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SUFFICIENT CONDITIONS FOR UNIMODALITY

OF NON-SYMMETRIC LEVY PROCESSES

BY TOSHIRO WATANABE

1. Introduction and results.

A measure μ on R1 is said to be unimodal with mode a if μ(dx)=cδa(dx)
+ f ( x ) d x , where c^O, δa is the delta measure at a, f(x) is non-decreasing for
x<a and non-increasing for x>a. A probability measure μ on Rl is said to
be strongly unimodal if, for every unimodal probability measure η, the con-
volution μ*η is unimodal. Let {Xt} (ί^O) be a Levy process on R1 (that is a
process with stationary independent increments starting at the origin). The
process {Xt} is said to be of class L if the distribution μt of Xt is of class
L for every ί>0 (equivalently, for some £>0). A necessary and sufficient
condition for an infinitely divisible distribution μ with Levy measure v to be
of class L is that x \ v ( d x ) is unimodal with mode 0. The process {Xt} is
said to be unimodal if the distribution μt is unimodal for every f >0. Medgyessy
[1] and Wolfe [13] show that symmetric Levy processes are unimodal if and
only if their Levy measures are unimodal with mode 0. Yamazato [14] proves
that every process of class L is unimodal. Watanabe [8] shows that there
exist unimodal non-symmetric Levy processes that are not of class L. Also,
Watanabe [10] gives a necessary and sufficient condition for unimodality of
one-sided Levy processes by using zeros of some polynomials. However it has
not been successful to find a necessary and sufficient condition in terms of their
Levy measures. Other results on the unimodality of Levy processes are obtained
by Sato [2, 3], Sato-Yamazato [4], Steutel-van Harn [6], Watanabe [9, 11],
Wolfe [12], and Yamazato [15]. The purpose of this paper is to improve the
previous paper [8] and to give sufficient conditions for unimodality of non-
symmetric Levy processes that are not of class L, in terms of their Levy
measures. To describe our results, we need to introduce some notations.

From now on, let n be a positive integer,

and let k(x) be a function on (0, oo) such that £(0+)<oo, &(*)>0 on (0, fln+ι),
fe(jc)=0 on [fln+i, oo ), k(x) is non-increasing on [6m, αm+ι] (O^m^n), non-
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S
CO
(l+x)"1k(x)dx<oo. Let

o

E= U (f lm, ftm). Let
m = l

(1.1) dm=Aj(αm-)-*(α

for l<;m^n, and

for 0<;c<co, where &*(*) is the Radon-Nikodym derivative of k(x) on E.
Our results are as follows.

THEOREM 1.1. Let {Xt} be a one-sided Levy process without drift such that

(1.2)

for z^O. 77z0n {Xt} is unimodal if the following additional conditions are
satisfied :

(H.I) £(0+)^2.
(H.2) &(*)=#( JC)+Λ(Λ;), where g ( x ) and h(x) are nonnegative on (0, oo),

^(0+)^1, the set {x : g(x)>Q\ is an interval, logg(x) is concave on
this interval, and h(x) is non-increasing on (0, oo).

(H.3) There exists a real number a snch that 0<α<flι, and, for every m

(H.S.a) a(em-hm}^em(bm-am),
(H.S.b) (k(a~)-K(a))dm>k(a-)hm,
(H.3.C)

Remark 1.1. Assume that

(H.4) \ogk(x) is concave on (β, an+ι) for some β satisfying bn^β^an+ι

In this case, we can define a function g(x) on (0, oo) such that g(x) is
absolutely continuous on (0, αn+ι) and

g*(x)= sup k*(y), for 0<%<^n,
ar^l/ej&

if β<an+ί,
g(x)=k(β+), for bn^x^β,
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= *(x), for β<x<°°,
if jβ=αn+ι,

*(x)=*(jβ-) for

£(x)=0 for

where &*(;y) and #*(#) are the Radon-Nikodym derivatives of k(y) and g(x),
respectively. Then (H.2) is satisfied for this g ( x ) if

Remark 1.2. It should be noted that #(#) in (H.2) is positive and non-
decreasing on (0, &„). Hence k(x^g(x)^g(Q+)^l for 0<;κ<&n and dm^&(0+)
— £(0+)^1 for l^w^n by (H.I) and (H.2). Also we note that, for every
m (l^ w^w), tf>6m-αm, em>hm, and dm>hm by (H.S.a) and (H.S.b).

Combining the above theorem with Corollary 1.2 of Watanabe [11], we
obtain the following result.

COROLLARY 1.1. Let ka\x) and k^\x) be two functions satisfying the
conditions for k(x) and let { X ί Ό } and { X t 2 ) } be independent unimodal one-sided
Levy processes in Theorem 1.1 associated with &(1)U) and & ( 2 )OX respectively.
Let a, b, σ be nonnegative, "f<^Rl, and (B(t)} be a Brownian motion independent
of {X^} and {X^}. Then the process Xt=X£i-XiT+aB(f)+rt is unimodal.

In order to prove Theorem 1.1, we show in Section 2 integro-differential
equations and fundamental inequalities satisfied by the density function of the
process. In Section 3 we prove Theorem 1.1.

2. Preliminaries.

In this section, let {Xt} be a one-sided Levy process satisfying (1.2) with
k(x) described in the paragraph preceding Theorem 1.1.

Assume that
(5.1) k(x) is a step function on [bm, αm+ι] for Q<*
(5.2) bm—am^a<aί, em>hm, and dm>hm for l^

Remark 2.1. The condition (S.2) implies that k(u)^k(am-) for Q<u<am

for l^m^n.
Let {Cj .Q^j^N+l} be the union of {bjiQ^j^n}, {α^: 1^/^n + l} and

the set of jumping points of k(x) in (bm, αw+ι) for Q^m<ίn. They are num-
bered so that

an+ιcN+1— oo.

Let c>(TO)=αm and cj<im^l=bm for l<*m^*n. Define

J^ij .Q^j^N and jφj(m) for l^m^n}
and
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/2— { j : l^y^AΓ and jφj(m\ /(w)+l for l^m^n}.

Define pj=k(Cj—)—k(Cj+) for /e/2, understanding pN=Q if c# — oo and pN>Q
if CΛr<°°. Define ί;—0 for e/ξ. The distribution // t of jf t is absolutely

continuous for every t>Q by Tucker [7], since I u~1k(u)du = oo. Let f ( x ) be
Jo

the density function of μt. We do not write dependence of f(x) on t explicitely.

LEMMA 2.1. For t>0, we have

(2.1) xf(x)=t\Xf(x-u)k(u)du
Jo

Σ \-dmF(x-am)-emF(x-bm)+{ F(x-u)k*(u)du\
= l I j£m J

Proof. The identity (2.1) follows from Steutel [5] and integration by
parts.

Remark 2.2. We see from (2.1) that /(*)=0 for *<0, /(x)>0 for Λ:>0,
and /(*) is continuous for

LEMMA 2.2. For t>Q, we have

(2.2) x/'(*)=(Λ

+t Σ -

for

Proof. Since /(λ-) is continuous for x>Q, F(X — CJ) is differentiable for
χφc}. Because f(x) is integrable on (—00, oo) and k*(u)^dm<°° on Em,

\ f(x — u)k*(u)du is continuous in x. We get
jEm

(2.3) ~^—{ F(x-u)k*(u)du=limh-1(X*hdy{ f(y-u)k*(u)du

= 1 f(x-u)k*(u)du

for —oo<^<oo for l^m^n. Hence, differentiating (2.1), we obtain (2.2).
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LEMMA 2.3. For ί>0, we have

(2.4)

(2.5)

and

(2.6) f"(x)=C(λt-Y)(λt-2)xλ <-3

for Q<X<CI, where C is a positive constant which depends on t.

Proof. The identity (2.2) means

(2.7) /'(*)=(;if-l)/(*)

for O<Λ:<C!. Hence we obtain (2.4), which implies (2.5) and (2.6).

Remark 2.3. We find from (2.2), (2.4), and Remark 2.2 that, for f>0,
/'(*) is continuous except at x—c} (Q^j^N). Moreover, for t>λ~ί, /(*) is
continuous on (—00, oo) and f ' ( x ) is continuous on (0, oo).

LEMMA 2.4. For t>λ~\ we have

(2.8) xf"(x)=(λt-2)f'(x)-t Σ P j f f ( x - c j )
J33!

+ί Σ \-dmf'(x-am)-emf'(x-bm)+\ f'(x-u)k*(u)du\
m=l I JEm )

for

Proof. Since ff(x) is integrable on (0, M) for any M>0, \ f(x — u)k*(u)du
JEm

is differentiate on (—00, oo) for every w (l^wa^w) as in (2.3). Hence,
differentiating (2.2), we get (2.8).

LEMMA 2.5. Let t>0 and χφc3 (0^/<;AO. Suppose that f ( u ) is non-
increasing for Q<u<x.

(i) // x£ΞEc=( 0 £mY, then
\ 771 = 1 /

(2.9) xf'(x)<(k(x-)t-l)f(X).

(ii) // x^Eq for some q (l<Lq<Ln), then

(2.10) xf'(x)<f(x){tk(at+)-l+δq(bq-taqk(aq+))k(aq+rι} .

Proof. We have
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(2.11) Kx-cjfefW

for Cj<x and

(2.12) Σ ( f(x-u)k*(u)du£ Σ f(x-bm}hm.
bm<zJEm bm<x

Hence, if x^Ec, then we obtain from (S.2) and (2.2) that

(2.13) */'(*)£ μf-l-f Σ ί,-f Σ
Cj<x am<x

-t Σ (em-hm)f(x-bm

noting that
Λ- Σ ί;— Σ dm- Σ

Cj<χ αm<x &m<

Similarly we get

(2.14) xf(x)^(k(atl+)t-W(x)+t f(x-u)k*(u)du

for χ(=Eq. We have, for

(2.15)

We obtain from (2.1) and Remark 2.1 that

(2.16) xfW=t(Xf(x-u)k(u)du
Jo

* f(u)du

for x^Eq, which implies that

(2.17) (bq-taqk(aq+))f(x)>tk(aq+)(X~aqf(u)du .
Jo

Hence (2.10) follows from (2.14), (2.15), and (2.17). Thus we have proved
Lemma 2.5.

LEMMA 2.6. Let Λ f > l . Suppose that f ( u ) is non-decreasing for Q<u<x
and non-increasing for x^u^y.

(i) // CQ<>X<CQ+I for some Q (Q^Q^N), then

(2.18) *
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(ii) // aq^x<bq for some q (l^q^n) and y<aq+a, then

(2.19) ^//(3/)^(^((>'

Proof of (i). We have

(2.20)

for Cj<>x and

(2.21) Σ ( f(x-u)k*(u)du^ Σ /(Jc-Oλ*.
δ^sxj^ 6m^τ

Hence we obtain from (S.2) and (2.2) that

(2.22) xf'(xfe(λt-l-t Σ ft-f Σ dm)f(x)-t Σ (*m-Am\ CjZx amgx / bm&x

noting that λ— Σ i>— Σ dm— Σ (^m— Am)=*(^ρ+). Thus we have proved
Cjίx amzx bmsx

Proof of (ii). Let R be such that y-cR+l<x^y-cR with O^Λ</(1). As
in the proof of (i), we get

(2.23)

for Q£j£R and

(2.24)

for R+l£j£j(q). We have

(2.25)

for l^m^n, noting that y — am<aq^x for l^m^n. Hence we obtain from
(S.2) and (2.2) that

(2.26) y

noting that Σ' Pι+ Σem+ Ίl(dm-hm)=k((y-x)+)-k(bq-) and Jl-Σίί=
.7=H+1 m=l m = l ./=!

— #)+)• Thus we have proved Lemma 2.6.
When Kίί<2, define
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(2.27) S={x: x>0 and / attains local maximum at x} ,

(2.28) T^{x: x>0, x^Cj (0^/^ΛO, and /"OO^O} ,

and

(2.29) infS=$o and infT^ y .

Obviously the set S is non-empty. The set T is also non-empty, because the
support of μt is unbounded. We find from (2.5) and (2.6) that

(2.30) so>C! and y^d.

LEMMA 2.7. Let Kλt<2 and, in addition to (S.I) and.(S.2), suppose (H.3.c).
Then we have

(2.31) y>s9.

Proof. Suppose that y<sQ. We shall consider three possible cases and
show that absurdity occurs in each case.

Case 1. y<sQ and j/— CQ (l^Q^N). There exists a sequence yk such
that y<yk<s<>, f"(yk)^Q, and yk~->y as £-»oo. Since f'(yk — u)^Q for 0<u<yk,
we get

(2.32) f ff(yk~u}k^(u)du^dm(f(yk-am)-f(yk-bm)}
JEm

for l^m^n. Since, as k->°°, /'(;y*)-»/'(:y)^0,

/'(y*-O— "f'(y-c,)>0 for l^y^Q-l,

f'(y>-cϊ)-^ f'(y-c})=Q for έO+1, and

for 0<j<N, we obtain from (2.8) and (2.32) that

(2.33) 0

ί Σ {-
771 = 1

as ^->co. This is a contradiction.
Case 2. 3><s0 and ^<j;<cρ+1 with ζλe/j. Since //(3^).^0, //(3'~cι/)>0

for l^ ^ζ?, and f'(y~u)<f'(y-bm) for z/eEm (j(m)<Q\ we have by (2.8)

(2.34) Q^yf»(y)^(λt-2)f'(y)-t Σ p3f \y-cj)

+t Σ {-



90 TOSHIRO WATANABE

This is a contradiction.
Case 3. y<s0 and aq<y<bq (l^*q^n). We shall first prove that

(2.35) dqf'(y-aq)>δqf(y-aq).

We get by ( i ) of Lemma 2.6 that

(2.36) af'(y-

noting that y — aq<a<aί by (S.2). We obtain from (ii) of Lemma 2.6 with
y = x and from f ( y ) ^ f ( y — aq)-{-ff(y — aq)aq that

(2.37)

and hence

(2.38) (-tk(bq-)+l)f(y-aq)<f'(y-aq)aq,

noting that λt—Kl. The identity (2.36) shows that (2.35) holds for t>Tl and
the identity (2.38) implies that (2.35) holds for t^T2, where

and

Hence it is sufficient for (2.35) that T2^Tί} which follows from (H.3.c). In
fact, we have by (H.3.c)

(2.39) T2-T,

= dq

lk(bq-Y^k(a-Γ{(k(a-}-k(bq-}}dq-δ^

^0.

Since ( f'(y-u)k*(u)du^δqf(y-aq) and ( fr(y-u)k*(u}du<hmf'(y-bm) for
J Eq J E m,

l<*m<>q—l, we obtain from (2.8) and (2.35) that

;c$)
(2.40) Q£yf"(y)£(λt-2)f'(y)-t Σ P,f'(y-c,)

3 = \

+tq Σ{-dmf'(y-αm)-(em-hm)f'(y-bm)}
m = ι

-t{dqf'(y-αq)-δqf(y-αq)}<Q.
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This is a contradiction. Thus we have proved Lemma 2.7.

3. Proof of Theorem 1.1.

Let {Xt} be a one-sided Levy process satisfying (1.2). Let μt be the dis-
tribution of Xt.

PROPOSITION 3.1. Let λt^l. Suppose (S.2) and that, for every m (l^ra^
(S.S.a) k(
(S.S.b) k(a

Then μt is unimodal with mode 0.

Proof. We divide the proof into two steps.

First step. Suppose (S.I) and continue to use the notation in Section 2.
The identity (2.5) implies that /'(*)^0 for 0<x<d. We shall prove that
f'W^Q for Q<xi=c} (l^j<*N\ Suppose that /'(jcβ)>0 for some

Let

*ι=inf {* : *>0, xΦc3 (1^/^AO, and

Then we note that C^KI<X^ f'(xι+)^Q, and /'( c)^O for 0<x<x1 except at
x = Cj (l^j^N). We shall consider three possible cases and show that absurdity
occurs in each case.

Case 1. cQ<xί<cQ+ί with l^Qe/j. We get by (i) of Lemma 2.5 that

(3.1) O^Xif'M^Mxά-DKxiKO,

noting that k(xι)t--l<λt—l^Q. This is a contradiction.
Case 2. aq<X!<bq with l^q^n. We find from (S.S.a), (S.S.b), and from

t^λ'1 that

(3.2)

We obtain from (3.2) and (ii) of Lemma 2.5 that

(3.3)

This is a contradiction.
Case 3. X\—CQ with l^Q^N. There exists a sequence yk such that

*ι<yk, //(3;*)>0, and yk— x\ as k-»°o. Hence we can show that contradiction
occurs in this case by argument similar to Case 1. In fact let yk —
Then we have

(3.4)
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for Cj<yk ( ^l) and

(3.5) Σ ( f(yk-u)k*(u)du< Σ /(3>*-&m)Λ*.
*>m<Vk JEm bm<y k

Hence we get, as in the proof of Lemma 2.5, that

(3.6)

if l^Q<=Jlf and

(3.7)

+t( f(yk-u}k*(u)du
JEq

if cQ=aq with l<*q<Ln. Letting &-»cχ> in (3.6) and (3.7), we have

(3.8)

This is a contradiction.
Second step. We can find a sequence of Levy processes {XΓ^} such that

each {Zt

(n)} satisfies (S.I), (S.2), (S.3.a), and (S.3.b) and the distribution μ£

(n)

converges weakly to μt as n->υo for every ί>0. Hence μt is unimodal with
modeO. The proof of Proposition 3.1 is complete.

PROPOSITION 3.2. Let Kλt<2. Suppose (H.I), (H.2), and (H.3). Then μt

is unimodal.

Proof. We first assume (S.I) and continue to use the notation in Section
2. As in the second step in the proof of Proposition 3.1, we can prove general
case. Let us suppose that μt(dx)—f(x)dx is not unimodal for some t (l<λt<2\
Then the set 5 defined in (2.27) contains at least two points and there are
two possible cases:

Case A. s0 is an isolated point of S.
Case B. s0 is a limit point of S.
In Case A, let Sι=s0 and

s2=inf{;\;: Λ:>SI and / attains local minimum at x\.

Then Cι<S!<s2 by (2.30) and we have

(A.I) //(sl)=//(s,)=0,

and

(A.2) f(x) is strictly increasing for O<Λ;<SI and strictly decreasing for

In Case B, we can choose, for any ε>0, Si and s2 such that c1<s0<Sι<s2

<s0-hε, /(s2)^/(sO, and f(x) attains local maximum at x = Si and local minimum
at x — s2. Hence we get
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(B.I) /'(Sl)=/'(s2)=0.

We shall prove that

(a) Existence of Si and s2 leads to a contradiction.

This will imply the unimodality of μt.
Consider Case A and let Q and R be such that

(3.9) CQ^Sι<£ρ+ι and sz— eΛ+1^s1<s2— CΛ with l^Q^N and

There are two possible cases: Q<R (Case 1) and Q^R (Case 2). We shall
prove that absurdity occurs in each case. Define 7(st)=si/'(sl) for /=!, 2.

Case 1. Q<R. We obtain from (2.2) and (A.I) that

(3.10) 0=7(sa)= Σ 7*(s2),
* = 1

where

(3.11) h(s2)=(λt-l)f(s2)-tj:pjf(s2~cj)-t Σ

Σ

(3.12) 72(s2)=-f Σ Pjf(s2-Cj)-t Σ

Σ

(3.13)

if Λ=;(r) (l^rgn) (/8(s.)=0 if /?e/0, and

(3.14) 74(s»)=-ί Σ

We shall prove that

(3.15) 0=7

and

(3.16) 0=7

which will lead to a contradiction. The inequality (3.15) follows from (2.18)
in Lemma 2.6. By argument similar to (2.9), we get
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(3.17) /ι(s,)<(fc(cβ+X-l)/(s,).

Since f(s2—u)^f(s2—bm) for u^Em (j(m)<R), we have

(3.18) /.(s.)^-f Σ Pjf(s2-cj)-t Σ

-t Σ (β
0£;(m)<β

We shall show that, if R=j(r) (l^r^n), then

(3.19)

There are two cases.
(i) Suppose that s2— α r^α. Then we get by (H.S.a) that

(3.20) S!/ιr— βr(s2— ̂ r)<(s2— ar)hr— er(s2— br)

and s2-^r>0. We have /(si)/S!^/(s2— &r)/(sa— ftr) by Lemma 2.7. Hence

(3.21)

by (3.20). Therefore, (3.19) follows from (3.13) in this case.
(ii) Suppose that s2— αr<«. Then we note that Sι<s2— ar<a<aί<s2.

Hence we have by (A. 2)

(3.22)

It follows from (2.2) that

(3.23) x

for Sι<x<a. Hence we have

(3.24) f(s,)-f

equivalently,

(3.25) f(a)>(l-tK(ά))f(sl).

We obtain from (3.22), (3.25), and (H.3.b) that
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(3.26) f(sz-u)k*(u)du-dτf(sί-ar)<f(sl}hr-drf(a)
JEr

noting that t^k(cQ+)~l<*k(a)-1 from (3.15) and from cQ<a<aι. Therefore,
(3.19) follows from (3.13) and (3.26) in this case. Thus we have proved (3.19).
Since f(sz— w)^/(s2— am) for u^Em (j(rn)>R\ we find

(3.27) Σ {( f(s2-u)k*(u)du-dmf(s2-am)\
Λ<Jcro) (jEm )

^ Σ (Am-

which shows

(3.28)

Hence (3.16) follows from (3.17), (3.18), (3.19), and (3.28). Thus the proof of
the assertion (a) in Case 1 is complete.

Case 2. R^Q. We obtain from (2.2) and (A.I) that, for ί=l, 2.

(3.29) 0=7(st)= A Σ/*(St),

where

(3.30) h(sί)=(λt-l)f(sl)-t^pjf(sί-cj)-t Σ dmf(si-am)

+t Σ \-emf(Si-bn)+\ f(st-u)k*(u)du\ ,
;(m)<Λl JEm )

(3.31) /,(s,)=ίf f(Si-u)k*(u)du-terf(st-br)JET

if R=j(r) (l^r^n) (7z(s,)=0 if

(3.32) h(sl)=-t^pif(st-c])

Σ \-dmf(

(3.33) 74(s,)=ίf f(sί-u)k*Mdu-tdqf(sί-aq)-teqf(sί-bq)
jE

if R<Q=j(q) (l^ί^w) (74(st)=0 if Qe/! or /?=£),

(3.34) 76(st)=-< Σ

+t Σ J-ί
J(.m°»Q I
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We shall prove that

(3.35)

(3.36)

(equality holds if and only if R—

(3.37) /2(SsXO if R=j(

(3.38) /ι(s X/.(Sι) if Λ=j(

(3.39)

(3.40)

(3.41) Λ(s8)<0 if R<Q=j(q} (l^tf^

(3.42)

(3.43)

and

(3.44)

These inequalities lead to a contradiction. In fact, we obtain from (3.36),
(3.37), (3.39), (3.41), and (3.44) that

(3.45)

if /?^1. Hence we have

(3.46) tk(cΛ+)-l>0.

Note that this holds even for /?=0. We find from (A.2), (3.35), (3.36), (3.38),
(3.40), (3.42), (3.43), (3.44), and (3.46) that

(3.47) 0

This is a contradiction.
Now we prove the inequalities (3.35)-(3.44). We can prove (3.35) as in

(2.18) of Lemma 2.6 and (3.36) as in (2.9) of Lemma 2.5. Also the proof of
(2.9) shows that equality in (3.36) holds if and only if R— 0, because f(x) is
strictly decreasing for Sι<x<s2 by (A.2). We can prove (3.37) as in (3.21).
To prove (3.38), we consider two possible cases.

(i) Suppose that Q>R=j(r) (l^r^w). Lemma 2.7 implies that
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for s2— s1<u<br and

for ar^u^s2—sl. Hence, noting er>hr we have that

(3.48) /,(s,) -Λ(

which means (3.38).
(ii) Suppose that Q=R—j(r) (l^r^n). Then we note that /2(sι)=

if /(Si— M)&*(M)</M^O. Therefore, (3.38) follows from (3.37). Thus we have
JEr

proved (3.38).
Since f(s2—u)^f(sz — am) for u^Em (R<j(m)<Q}> we get

(3.49) /.(s,)£-f Σ

-f ΣΛ<ycmχ

which implies (3.39). Since

for we£m (#</(m)<Q) by Lemma 2.7, we have

(3.50) (_ f(sϊ-u)k*(u)du-emf(sί-bm)
n

f(s1—u)k^(u)du—emf(s1—bm)
n

for R<j(m)<Q as in (3.48). Hence (3.40) follows from /(s2-c,)>/(s1-^) for
l^j^Q. If R<Q=j(q) (l^q^n}, then

(3.51)

because /(s2— w)^/(s2— ας) for we£ς. Thus we have proved (3.41). To prove
(3.42), we consider two possible cases.

( i ) Suppose that s2—aq^a. We get as in (3.21) that

(3.52) f f(s2-u)k*(u)du-eqf(sz-bq)<f(sz -aq)hq~eqf(s2--bq)
JEq

Hence (3.42) follows from /(s.-b^Q and from f(sz-aq)>f(sl~-aq).
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(ii) Suppose that a>sz—aq. Define

(3.53) G=f f(s2-u)k*(u}du-( f(s!-u)k*(u)du.

We shall show that

We can write G as

(3.55) G=\ f(u)k*(s2—u)du — \ f(u)k*(sι—u)du,
J Dl J D2

where Dι=(s2—bq, s2—aq) and D2=(Q, Sι — aq). If s2—bq^s1 — aq, then, by con-
cavity of k(u) on Eq, k*(s2—u)^k*(sι—u) for s2—bq<u<sί — aq, and hence, by
(3.55),

(3.56) Grgf f(u)k^(sz-u)du^δq(s2-sl)f(s2-aq),
J&3

where D3=(sl~aq, s2—aq). If s2—bq>Sι — aq, then by (3.55),

(3.57) G^ f(u)k*(s2-u)du£δq(bq-aq)f(st-aq)q q - q t - q

<δq(s2-Sι)f(s2-aq).

Thus we have proved (3.54). We can show dqf'(s2—aq)>δqf(s2— aq) as in (2.35)
of the proof of Lemma 2.7, using (ii) of Lemma 2.6 with Sι=x and s2=y.
Hence we obtain from (3.54) and Lemma 2.7 that

(3.58) /4(si)-/4(s2

>t(s2~s1χdqf
/(s2-aq)-δqf(s2-aq))>0,

which means (3.42). The proof of (3.42) is complete.
The inequality (3.44) can be proved as in (3.28). This finishes the proof of

(3.35)-(3.44). Thus the assertion (a) is established in Case A.
In Case B, we can prove the assertion (a) more simply. In fact, we can

find Si and s2 such that 0<s2~s0<£ι and cQ^So<sl<s2<cQ+1 with l^Q^N.
For /-I, 2, we obtain from (2.2) and (B.I) that

(3.59)

where

(3.60) /ι(st)=Wί

+t Σ \-dmf(si-~am)-emf(si-bm)+\
./CWO<Q l JE
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and

(3.61) /,(sO

if Q=j(q) (l^q^n) (/8(s»)=0 if QeΞ/O Since

for u^Em (j(rn)<Q) by Lemma 2.7, we have

(3.62) f /(sί-M)**(tt)dι/-e
JEm

^\ f(sl-u)k*(u)du-enf(5l-bm)

for j(m)<Q as in (3.48). Since /(sO^/(s2) and f(s2-cj)>f(sί-cj) for l^j^Q,
we get by (3.62) that

(3.63) Λ(

If Q=j(q) (\<Lq^n\ then, choosing Si and s2 sufficiently close to s0, we have

(3.64) /.(sO^Λte)

as in (3.42). Hence we obtain from (3.63) and (3.64) that

(3.65) 0=/1(s1)+/.(sι)>/ι(s )+/.(s,)=0 .

This is a contradiction. Thus the assertion (a) is true in Case B and the proof
of Proposition 3.2 is complete.

Proof of Theorem 1.1. We divide the proof into three cases.

Case (I). 0<ί^Jί~1. We find from Proposition 3.1 that μt is unimodal
with mode 0, since (S.3.a) and (S.S.b) follow from (H.I), (H.2), and (H.3). In
fact, we note by Remark 1.2 that k(am+)^l^dm for l<*m^n. Hence, (S.S.a)
is true by (H.3.c). We obtain from (S.S.a) and from λ'l^k(a—)"1 that

(3.66) k(am+)(λ-k(am+))-dm(λbm-k(am+)am)

for l^m^n. We note by (H.I) and Remark 1.2 that, for l^m^n, 2^
and hence

(3.67)

and
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(3.68) k(a-)am+ak(bm-)-(k(a-)bm-k(am+)am)

Now (S.S.b) follows from (3.66), (3.67), (3.68), and (H.3.c).
Case (II). ^-1<i<l. Proposition 3.2 shows the unimodality of μt in this

case, because l^2λ~l by (H.I).
Case (III), ί^l. Let ψι(x)=h(x) and φt(x)=g(x\ For *=1, 2 define one-

sided Levy processes {X^} with the distribution μp such that

Then we find from (H.2) that the process {^fί(1)} is of class L and hence
unimodal by Wolfe [12], and that μi*> is strongly unimodal for t^l by
Yamazato's theorem [15]. Hence μt=μ?'>*μP is unimodal for f^>1. The proof
of Theorem 1.1 is complete.
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