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ON TOTALLY GEODESIC BOUNDARIES OF

HYPERBOLIC 3-MANIFOLDS

By MICHIHIKO FUJII

Introduction.

By a hyperbolic manifold, we will mean a Riemannian manifold with con-
stant sectional curvature —1. In this paper, we study complete oriented hy-
perbolic 3-manifolds each of which has a totally geodesic boundary. A totally
geodesic boundary of such a 3-manifold becomes a hyperbolic surface.

Let g be an integer greater than or equal to 2 and let Mg be the Riemann
moduli space consisting of all isometry classes of connected closed hyperbolic
surfaces of genus g. Let Sg be the subset of Mg consisting of those hyperbolic
surfaces which are boundary components of compact oriented hyperbolic 3-
manifolds with totally geodesic boundary. As pointed out by Soma, there is an
argument making use of a theorem of Brooks [1] which shows that Sg is dense
in Mg. However it seems that almost nothing is known about the characteriza-
tion of elements of Sg. For example, it is by no means easy to construct
elements of Sg except for obvious ones.

In this paper, we will obtain certain concrete examples of elements of Sg by
taking a complete hyperbolic 3-manifold with one torus cusp and totally geodesic
boundary and then analyzing the effect of the hyperbolic Dehn surgery on the
toral end. More precisely, we consider the following. Namely, take any com-
plete hyperbolic 3-manifold P with one torus cusp and connected totally geodesic
boundary Σg of genus g. Denote P(p, q) the 3-manifold obtained by performing
Dehn surgery on P of type (p, q) on the toral end, where (p, q) is a coprime
pair of integers near oo in R2\J{oo\. Then, using the results of Thurston and
Mostow, we see that P(p, q) admits a complete hyperbolic structure with con-
nected totally geodesic boundary Σg(p, q) of genus g. For each g, we show that
there are infinitely many mutually non-isometric P(p, q)'s by considering the
lengths of the adjoining closed short geodesies (see [3]). Now in such situa-
tions, it seems that the following phenomenon may quite often happen: if
{p, q) is close to oo in R2U{°°], then the original surface Σg and the resulting
surface Σg(p, q) are different in the Teichmϋller space which are very close to
each other, so they are also different in the moduli space Mg. However at
present, there are no general theory about this. Moreover, as far as the author
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knows, there has not been known any such hyperbolic 3-manifolds where the
above phenomenon has been explicitly confirmed to occur. In this paper, we
illustrate the above on a particular example M which we will construct in § 1.
This 3-manifold M has a complete hyperbolic structure with one torus cusp and
connected totally geodesic boundary Σ of genus 2 and is one of the easiest ones
to deal with. From this example M, we explicitly construct infinitely many
mutually non-isometric connected closed hyperbolic surfaces Σ(p, q)ys which are
elements of S2 and converge to Σ as (p, q) goes to oo. We mention that
Neumann-Reid showed, by contrast, that for each g, there is a complete hy-
perbolic 3-manifold with one torus cusp and totally geodesic boundary of genus
g such that deformations induced by hyperbolic Dehn surgery of the cusp leave
the boundary surface invariant (see [7]).

We show the above by means of the move of the flat structure of the cusp
torus of DM (the double of M along dM) with respect to the hyperbolic Dehn
surgery on the other toral end of DM. The move is shown in the following
way. Namely, first of all, we decompose DM into ideal tetrahedra in § 1. Next
we write down the deformation space in our situation in § 2. Finally in § 3, we
describe the isomorphism type τ of the flat structure corresponding to the cusp
torus in question in terms of the tetrahedral parameters. Though there are
thirty-six parameters and matrices of large size appear, all necessary calculations
are worked out just within the field Q(V~2, V^Λ). We can thus show success-
fully that the differentiation of the second order of τ with respect to the
parameters is not zero.

1. An ideal tetrahedral decomposition of a hyperbolic 3-manifold with
two torus cusps.

In this section, we construct a 3-manifold M which has a complete hyperbolic
structure with one torus cusp and connected totally geodesic boundary Σ of
genus 2 and then concretely find out an ideal tetrahedral decomposition of the
double DM of M along dM (there exists at least one such a decomposition by
[2]).

Let S be an ideal tetrahedron in the hyperbolic 3-space H3. Namely, 5 is
a geodesic tetrahedron with all vertices at infinity dH\ An ideal tetrahedron
is described (up to isometry) by a single complex number z with positive imag-
inary part such that the Euclidean triangle cut out of any vertex of S by a
horosphere section is similar to the triangle with vertices 0, 1 and z (see Fig.
1.1 (a)). We write S=S(z). The three numbers z, z' : = ( z - l ) / z and z" : = l/( l-z)
give the same tetrahedron: to specify z uniquely, we must pick an edge of 5
(the dihedral angle at this edge will be arg(z)). Then to each edge of 5 is as-
sociated one of the three numbers z, z' and z", the modulus of the edge, op-
posite edges of 5 having the same modulus (see Fig. 1.1 (b)).
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Fig. l.l(a) Fig. l.l(b)

Let us consider a geodesic polyhedron in H3 as indicated in Fig. 1.2 and

identify the faces as follows: glue Λι to Cu Bx to C2, Dγ to A2, Ex to i/2, Fx to

7/i, Gi to F2, B2 to A and E2 to G2 respectively. Then we obtain the com-

plete hyperbolic 3-manifold M with one torus cusp and connected totally geodesic

boundary Σ of genus 2.

Hx

Gι

Fig. 1.2. The vertices O are ideal ones. All boundary faces of this poly-
hedron are all totally geodesic. All dihedral angles are π/2. Right-angled
sixteen quadrilaterals with two ideal vertices are isometric to each other. The
totally geodesic boundary Σ of M consists of the two right-angled octagons.

Eί
Fig. 1.3. GlueΛ toC;, B[ to D[ to Ai, E[ to Hi F[, to H[ G[ to F'2t B'2

to D'2, E
f

2 to G2 and /( to I'2 respectively so that the arrows and the stars (*)
on the faces /( and I2 are identified with each other.
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The fundamental domain of the double DM of M along dM in the hyperbolic
3-space fiΓ3 is an ideal polyhedron as illustrated in Fig. 1.3 and DM is obtained
by identifying the faces of this ideal polyhedron according to the gluing diagram.

Now subdivide this polyhedron into thirty-six ideal tetrahedra Si '.=3(20, •••,
SS6 :=S(zS€) as in Fig. 1.4. We have obtained an ideal triangulation of DM by
thirty-six simplices:

Fig. 1.4(a). Decompose the polyhedron into the twelve triangular prisms

τu-,τn.

Fig. 1.4(b). Decompose each triangular prism into three tetrahedra SJm
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2. A deformation space of the hyperbolic structure on the 3-manifold
DM.

In this section we treat deformations of the hyperbolic structure on the 3-

manifold DM. Especially we will consider deformations leaving one of the two

toral ends of DM complete (i.e. on these deformations one of the two ends

remains cuspidal). Let elf β2 be the two toral ends of DM. The argument in

this section is given in [8] under the generalized situation.

Let zi be as follows:

z\ :=z°n : = * Ϊ 7 ι=z°i2 : = ^ β \=z%* : =

z% :=z°6 :=z°7 :=z% :=z°20 :=z°2B : = z g 6 ;=z°is : = -

^3 —^6 — ^9 —^12 — ^21 . — -C24 —-^27 .—Z^Q . — V —

z° :=z°s \=z°u :=z% :=z°29 : = z g 5 : = ( 2 -

- V:rT)/2

Let us call the point z°:=(z°u •••, 4 G ) G C 3 6 the original solution. This point z°

gives the same state as in Fig. 1.4, then DM is the complete hyperbolic 3-

manifold with two torus cusps when z—z°, where z=(zlf •••, zB6). In the case

where z=z°, the link L t of the ideal vertex vt which corresponds to the toral

end εx has a Euclidean triangulation induced by the ideal tetrahedral decomposi-

tion as shown in Fig. 2.1 (a) and (b) for each / (j = l, 2), where we have in-

cluded labels for the tetrahedral parameters zlf •••, z36 of the thirty-six tetrahedra.

Zl8

/i

Fig. 2.1(a)
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zs2 Z33

10 010 ^22 Z22 V*^33
3̂3 eu\ e*% eΆΆ \ eu \ew\\en eu ex

- \ • V_^ι^—\ t VV4# f
~Zu

it
Fig. 2.1(b). The Euclidean triangulation corresponding to the link L2. We omitted

the labels zf

J,z
//

J(j = l, ••• ,36) to simplify the picture.

Even if zΦz°, the triangulation has the same combinatorial type as in the case
where z—z°.

Choose generators mlf lx for πx{Lt) as indicated in Fig. 2.1 (a) and (b) for
each i {ι — 1, 2).

We can read off from Fig. 2.1 (a) and (b) the consistency relation hk — l at
the edge ek for each k (fc = l, •••, 36):

L . _/
ϊl\ .—^l>ώ

" 2 r = ^ 2 ^

fl ' 2 Z Z

! 1
7—-»• ?

h$ '. — ZTZQZIOZM—I ,

/ i l l I = ^2^3^22-^23^24 = = 1 >

Λ 1 2 :=z/{

ϊ 14 •—~-^28-^2 9-^3 5-^36 " ^ -̂  >
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hie '. — ZηZzZiQZiηZls—L ,

L . r>' r>' ill r>H 1
At 17 . — ^13^14^16^17— *• y

L . _//_// ^,/ ,-,/ 1
fίl8 . — ^ 3 1 ^ 3 2 ^ 3 4 ^ 3 5 — -L >

^ 1 9 —"^l9-^20^31^32^33""J

AI20 '•—-ZlZ2Zl3ZliZlb—-*- >

AZ21 '.—Z4Z5ZuZι5—l ,

/, . „!!-> „( -,11 1
fl26 ' — ^2^13^19^31— 1 ,

1Ϊ27 '. —

^32 •—-'Z14Z15Z1

L . _//_ _// _/ _ _/ 1
'^33 — ^2^3^15^20^21^33— ^ ^

L . _ / _ / / _ _//_/_/ _// _ _/ _// 1
/Y34 . — Z^Z^Zj^Z^Zf)Z2\Z2lZ22Z22Z2z—1 y

7 ^ 3 4 : : — - 1 -

Since zt—{zt — l)/zt and zf—1/(1—z t), we have the relations hi ••• Λ 3 6 = l and

/i23 h29=hs0 ••' h3G. Then these thirty-six relations hλ=l, •••, /z 3 6 =l are sim-

plified to the thirty-four relations:

; = 1, - - ,26
(*)

/ = 2 7 , - - , 3 4

Similarly, we can read off the parameters uιt vt which describe the holonomy of

the ( C x , C\{0})-structure of the meridian m% and the longitude lt at the cusp

torus corresponding to the link Lτ for each / (z = l, 2), where (7X is the multi-

plicative group of non-zero complex numbers. In particular, the parameter uλ is

represented as follows:
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The pair (uu u2) can be taken as the analytic Dehn surgery parameter as dis-
cussed in [6] and [8], in which case z1} •••, z36, constrained by the equations (*),
become complex analytic functions of this parameter.

For the complete structure on DM we have

Ul=vι=u2=v2=l. (**)

The original solution z° satisfies the above equations (*) and (**). In this paper,
we only deal with the tetrahedral parameter z near z°. Since π1(Lι) is abelian,
u%—\ induces Vi=l.

Now consider the space

W:={z=(zl9 •••, ZB6)ΪΞC*G\Z is near z°, z satisfies (*) and Ui=l} .

This space W is the deformation space of the hyperbolic structure on DM in
which we let the end βγ corresponding to L1 remain to be complete.

3. Deformations of the flat structure of the cusp torus of the hyperbolic
3-manifold DM with respect to the hyperbolic Dehn surgery.

In this section we consider the move of the flat structure of the cusp torus
corresponding to 6ι of the hyperbolic 3-manifold DM with respect to the de-
formations which are included in the deformation space W in § 2.

The real Dehn surgery parameters (plt q±) and (p2, q2) are determined by
the equations:

p! log ui+tfi log v1=2πV-ϊ

P2 log u2+q2 log v2=2πV-ϊ

(we take (pif qx)—oo if ut=l for each i(t = l, 2)).
Let DM(pι, qγ p2, q2) be the hyperbolic 3-manifold obtained by performing

the hyperbolic Dehn surgeries of types (pu qx), (p2, q2) on the two framed toral
ends of DM respectively. If the ordered pair (plf qt) is replaced by the symbol
oo, this means that the torus cusp is left unsurgered. Thus DM(oo ρ2f q2) is
the hyperbolic 3-manifold obtained by performing the hyperbolic Dehn surgery
of type {p2, q2) on the framed toral end β2 while the toral end Sx remains to be
complete.

The isomorphism type of the flat torus corresponding to βx of DM(co p2,q2)
as a complex torus C/Λ is described by the complex parameter τ=τ1/τ2 with
positive imaginary part, after choosing an oriented base τlf τ2 for the lattice A
(see Fig. 3.1 and Fig. 3.2). By elementary calculation from Fig. 2.1 (a) and
Fig. 3.1, one can express τ in terms of zu •••, zZQ as

Σ
71 = 1
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WΠ6Γ6 Q,ι '. —

Z3QZ3§Z3I, Q>Ί I

Zl^Z2θZ2iZβZiQ, &\2%'~Z\a)Z
r{l1 d 13 I — ^31^35-^36

ZZZ

I — Z31Z32Z23Z24 y &% '»^^ Z 2^Z 20Z χ^ZχZ 2 Z 24, # 9 * —

CL 14 '. =

Z2QZ3Q

Z3\Z\ , d\\ '.=:

βufli3fli2 flu 010 09 08 #7 ^6^5 Q% dZ

Fig. 3.1. The cusp torus corresponding to S\ developed on complex plane
with the oriented base ri, τ2 for the lattice A drawn in.

0 1

Fig. 3.2. The fundamental domain for the flat torus.

Let gj 0 = l> ••*, 34) be the rational functions as given in §2, and let g3b~uι.

We express each g3 0 —1> •••> 34, 35) in an irreducible form, that is, gj=n3/d3,

where n3 and d3 are polynomials on zlf •••, z86 without common factors. Then

the polynomial j:

3:—n3—d3 is determined from g3 uniquely up to scalar. We

can choose such / / s so that the equations (***) f3—0 (j = l, •••, 34, 35) are

given as follows:

f,

fs

—1)=0,

l)=0,

1)0*27 — 1)(^29—



β—l)=0,

2 — 1)ZS4Z86 = 0 ,
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fιι>:=Zt(zi,—ΐ){zu—ί)—(zl,— ΐ){zSi—l)zt,zti=O,

fii

/i.

fu

fu

fu

/l.

Λ.

Λ.

fvL

J23

fu

/.,

/,.

/.T

/28

/2ί

/ . .

253

a — 1 > 3 3 = 0 ,

1 ) — U i - 3i — 1 ) = 0 ,

— 1)220*24 =

M 1 = 0 ,

= 2 β (2 2 β —l)2 2 i (2 β

= 24(25—1

= (Z26 — l)(2sβ—

6—1)284

2 — 1 ) ( 2 8 6 — l ) 2 s β = 0 .

From the definitions of //s, for any z in a certain open neighborhood (7 of
the original solution z° in C36, z satisfies both the equations (*) and uχ—1 if and
only if it satisfies the equations (***). In this paper we are concerning only
the case where z is near z°, so it suffices to consider the reduced deformation
space WΓ\U=F'\Qf - , 0), where

F: UdC36—> C3δ
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is the function defined by F=(flf •••, /3 4, / 8 5 ) . By the standard argument in [8],
the rank of the Jacobian matrix of F at z° is 35, i.e. rank(/F)zo=35. In our
case, it can be shown directly that the rank of the 35 x35-matrix obtained from
the Jacobian matrix JF at z° by excluding the thirty-sixth column is 35. Actu-
ally, we can calculate the inverse matrix of this 35x35-matrix. (The computa-
tion of finding out the inverse matrix was carried out by sweeping out method
with the assistance of a Sun 3 computer.) Then by the implicit function
theorem, there is some open neighborhood 0 of z?6 on which there exists a
holomorphic mapping φ such that z1=φ1(z36), •••, zZb—φZh{zu) where φ=(φi, •••, φ&)

At the same time we can calculate the values —/-- and
dzϊ

Put T be the complex valued holomorphic function defined on 0 as follows:

1 \Z%Q) '.——T\ψ\ZζQ)f Zse)

Differentiate T by z36 until the second order using chain rule of composite
mapping and put complex values at z%^ of the partial differentiations. Then we
obtain the numerical result as follows:

4-r- =8+8vTi>0.

(The computations were carried out with the assistance of a Sun 3 computer.)
Thus τ is not constant on WΓ\U near z°.

From the above argument we can give the following statement:

PROPOSITION 3.1. // (p2, q2) is close to oa %n R2\j{°o} and not equal to oo,
then the value of τ at this point (p2) q2) is not the same as the value of τ at the
original solution z°.

There is the following theorem which has a close relation to the above
proposition:

THEOREM (M. Kapovich [4], [5]). Let Γ be a discrete subgroup of PSL
(2, C) and N—H3/Γ a hyperbolic 3-manifold of finite volume. Suppose that n^2
and N has n cusp ends, corresponding to the maximal parabolic subgroups
Δi, •••, An<Γ. Suppose that the group Γ is a congruence subgroup of some
Bianchi group with at least two cusps. Then the restriction homomorphisms

rx : H\Γ, s/(2, C)) — > H\AX, s/(2, C)) (x=l, •••, n)

are onto, where we consider sl{2, C) as a Γ-module with respect to the adjoint
representation.

From this we can assert the following: for any hyperbolic 3-manifold Af=
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Hz/Γ with two torus cusps, where Γ is a congruence subgroup of a Bianchi
group, the hyperbolic Dehn surgery on one of the toral ends of N induces the
move of the flat structure of the other cusp torus of N. But in our case, the
complete hyperbolic 3-manifold DM=H3/π is not arithmetic (we can see it easily
from [6] which states Q(tτ(πw))=Q(z1, •••, ^36) where π ( 2 ) =gp{r 2 ; ϊ^π} and
tr(π ( 2 )) is the set of the traces tr(Jί) for all 2 G ^ ( 2 ) ) . Thus the above theorem
does not work on our example. In fact, Neumann-Reid [7] showed that the
general case of the above theorem where the arithmeticity condition on Γ is
withdrawn does not hold. In [7], they constructed concrete examples indicating
this: hyperbolic 3-manifolds with two torus cusps each of which admits a de-
formation of the cusp not affecting the other one. Especially, for each g, they
showed the existence of a hyperbolic 3-manifold with one torus cusp and totally
geodesic boundary of genus g such that deformations induced by the hyperbolic
Dehn surgery on the toral end leave the boundary surface invariant. In con-
trast to the rigid case as these examples, we need something hard (but straight-
forward) calculations in the moving case as our manifold M.

4. Main theorem.

Let Mg be the Riemann moduli space consisting of all isometry classes of
connected closed hyperbolic surfaces of genus g. In this section we consider
the move in M2 of the totally geodesic closed surface Σ of genus 2 embedded
in DM with respect to the hyperbolic Dehn surgery on the toral end 62.

Let \_R~\ be the equivalent class of a closed surface R of genus 2, where
two closed surfaces Rx and R2 are equivalent if there is an isometry isotopic to
the identity between them (i.e. [/?] is a point in the Teichmϋller space of the
closed surface of genus 2).

Our main theorem is:

THEOREM 4.1. Let M be the 3-manιfold which has the complete hyperbolic
structure with one torus cusp and connected totally geodesic boundary Σ of genus
2 as constructed in % 1. Let M(p, q) be the topological 3-manιfold obtained by
performing the Dehn surgery of type (p, q) on the framed toral end of M. If
(p,q)is a coprime pair of integers and \p\-\-\q\ is sufficiently large, then M(p,q)
has a hyperbolic structure with connected totally geodesic boundary Σ(p, q), and
ZΣ(p, q)~\ is not equal to [21].

Proof. By Theorem 5.8.2 in chapter 5.8 of Thurston [9], if (pt,qt) 0 = 1,2)
are coprime pairs of integers and |/>t| + |#J are sufficiently large, then DM
{piy Qi p2f Q2) has a complete hyperbolic structure with finite volume. Now con-
sider the case of (plf q1)=z(ρ2f q2). We then abbreviate (plf qλ)=(p, q). There is
an involution K of DM(p, q; p, q) which interchanges the two copies of M as
well as the two ends each other and leaves a closed surface of genus 2 invariant.
By Mostow's rigidity theorem, K is homotopic to the isometry K which is still
an involution. Consider now a surface which is invariant by K. It is homotopic
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to the closed surface invariant by K and must be totally geodesic. Let us call
this Riemann surface Σ(p, q). Each half of DM(p, q; p, q) cut along Σ(p, q) is
homeomorphic to M(p, q).

Assume that \_Σ~]=\_Σ(p, q)~\. Then we can glue the two hyperbolic 3-
manifolds M and M(p, q) by the identity map of Σ. Call the resulting hyperbolic
3-manifold X. On the other hand, consider the hyperbolic 3-manifold DM(oo ρ9 q)
obtained by performing the {p, #)-hyperbolic Dehn surgery on the toral end β2.
The 3-manifold X is homeomorphic to DM(<χ> p, q), and both X and DM(oo ρf q)
are the complete hyperbolic 3-manifolds with one torus cusp. Then by Mostow's
rigidity theorem, X is isometric to DM(oo ρf q). But by Proposition 3.1, the
moduli of the cusp tori of X and DM(oo p, q) are different. Thus we have
obtained a contradiction. Therefore \_Σ~\Φ\_Σ(py q)~], •

COROLLARY 4.2. With the same hypotheses as in Theorem 4.1, the modulus
of Σ(p, q) is different from that of Σ and there are infinitely many (p, q)}s such
that Σ(p, q)'s are mutually different in M2.

When (p, q) is near &o, Σ(p, q) is developed to a hyperplane in H3 which is
very close to the original one on which Σ is developed. Then the fundamental
domains of Σ and Σ(p, q) are very close to each other. Thus this corollary is
induced by Theorem 4.1, since the modular group acts on the Teichmύller space
properly discontinuously.
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