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ON TOTALLY GEODESIC BOUNDARIES OF
HYPERBOLIC 3-MANIFOLDS

By MICHIHIKO Fujit

Introduction.

By a hyperbolic manifold, we will mean a Riemannian manifold with con-
stant sectional curvature —1. In this paper, we study complete oriented hy-
perbolic 3-manifolds each of which has a totally geodesic boundary. A totally
geodesic boundary of such a 3-manifold becomes a hyperbolic surface.

Let g be an integer greater than or equal to 2 and let M, be the Riemann
moduli space consisting of all isometry classes of connected closed hyperbolic
surfaces of genus g. Let S, be the subset of M, consisting of those hyperbolic
surfaces which are boundary components of compact oriented hyperbolic 3-
manifolds with totally geodesic boundary. As pointed out by Soma, there is an
argument making use of a theorem of Brooks [1] which shows that S, is dense
in M,. However it seems that almost nothing is known about the characteriza-
tion of elements of S,. For example, it is by no means easy to construct
elements of S, except for obvious ones.

In this paper, we will obtain certain concrete examples of elements of S, by
taking a complete hyperbolic 3-manifold with one torus cusp and totally geodesic
boundary and then analyzing the effect of the hyperbolic Dehn surgery on the
toral end. More precisely, we consider the following. Namely, take any com-
plete hyperbolic 3-manifold P with one torus cusp and connected totally geodesic
boundary Y, of genus g. Denote P(p, q) the 3-manifold obtained by performing
Dehn surgery on P of type (p, ¢) on the toral end, where (p, ¢) is a coprime
pair of integers near co in R?*U{c}. Then, using the results of Thurston and
Mostow, we see that P(p, ¢) admits a complete hyperbolic structure with con-
nected totally geodesic boundary X,(p, ¢) of genus g. For each g, we show that
there are infinitely many mutually non-isometric P(p, ¢)’s by considering the
lengths of the adjoining closed short geodesics (see [3]). Now in such situa-
tions, it seems that the following phenomenon may quite often happen: if
(p, g) is close to o in R*U{co}, then the original surface X, and the resulting
surface 2 ,(p, ¢q) are different in the Teichmiiller space which are very close to
each other, so they are also different in the moduli space M,. However at
present, there are no general theory about this. Moreover, as far as the author
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knows, there has not been known any such hyperbolic 3-manifolds where the
above phenomenon has been explicitly confirmed to occur. In this paper, we
illustrate the above on a particular example M which we will construct in § 1.
This 3-manifold M has a complete hyperbolic structure with one torus cusp and
connected totally geodesic boundary X of genus 2 and is one of the easiest ones
to deal with. From this example M, we explicitly construct infinitely many
mutually non-isometric connected closed hyperbolic surfaces X (p, ¢)’s which are
elements of S, and converge to X as (p, q) goes to oo. We mention that
Neumann-Reid showed, by contrast, that for each g, there is a complete hy-
perbolic 3-manifold with one torus cusp and totally geodesic boundary of genus
g such that deformations induced by hyperbolic Dehn surgery of the cusp leave
the boundary surface invariant (see [7]).

We show the above by means of the move of the flat structure of the cusp
torus of DM (the double of M along dM) with respect to the hyperbolic Dehn
surgery on the other toral end of DM. The move is shown in the following
way. Namely, first of all, we decompose DM into ideal tetrahedra in § 1. Next
we write down the deformation space in our situation in §2. Finally in §3, we
describe the isomorphism type ¢ of the flat structure corresponding to the cusp
torus in question in terms of the tetrahedral parameters. Though there are
thirty-six parameters and matrices of large size appear, all necessary calculations
are worked out just within the field @(v/ 2,+/—1). We can thus show success-
fully that the differentiation of the second order of = with respect to the
parameters is not zero.

1. An ideal tetrahedral decomposition of a hyperbolic 3-manifold with
two torus cusps.

In this section, we construct a 3-manifold M which has a complete hyperbolic
structure with one torus cusp and connected totally geodesic boundary 2 of
genus 2 and then concretely find out an ideal tetrahedral decomposition of the
double DM of M along oM (there exists at least one such a decomposition by
[2D.

Let S be an ideal tetrahedron in the hyperbolic 3-space H®. Namely, S is
a geodesic tetrahedron with all vertices at infinity 0H® An ideal tetrahedron
is described (up to isometry) by a single complex number z with positive imag-
inary part such that the Euclidean triangle cut out of any vertex of S by a
horosphere section is similar to the triangle with vertices 0, 1 and z (see Fig.
1.1(a)). We write S=S(z). The three numbers z, z’ :=(z—1)/z and z” :=1/(1—2)
give the same tetrahedron: to specify z uniquely, we must pick an edge of S
(the dihedral angle at this edge will be arg(z)). Then to each edge of S is as-
sociated one of the three numbers z, z’ and z”, the modulus of the edge, op-
posite edges of S having the same modulus (see Fig. 1.1(b)).



246 MICHIHIKO FUJII

Fig. 1.1(a) Fig. L.1(b)

Let us consider a geodesic polyhedron in H*® as indicated in Fig. 1.2 and
identify the faces as follows: glue A, to C,, B; to C,, D, to A,, E, to H,, F, to
H, G, to F,, B, to D, and E, to G, respectively. Then we obtain the com-
plete hyperbolic 3-manifold M with one torus cusp and connected totally geodesic
boundary 2 of genus 2.

Gﬁ 7 a2

Z D,vj;p, <,
E; Eg

Fig. 1.2. The vertices O are ideal ones. All boundary faces of this poly-
hedron are all totally geodesic. All dihedral angles are z/2. Right-angled
sixteen quadrilaterals with two ideal vertices are isometric to each other. The
totally geodesic boundary X of M consists of the two right-angled octagons.

VTR N

B! L:g' ——1I

%)

¢t <F— 7 o

Fig. 1.3. Glue A{ to C{, B{to Cj, D to A}, E{to Hj, F}, to H| G| to F}, B}
to Dj, Ej to G; and I{ to I} respectively so that the arrows and the stars (%)
on the faces I{ and I} are identified with each other.



TOTALLY GEODESIC BOUNDARIES OF HYPERBOLIC 3-MANIFOLDS 247

The fundamental domain of the double DM of M along dM in the hyperbolic
3-space H®is an ideal polyhedron as illustrated in Fig. 1.3 and DM is obtained
by identifying the faces of this ideal polyhedron according to the gluing diagram.

Now subdivide this polyhedron into thirty-six ideal tetrahedra S, :=S(z,), -,
Sss:=S(z5) as in Fig. 1.4. We have obtained an ideal triangulation of DM by
thirty-six simplices:

DM=S,U - USs.

T. T : \
N 727&% 7 SF \ Y T
“- [74“ I I \ T ' 1 —/— TS

Tz Tll
Fig. 1.4(a). Decompose the polyhedron into the twelve triangular prisms
Tlv Tty T]g.
S, Zy9
> Nt
z
£ S,

szo 299
z, 43 Za4 Sse

S. ¥4 %’Zzz
T, @t? 4‘%‘;0 6 ngﬁsu 22382;5‘23

Ss 2% Ss Sas 297
Zg
gV @o@
26
Zao
WS %Z w27,
m Zm S“ S” %2
Sa Sss
Tu > g> 231 Zss
Z3g Ssz
235

" é% =>‘°;‘; W AN

Fig. 1.4(b). Decompose each triangular prism into three tetrahedra S,.
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2. A deformation space of the hyperbolic structure on the 3-manifold
DM.

In this section we treat deformations of the hyperbolic structure on the 3-
manifold DM. Especially we will consider deformations leaving one of the two
toral ends of DM complete (i.e. on these deformations one of the two ends
remains cuspidal). Let &€, &, be the two toral ends of DM. The argument in
this section is given in [8] under the generalized situation.

Let z? be as follows:

20:=20 1=20 1 =28 1 =28 1=2% =2+ 2)(1++/—1)/2
281=20:1=29:1=2%:=2%0:=28s : =23 : =235 :=—/ 2 (1—/—1)/2
28:=28:=20:=2% 1=2%, 1=29, 1=2%, :=2% 1=V —1

29:=201=2% :=2% :=2% :=2% :=2—~/ 2 )1++v/—=1)/2
2yi=28 :=(—1++v2)V—1

205 1=28 1 =28 1 =28 1=~ 2 (1+~+/—1)/2

2% :=28:=(1++2)v/—1.

Let us call the point 2°:=(28, -+, 2%)= C*® the original solution. This point 2z°
gives the same state as in Fig. 1.4, then DM is the complete hyperbolic 3-
manifold with two torus cusps when z=2°, where z=(z,, ---, 2z3). In the case
where z=2° the link L, of the ideal vertex v; which corresponds to the toral
end &, has a Euclidean triangulation induced by the ideal tetrahedral decomposi-
tion as shown in Fig. 2.1(a) and (b) for each 7 (=1, 2), where we have in-

cluded labels for the tetrahedral parameters z,, -

€13

, 235 of the thirty-six tetrahedra.

21 210 217 LN 2, /210 21 z’; PP
212((/218 2y 213 2u 25 I 17 Zg 8 210
€23 \\|@a4)l|@os €26 | €27 |Gz (233 @7| @gsf|@ss !ezs/ e a] €29 | @34 g
4 1 213 r4{ 2 2 / 232
2y 17 22
2:% e 25 2; e Z1s 8
225 esoz e1s ey 2 2
15 @3 18
my| 57 2270 26 224 %e 23 en Zaas( | 220021, es D) €3
(31 233 €10 18 e
e 2. 2, 230 z eq
239 20 P ZonH Le1s ;:3 J 2
8
zzzs’ 230 P 224 224 zsN{
6
** ey euJ (ezs €36 | €31 [€3s Css ||@27  €s3)(€25 ezs\ €33 ] @39 @ @y
PN Zyg 219 | @19 sz |22 233| 2s6) Z2e 226
U\ zg 2y 223 2y Zss
- I

Fig. 2.1(a)
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€14 239 233 2
255 (Zar Z35 239 235 | 234220 210 23 Zp “Cza
eso\(ess ,“\ es1/ eso \esi\|\@s\|€ss en| @ €15 \ ess \%‘}\e” @36 @30
‘Z \’ 291 22\ 2z 234 1227 /Q 2y,
29+ e 18 2 255622
26T e Zag | Z29 58 f)
y 236 231 Zs 2 23] 225 5
29 €19
m z 297 - 44 NG
2 ¢r4 30 %29 e e Zg 2, 24 3 e, e, 12 Lz,
213 ¥4 :
e e zlino Zn” . 2. ou ¢ €21 210
22 L
P 13 A 2y %, 25 ]
2y F4) 216 \[ 29
€50 €36 llzs [es\ eso [ess fless) ess ||\[ €50 €5 ess /eu /eu] €32 €35 @30
215 211 21 2171 [ 216216 23°|| 24 24 24 214
216 214 23’ “€3q 215
ly
Fig. 2.1(b). The Euclidean triangulation corresponding to the link L,. We omitted

the labels z7,2%(;=1,---,36) to simplify the picture.
Even if z+2z° the triangulation has the same combinatorial type as in the case
where z=2z°.

Choose generators m,, [, for m,(L,) as indicated in Fig. 2.1(a) and (b) for
each : (=1, 2).

We can read off from Fig. 2.1(a) and (b) the consistency relation h,=1 at
the edge e, for each £ (k=1, -, 36):

hy
he
hy
hy
hs
h
ha
hs
hy

1=21262112152102 1020128025128, = 1,
322é2325{2152§/<)242224233:1 ’
2:2/5/2/7/2122{/42;6221Zé3zé52§23§/4:1 ’
1=24242107 1570625230236 =1,
1=z1021121222528 =1,

1= 25528520128 200250 =1,
=2l 2324 229250=1,
1=2z.20210200=1,

1=2z52521028525 =1,

PO ’ _
P10 1 =22025120325, =1,
hiyi=2z:2828255200=1,

1,

hi 1=21z3252128 2=

*—_— ’ -
hisi=2z102112121s=1,
hia 3222822921;52;/6:1 ’

his 1 =225226234285256 =1,
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hie 1 =212521621:213=1,
Ry ::21821422{/621/1/7:1 »
hig 1 =z5125p23425=1,
Nig 1 =219220201252285=1,
hso i =212,21520421=1,
hey i=2z42521420=1,
has 1 =22025528h253=1,
hag 1 =212524 212212285226256250250=1,
hes i =211212213255220256=1,
hes 1= 213211218201 255256=1,
hee 1 =212z1s215251=1,
her i =212520 2520 2,02 20020028 =1,
o :=2520215211283224 251230 =1 ,
hoo i =242 ls2lhzli=1,
hso :=252421021121122124: 22822028 =1
hsy i =2z1h216217220284235=1,
Ngs i =214215216232235256 =1,
has :=2423215230201235=1,
hgs i =2324242] 25251281 200250285 =1,
hsys i =ziz1528h28=1,
hss :=2120214285220254=1 .

Since z;=(z,—1)/z; and z{/=1/(1—z,), we have the relations A, - h;=1 and

Ny oo+ hag=hgyo -~ hy. Then these thirty-six relations hA,=1, -+, hye=1 are sim-
plified to the thirty-four relations:

{h,“:l 7=1, -, 26
&g, = .
h’]+2:1 ]:27) T 34

™

Similarly, we can read off the parameters u,, v; which describe the holonomy of
the (C*, C\{0})-structure of the meridian m, and the longitude [, at the cusp
torus corresponding to the link L, for each 7 (=1, 2), where C* is the multi-
plicative group of non-zero complex numbers. In particular, the parameter u, is
represented as follows:

_ ’ 1St S
U= —Z30226%26325312 «
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The pair (u,, u;) can be taken as the analytic Dehn surgery parameter as dis-
cussed in [6] and [8], in which case z,, -+, z;3, constrained by the equations (*),
become complex analytic functions of this parameter.

For the complete structure on DM we have

U=v=Uy=1;=1. **)

The original solution z° satisfies the above equations (*) and (**). In this paper,
we only deal with the tetrahedral parameter z near z°. Since n,(L,) is abelian,
u,=1 induces v;=1.

Now consider the space

W :={z=(zy, -+, 236)=C*°|z is near z° z satisfies (*) and u,=1}.

This space W is the deformation space of the hyperbolic structure on DM in
which we let the end &, corresponding to L, remain to be complete.

3. Deformations of the flat structure of the cusp torus of the hyperbolic
3-manifold DM with respect to the hyperbolic Dehn surgery.

In this section we consider the move of the flat structure of the cusp torus
corresponding to &, of the hyperbolic 3-manifold DM with respect to the de-
formations which are included in the deformation space W in §2.

The real Dehn surgery parameters (pi, ¢.) and (ps, ¢.) are determined by
the equations:

pilog u,+q,log vi=2m+/—1
D2 10g us+q, log v,=27~/ —1

(we take (pi, ¢,)=o0 if u,=1 for each :(t=1, 2)).

Let DM(pi, q1; b2, g2) be the hyperbolic 3-manifold obtained by performing
the hyperbolic Dehn surgeries of types (pi, ¢1), (P2, ¢2) on the two framed toral
ends of DM respectively. If the ordered pair (p., ¢,) is replaced by the symbol
oo, this means that the torus cusp is left unsurgered. Thus DM(oo; ps, ¢,) is
the hyperbolic 3-manifold obtained by performing the hyperbolic Dehn surgery
of type (p., ¢») on the framed toral end &, while the toral end &, remains to be
complete.

The isomorphism type of the flat torus corresponding to &, of DM(co; p,, g,)
as a complex torus C// is described by the complex parameter r=t,/7, Wwith
positive imaginary part, after choosing an oriented base 7, v, for the lattice A
(see Fig. 3.1 and Fig. 3.2). By elementary calculation from Fig. 2.1(a) and
Fig. 3.1, one can express 7 in terms of z,, -+, zs as

T=70(21, ", Z36)

14
=7§1(—1)”*‘axaz “ Qp-1ln
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. —— ’ . . ’ . -
where a,:=2524, Qs:=24025s236, Q3 =242%, Q4 =2223021228:206, U5 =2%:2%5 Q¢'=
— . . . ’ —
236235231, Qr 231232285204, Qg ==22425021621292%), Qg'=2p425a250251, Q10:=231219, GQ11:=
’ - - .
21923025426 219, Q12 1=219281, Q13:=Z2u1Z5525¢ ANd @14 :=235228Z30.

T2

D
T1 G14Q13Q12 1y G19 Gy Qg A7 AgAs Ay Ay Gy A1) 1

Fig. 3.1. The cusp torus corresponding to &, developed on complex plane
with the oriented base ,, 7, for the lattice 4 drawn in.

v=I

T=11/T2

0 1

Fig. 3.2. The fundamental domain for the flat torus.

Let g, (=1, ---, 34) be the rational functions as given in §2, and let gs;=u,.
We express each g, (=1, -+, 34, 35) in an irreducible form, that is, g,=n;/d,,
where n, and d, are polynomials on z,, ---, z; without common factors. Then
the polynomial f,:=n;—d, is determined from g, uniquely up to scalar. We
can choose such f,s so that the equations (***) f,=0 (=1, ---, 34, 35) are
given as follows:

f1:=(2s—1)23215(220—1)234235— 25(2s— 1 )(250—1)22,=0,
fo1=21(216—1)221(203—1)(225— 1 )(250—1)

— (25— 1)(z:—1)(214—1)216225225252(23s— 1)=0,
f3:=2y(210—1)218(226— 1)230236— (25— 1)210226(22s— 1)=0,
fei=(z10— 1)(215—1)zo5—210(21:— 1)215(25,— 1)=0,
[s:=(2as—1)(22:—1)(Z29— 1)+ 225(226 — 1) 227(225— 1) 229(230— 1)=0,
foi=(2s—1)2z25(230— 1) — (27— 1)zg(2g—1)250=0,
f1:1=2:(2e—1)z10+24(2::—1)=0,
fs:=2z5(zs—1)(219—1)—26219(220— 1)(22:—1)=0,
foi=250(251—1)255+221(224—1)=0,



TOTALLY GEODESIC BOUNDARIES OF HYPERBOLIC 3-MANIFOLDS 253

f10:=25(225—1)(220— 1) — (25— 1)(25:— 1225224 =0,

Sfini=(zs— (25— )(z:— 1)+ (21— 1)z22524(2s— 1)(2,—1)=0,
f12:=210211(21s— 1)+ (21, —1)215=0,

13 :=225229(Z55— 1)+ 245(256—1)=0,
F11:=255226234(256— 1)+ (235 — 1)256=0,
Sf15:=2:25216(21,— 1) F214(2:s—1)=0,

f16:=(213— 1)(21,— 1) —213214(216— 1)(21,—1)=0,

Srr:=(25a— (25— 1) — (251 — 1)(255— 1)z5425,=0,
f1s:=210220231(25s— 1)+ 235(255— 1)=0,
S19:=212215(215— 1)+ (21.— Dz15=0,
fa0:=2425(21a— 1)+ 214(2;5—1)=0,

So1 i =25225(233— 1)+ (250 — 1)25,=0,

Sz i =(2:—1)zg(z06— 1) — 2¢(2s— 1)215(225— 1)230=0,
o5 :=210(22s— 1)z30(256— 1) — (210 — 1)(215—1)225256=0,
f24 1=213211218231235%36— 1 =0,

o5 :=(215— )(239— 1) —(2,— 1)213219(25: — 1)=0,

fas :=(21—1)z19(220— 1) —(2:— 1)2e(219— 1)220224=0,
Sari=(25—1)(215—1)—25215(206—1)(25s—1)= 0,
fas:=(211— 1) (225— D)zzg—24(210— 1)227224(229— 1)=0,
Soo:=(216— 1)210(2290— 1)255— (211 —1)216229(25s—1)=0,
S 30:=214215216232235234— 1 =0,
fs1:=24(2s0—1)221(235— 1) — (22— 1)(215—1)25023,=0,
[z =24(zs— 1)(250— 1) — 25(z4— 1) 25251 (22— 1)=0,
Sss:=(2s—1)(215—1)—2:215(22a— 1 )(255— 1)=0,

fan:=(2;— D)ze29:(25s— 1) —2:(216— 1 )(225—1)234=0,
S5 :=(226—1)(250— 1)+ (222—1)(225— 1)250=0.

From the definitions of f,’s, for any z in a certain open neighborhood U of
the original solution z° in C*¢, z satisfies both the equations (*) and u,=1 if and
only if it satisfies the equations (***), In this paper we are concerning only
the case where z is near z° so it suffices to consider the reduced deformation
space WNU=F-*0, ---, 0), where

F:UcCC* — C®
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is the function defined by F=(f,, .-, fa, f35). By the standard argument in [8],
the rank of the Jacobian matrix of F at z° is 35, i.e. rank(JF)z=35. In our
case, it can be shown directly that the rank of the 35X 35-matrix obtained from
the Jacobian matrix JF at z° by excluding the thirty-sixth column is 35. Actu-
ally, we can calculate the inverse matrix of this 35x35-matrix. (The computa-
tion of finding out the inverse matrix was carried out by sweeping out method
with the assistance of a Sun 3 computer.) Then by the implicit function
theorem, there is some open neighborhood O of z3 on which there exists a
holomorphic mapping ¢ such that z;=¢,(2s), - , 2Zss=Ps5(256) Where ¢=(¢y, -, P3s).
dda A’ 1

7123(: % and _Zze 2% (a=1,,39)
Put T be the complex valued holomorphic function defined on O as follows:

T(zs36) ::T(Sb(zss): Z36) .

Differentiate T by z;; until the second order using chain rule of composite
mapping and put complex values at z3; of the partial differentiations. Then we
obtain the numerical result as follows:
4T
dzse
T
dz3e
(The computations were carried out with the assistance of a Sun 3 computer.)

Thus = is not constant on WNU near z°.
From the above argument we can give the following statement:

At the same time we can calculate the values

0
%36

, =8-+8v/2 0.

36

PROPOSITION 3.1. If (ps, q2) is close to oo in R*U{co} and not equal to oo,
then the value of © at this point (ps, qs) is not the same as the value of t at the
original solution z°.

There is the following theorem which has a close relation to the above
proposition :

THEOREM (M. Kapovich [4], [5]). Let I' be a discrete subgroup of PSL
(2, C) and N=H?/I" a hyperbolic 3-manifold of finite volume. Suppose that n=2
and N has n cusp ends, corresponding to the maximal parabolic subgroups
Ay, o, An<I'. Suppose that the group [I' s a congruence subgroup of some
Bianchi group with at least two cusps. Then the restriction homomorphisms

Yzt Hl(]"’ 31(2’ C)) - Hl(Axy 31(27 C)) (x:]-; ) n)

are onto, where we consider sl(2, C) as a I'-module with respect to the adjoint
representation.

From this we can assert the following: for any hyperbolic 3-manifold N=
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H:/I" with two torus cusps, where [" is a congruence subgroup of a Bianchi
group, the hyperbolic Dehn surgery on one of the toral ends of N induces the
move of the flat structure of the other cusp torus of N. But in our case, the
complete hyperbolic 3-manifold DM=H?/x is not arithmetic (we can see it easily
from [6] which states Q(tr(z®))=Q(z,, -+, z3s) Where n®=gp{r?; re=} and
tr(z®) is the set of the traces tr(4) for all A&x®). Thus the above theorem
does not work on our example. In fact, Neumann-Reid [7] showed that the
general case of the above theorem where the arithmeticity condition on [ is
withdrawn does not hold. In [7], they constructed concrete examples indicating
this: hyperbolic 3-manifolds with two torus cusps each of which admits a de-
formation of the cusp not affecting the other one. Especially, for each g, they
showed the existence of a hyperbolic 3-manifold with one torus cusp and totally
geodesic boundary of genus g such that deformations induced by the hyperbolic
Dehn surgery on the toral end leave the boundary surface invariant. In con-
trast to the rigid case as these examples, we need something hard (but straight-
forward) calculations in the moving case as our manifold M.

4. Main theorem.

Let M, be the Riemann moduli space consisting of all isometry classes of
connected closed hyperbolic surfaces of genus g. In this section we consider
the move in M, of the totally geodesic closed surface Y of genus 2 embedded
in DM with respect to the hyperbolic Dehn surgery on the toral end &,.

Let [R] be the equivalent class of a closed surface R of genus 2, where
two closed surfaces R, and R, are equivalent if there is an isometry isotopic to
the identity between them (i.e. [R] is a point in the Teichmiiller space of the
closed surface of genus 2).

Our main theorem is:

THEOREM 4.1. Let M be the 3-manifold which has the complete hyperbolic
structure with one torus cusp and connected totally geodesic boundary X of genus
2 as constructed in §1. Let M(p, q) be the topological 3-manifold obtained by
performing the Dehn surgery of type (P, q) on the framed toral end of M. If
(p,q) is a coprime par of integers and |p|+|q| s sufficiently large, then M(p,q)
has a hyperbolic structure with connected totally geodesic boundary 2(p, q), and
[2(p, )] s not equal to [27].

Proof. By Theorem 5.8.2 in chapter 5.8 of Thurston [9], if (p.,q.) ¢=1,2)
are coprime pairs of integers and |p,|+|¢,| are sufficiently large, then DM
(P1, q1; D2, g2) has a complete hyperbolic structure with finite volume. Now con-
sider the case of (pi, ¢1)=(ps, ¢=). We then abbreviate (p;, ¢;)=(p, ¢). There is
an involution K of DM(p, q; p, ¢) which interchanges the two copies of M as
well as the two ends each other and leaves a closed surface of genus 2 invariant.
By Mostow’s rigidity theorem, K is homotopic to the isometry £ which is still
an involution. Consider now a surface which is invariant by x. It is homotopic
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to the closed surface invariant by K and must be totally geodesic. Let us call
this Riemann surface 2(p, ¢). Each half of DM(p, q; p, q) cut along X(p, q) is
homeomorphic to M(p, q).

Assume that [Y]=[2(p, ¢)]. Then we can glue the two hyperbolic 3-
manifolds M and M(p, g) by the identity map of Y. Call the resulting hyperbolic
3-manifold X. On the other hand, consider the hyperbolic 3-manifold DM( ; p, q)
obtained by performing the (p, ¢)-hyperbolic Dehn surgery on the toral end &,.
The 3-manifold X is homeomorphic to DM( ; p, q), and both X and DM(co; p,q)
are the complete hyperbolic 3-manifolds with one torus cusp. Then by Mostow’s
rigidity theorem, X is isometric to DM(eo; p, q). But by Proposition 3.1, the
moduli of the cusp tori of X and DM(eo; p, q) are different. Thus we have
obtained a contradiction. Therefore [X]#[2(p, ¢)]. m

COROLLARY 4.2. With the same hypotheses as in Theorem 4.1, the modulus
of 2(p, q) is different from that of X and there are infinitely many (p, q)’s such
that X(p, q)’s are mutually different in M,.

When (p, ¢) is near oo, X(p, q) is developed to a hyperplane in H® which is
very close to the original one on which 2 is developed. Then the fundamental
domains of X and X(p, g) are very close to each other. Thus this corollary is
induced by Theorem 4.1, since the modular group acts on the Teichmiiller space
properly discontinuously.
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