’j—-cZ}hmij—i—Zh?mhénkh@;——ZZh@khﬁmhénJ
+ D hgnhb h By —ShBhinh b+ hB he jhb

for any index a«. Moreover we see

1 2 — a \2 a a
?AT _a;ezn'}ﬂ(h”k) +as§+1h”Ahij'

Accordingly it follows from (3.8) and the above equation that we get

lA*z'2= 3 (h&e)tner’+ 2 hgah& i h8RE
2 a*n+l a#n+1

—2 X hBphgnhbhE+ 3 hEnhBuhbihe,
aFn+1 a#En+1
—nH 3 hgah2Phe+ 3 hE hE K& hE,
a#n+1 a#FEn+1
and hence we obtain

3.9 lA‘z‘2=mgi_‘(h;-"j;,)z-}-ncrz

2
+ 3 hgnhBhBihg—2 X kB hgahBih
a, BEn+1 a, B#En+1
+ 3 hfnhhahhhG+ S hEhhnhashg
a, B#En+1 a, B#n+1
+ 2 hEnhnbh3t ?j—Za;} h3 henhis he

a¥FEn+l

n+1
2 himhmi'hif ' hij—nH 3 hinhnithy

a#n+1 a#n+1

+ 2 himhaithithe .

a¥n+l

+

We put S.p=3hgh#, for any a, f#n+1. Then (S.p) is a (p—1)X(p—1)
symmetric matrix. It can be assumed to be diagonal for a suitable choice of
Cntz, 5 Crip. Set Su=S,,. We then have t?=3)S,. In general, for a matrix
A=(a,,), we define N(A)=tr(A 'A). Then the above equation can be reduced to
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—%Arzz 2 (hg)*+ X {(Sap)*—2trH*HPFH*HF4-2trH*H*HFH#}
a#n+1 a, B#Fn+1
+ §+1{2h§mh,ﬁt‘h?,+‘h;?j—2 trHeH" ' HeH"™!
+2trH*HH"""H"*'—pyHtrH*H"*'H*%} .
By (3.2), (3.3) and (3.4) and the definition of the function r, we have
1

(3.10) 7A72=a§+1(hgjk)2+ nm'”—i-agH(Sa)2

+a, ﬂ;mN(H"‘H’S‘—HﬂH"‘)—nHZ‘L'Z .
Obviously we see
3.11) . ﬁ;}HlN(H“Hﬂ—HﬂH“);O.

Suppose p=2. Let
(p—Do,=7=31S,,

(P—D(p—20=2 5 S.S;.

a<lB,a, B#n+1
Then we have
2Si=(p—Dot+(p—D(p—2)at—as),

(Sa—Sp)'=(p—D*(p—2)0i—05).

alf, a, f#En+1
Hence we obtain

4

51 T4,
Accordingly it follows from (3.10), (3.11) and (3.12) that we have

(3.12) 2 (Srz(p-Dot=

(3.13) %Arzg ner?+ 2)—iT‘L"‘—nH2‘r2

= pil ¥ {?—n(p—1)(H*—c)}.

By the assumption of the proposition we get

2
22 . 4
AT?= p—~ 1 T4,
By (2.8), (3.2) and (3.4) the Ricci curvature is bounded from below by a constant
—(n—1)(H®*—c), we can apply Theorem 2.2 to the non-negative function 72 and
we get
2=0.

Thus M is totally umbilic. m
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Remark 3.1. Proposition 3.1 is essentially proved by Cheng [3].
Next the case of H?>c¢ is investigated.

PROPOSITION 3.2. Let M be an n-dimensional complete space-like submanifold
with non-zero parallel mean curvature vector of M3+?(c), p=2. If M is pseudo-
umbilic and if H*>c, then it satisfies

(3.14) nH*<S<npH*—n(p—1)c.

Proof. Since M is pseudo-umbilic by the assumption, we have p¢=0, which
implies S=2+nH? by (3.6). This means that

P—n(p—1)(HE:—c)=S—nH*—n(p—1)(H*—c)

=S+n(p—)c—npH®.
By (3.13) we have

(3.15) %AszE—i—l(S—nH%{S-i-n(ﬁ—l)c—anz}.

Given any positive number a, a function F is defined by F=1/+/S+a, which is
bounded from above by 1/+/a and is bounded from below by 0. Since the
Ricei curvature of M is bounded from below and since M is complete and
space-like, we can apply the Generalized Maximum Principle (Theorem 2.1) to
the function F. For any given positive number ¢>0, there exists a point p at
which F satisfies

(3.16) inf F>F(p)—e, |grad F |(p)<e, AF(p)>—e.

Consequently the following relationship
(3.17) 2 F(pAS(p)<3e™+F(p)e

can be derived by the simple and direct calculations. For a convergent sequence
{en} such that &,—0(m—oo) and <0, there exists a point sequence {p,} such
that {F(pn)} converges to Fo=inf F by (3.16). On the other hand, it follows
from (3.17) that we have

(318) L F(wAS(p) <3 u+F(puen.

The right hand side of (3.18) converges to 0 because F is bounded. Accordingly,
for any positive number &(<2) there exists a sufficiently large integer m, for

which we have
F(pm>4As<pm><ﬁ for m>m,.
This inequality and (3.15) yield
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2{S(pm)—nH*HS(pm)+n(p—Dc—npH?*} <{S(pn)+a}t’e,
and hence we get

@—e)SHpm)+2{n(p—Dc—n(p+1)H*—ae}S(pn)
—2nH*{n(p—Dc—npH?} —a®c<0,

which implies that the sequence {S(p.)} is bounded. Thus the infimum F, of
F satisfies Fy,#0 by the definition of F and hence the inequality (3.18) implies
that lim sup AS(p»)<0. This means that the supremum sup S of the squared
norm S satisfies

nH*<supS<npH?*—n(p—1)c.

Remark 3.2. Let M be a maximal space-like submanifold of H3*%-*(¢’) and
let HE*2-'(¢’) be a totally umbilic hypersurface of H3*?(c) (0>c¢>c¢’), whose
mean curvature is denoted by H. Then M can be regarded as a submanifold
of H3*?(¢). It is a pseudo-umbilic submanifold with non-zero parallel mean
curvature vector h and the squared norm S is given by S=S'+nH? where S’
is denoted the squared norm of M in H3*7-'(¢’). According to Proposition 3.2,
we have S<npH*—n(p—1)c in H3*?(c). The last equality S=npH*—n(p—1)c
is equivalent to S'=n(p—1)(H?>—c). This is the second estimation of S’ ob-
tained by Ishihara [5].

4. 3-dimensional space-like submanifolds.

In this section, for a 3-dimensional space-like submanifold M we shall give
a sufficient condition for M to be pseudo-umbilical. Let M be a 3-dimensional
complete space-like submanifold with non-zero parallel mean curvature vector
of Mi*?(c). From (2.13) we have

“4.1) ARG =—hEnR mije— 2 Rmejs+ 2% Rpaje

for any indices a, 2 and ;. By the similar discussion to that in Section 3 we
choose ¢, in such a way that its direction coincides with that of the mean
curvature vector. Furthermore, for any fixed point p in M we choose also a
local frame field e, ¢., e; such that

4.2) ht,=2:0,
for any z and ;. By (4.1) we have

3 A1 Z Rt~ Stk R s R,
from which combining with (4.2) it follows that

1 1
4.3) E—Alulzzz(h%ﬂ)% 52(21-—11')2}?1;11-
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On the other hand, since M is a 3-dimensional submanifold, its Weyl conformal
curvature tensor vanishes identically on M, i.e.,

Riju=Ru0;—Ris05+0uRjr—0: Rju— ‘;‘(5il51k—5ik5ﬂ) .

Hence we get
"

R.jji=Ri+R;;— 0]

for any distinct indices. By R;,+ Ry;+ Ry;=7, we have

Ru‘jiz % "Rkk
for any distinct indices. Thus the following equation
1 1
(4.4) S AP 2D+ 5 B(5 — Res )= 4’
is derived.

PROPOSITION 4.1. Let M be a 3-dimensional complete space-like submanifold
with non-zero parallel mean curvature vector of MJ*?(c). If it satisfies

(4.5) Ric(M)<0,<3(c—H?,
then M is pseudo-umbilic.

Proof. In order to prove this property it suffices to show that the function
| ¢#|* vanishes identically. By (4.4) and (4.5) we have

1 1
S Alpl*z 720 —20)(4—4)*,

which is equivalent to
(4.6) Alp|*23(r—26,) .
From (2.9) we have
Alp1*z3|p1*{| p1*+6(c—H*)—2d.},
from which together with the assumption we have
Alp*z3|plt.

Since the Ricci curvature of M is bounded from below and M is complete and
space-like and moreover since the function |g|* is smooth, Theorem 2.2 yields
|¢#1*=0, which means that M is pseudo-umbilic. ®

Remark 4.1. Proposition 4.1 is a higher codimensional version of a theorem
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due to Aiyama and Cheng [1] for a space-like hypersurface.

Proof of Theorem 1. Since the assumption of Theorem 1 satisfies (4.5), M
is pseudo-umbilic by Proposition 4.1. Accordingly we can apply Proposition
3.1 to this case and we see that M is totally umbilic. m

Next we consider the case of H*>c.
PROPOSITION 4.2. Let M be a 3-dimensional complete space-like submanifold

with non-zero parallel mean curvature vector of Mi*?(c). If it satisfies H*>c
and if

“.7) Ric(M)<8,< 5 (—3(H'—0),
then we get
4.8) 1P <3 —1)(H—c).

Proof. From (2.9) the scalar curvature » is given by r=6¢c—9H*+S and
hence we get by (3.6) and (4.7)

r—28,> | p |27t —6(H>—c)—3(p—3)(H*—c)
2| p*=3(p—1)(H*—c).
Accordingly (4.6) and the above inequality yield
Alp*z3|p*{1p]*=3(p—D(H*—c)}.

Given any positive number a, a function F is defined by 1/+/[u[*+a. Then,
by the similar method to that in the proof of Proposition 3.2, we obtain the
conclusion. m

5. Proof of Theorem 2.

In this section Theorem 2 is proved. Let M be an n(=3)-dimensional com-
plete space-like submanifold with non-zero parallel mean curvature vector of
M?3*?(c), p=2. We assume H?=c¢ and

G.1) Ric(M)<8,< %(p—S)(HZ—c) and S=3pH?>—3(p—1)c.

Then the scalar curvature » is given by r=3(p—3)(H*—c¢) and hence
r—20,=3(p—3)(H*—c)—20,=0

is a positive constant. From (4.6) we have

5.2) Alp|=38|pl?.
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Given any positive number a, a function F is defined by F=1/+[g¢|*+a, which
is bounded from above by 1/+/a and is bounded from below by 0. Since the
Ricci curvature of M is bounded from below and since M is complete and
space-like, we can apply the Generalized Maximum Principle (Theorem 2.1) to
the function F. For any given positive number ¢, there exists a point p at
which F satisfies (3.16). Consequently the following relationship

5.3) 5 F Al ()<3s+ F(p)e

can be derived by the simple and direct calculations. For any convergent
sequence {&¢,} such that ¢,—0 (m—o) and ¢, >0, there exists a point sequence
{pm} such that {F(pn)} converges to Fo=inf F by (3.16). On the other hand,
it follows from (5.3) that we have

(5.4) %F(pm)4A|ﬂlz(pm)<35m2+F(pm)5m-

The right hand side of (5.4) converges to 0, because the function F is bounded.
Accordingly, for any positive number ¢ there exists a sufficiently large integer
m, for which we have

(5.5) Fpa)'Alp|Mpm)<e  for m>ms.

Since it is seen by Proposition 4.1 that the function |p¢|? is bounded, the in-
fimum F, of the function F satisfies F,#0 and hence the inequality (5.5) yields
that lim supA|p|*(p=)=<0. This means that the supremum of |g|® is equal to
0 by (56.2), because ¢ is the positive constant. So we obtain =0, i.e., M is
pseudo-umbilic, which yields that the equality of (3.14) in Proposition 3.2 holds.
Then the equalities of all inequalities in Section 3 have to hold. Consequently,
from (3.4) and (3.13) it is seen that we have

(5.6) h#=0
for any 7, 7, k and a. Also from (3.2) and (3.11) it follows that we get
5.7 HeHP=HPH*

for any @ and f. The equations imply that all of H® are simultaneously
diagonalizable and the normal connection in the normal bundle of M is flat.
Hence we can choose a suitable basis {e,} such that

(5.8) h$y=2%0;,

for any i, ; and . The submanifold M is said to be isoparamelric [9] if
the normal connection is flat and the charactristic polynomial of the shape
operator A; for any local parallel normal field ¢ is constant over the domain.

LEMMA 5.1. M is isoparamelric.
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Proof. Since the normal connection is flat, it is seen that there exist locally
p mutually orthogonal unit normal vector fields which are parallel in the normal
bundle. So we can choose a suitable parallel basis {e¢,} and then we have
wq.3=0. Hence, since we have

(5.9 Shipwr=dhsi— S hfiww— S hws,+2hbwsa,

setting 7=y in the above equation and using (5.6) we get dh%=0. Hence 1§
is constant and M is isoparametric. m

LEMMA 5.2. M s of non-positive curvature.

Proof. Suppose first that there exist indices z, ; and a such that A¢,=hy,.
From the equation (5.9) we get

thjwki+2h?kwk;=(h$i—hjaj)wu‘;(),

from which it follows that w,,=0. For any index : we denote by [i] the set
of indices k£ such that hAg=h%. Under this notation the above property shows

(5.10) ;=0 for any k&[],

Accordingly, we obtain
2w ANwe,=0.

In fact, the left hand side of the above equation can be regarded as

20 ANOp= 2] O ANOr;+ 2 O A0+ 2D 0 AWy,
keri] kel k&[17UL43

each term of which vanishes identically, because of (5.10). Thus, from the
structure equation

1
dwii+2wik/\wk;=—§'2szjtwk Nwy,
we obtain
Rmi=c—%lﬁ,}@=0.
Next, suppose that h&=h% for distinct indices : and ; and for any a.
Then the Gauss equation implies
Rijji=c—3(h$)=c—32A)=c—H*— E(z‘f)zéo,

because of H?—c=0.
Thus M is of non-positive curvature. m

Proof of Theorem 2. First of all, we notice that M is not totally umbilic
under the condition (5.1). In fact, suppose that M is totally umbilic. The
equation (3.6) means that M is totally umbilic if and only if S=nH? from
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which combining with the second equation of (5.1) it follows that we have
H?=¢=0. So M is totally geodesic and it satisfies Ric(M)=0. On the other
hand, by the first equation of (5.1), we get Ric(M)<0, a contradiction.

Now we consider an n-dimensional space-like submanifold M of R3*?. By
a theorem due to Koike [6] and Lemmas 5.1 and 5.2 it is seen that M is locally
congruent to the product submanifold

(5.11) H™(c )X -+ X H™a(cg) X R™

of R?*? whose mean curvature vector is parallel in the normal bundle of M in
R?*, where 3¢ n,+m=n, ¢=0, m=0 and R}*? is a totally geodesic sub-
manifold of R%*?. Then M can be naturally regarded as the space-like sub-
manifold of R3*?.

The condition for the codimension is next given. For the purpose the
squared norm S of the second fundamental form and the mean curvature H of
M in R}*? and hence in R3*? are calculated. In fact, the product manifold is
constructed as follows: Without loss of generality, an (n-+¢)-dimensional semi-
Euclidean space R}*? of index ¢=0 can be first regarded as a product manifold of

Ry x ... X R X R™,

where 3¢-,n,+m=n. With respect to the standard orthonormal basis of R}*?
a class of space-like submanifolds

H™(c )X+« XH"(c)X R™
of R7?*7 is defined as the Pythagorean product
H™(e) X - XH™ ()X B™

:{(x" v, Xgp)ERGTI=RYIX - X RETPXR™ Ixrl2=—zl‘>0},

where r=1, -, ¢ and | | denotes the norm defined by the product on the
Minkowski space R*' which is given by <{x, x)=—(x¢)*+>%_,(x,)>. The mean
curvature vector A of M in R7*? and hence in R}*? is given by

1
h=— ;(nlclxl-i- o ngCeXy)

at x=(x,, -+, xXg+1)€M, which is parallel in the normal bundle of M. So, the
squared norm S of the second fundamental form and the mean curvature H of
M in R}*? are given by

q q
S=— Zlnrcr; n*H?=— Elnrzcr;
r= r=
which yields

(5.12) S—pnH?=

S|

i]lnr(pnr~n)cr:0.
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Suppose that p<3. Then we see Ric(M)<d,<0 by (5.1). Since M is 3-
dimensional and it is congruent to the product submanifold (5.11), the negative
definiteness of the Ricci curvature means that M is totally umbilic, a contradic-
tion. We next suppose p=4. This means that M is totally umbilic by (5.12),
a contradiction.

Hence the case of ¢=0 can not occur.

Suppose next that ¢<0. By means of Koike’s theorem and Lemmas 5.1
and 5.2 again, M is locally congruent to the product submanifold H™i(¢c,)X - X
H™a*Y(cqq) in H7*9(c’), where 3¢ n,=n, ¢=0, and 3¢ (1/c,)=(1/c")=1/c),
and H?*%(c’) is a totally umbilic submanifold of H3*?(c).

We investigate the relation between the mean curvature H and the squared
norm S of M in H2*?(¢). We consider an n-dimensional space-like submanifold
with parallel mean curvature vector of H7*%(c’). Without loss of generality,
an (n+q¢+1)-dimensional indefinite Euclidean space R}}?*' of index (¢+1) can
be regarded as a product manifold of

R?l'” X oo X RPar1t?

where 2% n,=n. With respect to the standard orthonormal basis of R+
a class of space-like submanifolds

(5.13) H"‘(C;)X e ><Hnl1+l(6q+1)
of R}#e+ is defined as the Pythagorean product

H™(c))X - XH™+1(cg41)

z{(xl: oy X)) ERFHM =R - X R7a+1*: |xr[2:_cl>0},
where r=1, -+, ¢g+1. The mean curvature vector A’ of M in H}*%c’) is given
by

g+1
h=——=3 (n,c,x,)—c’'x
nr=1
at x=(x,, -+, Xg+1)€M, which is parallel in the normal bundle of M in H2*%(c’).

So the mean curvature H’ and the squared norm S’ of the second fundamental
form of M in H?*%(c’) are given by

g+1 g+1
(5.14) n:H?=n%"— g}lnﬁc,, S'=nc¢'— Tg,ln,cr.

For the mean curvature vector A’ of M in H?*%(c’) the mean curvature vector
h of M in HZ*?(c) is given by h=h'+h”, where h” is the mean curvature
vector of H3*(c’) in H3*?(c). Consequently, by using (5.14) the mean curvature
H and the squared norm S of M in H3*?(c) are given by

+1
nH*=n%'— qg}l n.lc,+(p—q)(c—c’),
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S=nc— j‘; n.c,+(p—q)c—c'),
from which it follows that we have
(5.15) S—{npH*—n(p—1)c}
1 gq+1 p . ,
=— 3 nipn,—me,+{(p—g+pn—L(p—g¢}c—c").

n

Suppose that p<3. Then we see Ric(M)<0 by (5.1). Since M is congruent
to the product manifold (5.13) and it is 3-dimensional, the negative definiteness
of the Ricci curvature means that M is totally umbilic, a contradiction. Ac-
cordingly, we obtain p=4. On the other hand, ¢ must be less than 3, because
of n=3. In order to check whether or not these situations occur, it is divided
into three cases: ¢=0, 1 and 2.

First we consider the case ¢=(. Then M is totally umbilic, a contradiction.

Next we consider the case g=1. If p=5, then the first term of the right
hand side in (5.15) is negative and the second one is of non-positive. This also
leads a contradiction. So we have p=4 and ¢, and ¢, are determined by con-
stant curvatures ¢ and ¢’, because of 1/¢,+1/¢c.=1/c¢’.

The case ¢=2. If p=6, then the first term of the right hand side in (5.15)
is negative and the second one is of non-positive. Accordingly this case can
not occur. So we have p=4 or p=b.

This completes the proof. m

Remark 5.1. A product manifold H'(c,)X H'(c,)X H'(cs) is a canonical space-
like submanifold with parallel mean curvature vector of H§(¢) and it satisfies
Ric(M)=0 and S=9H?*—6¢. This means that the estimate of the Ricci curva-
ture is best possible.

Remark 5.2. In the case of p=1, two conditions in (5.1) are equivalent
with each other.
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