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SUFFICIENT CONDITIONS FOR UNIMODALITY
OF NON-SYMMETRIC LEVY PROCESSES

By TOSHIRO WATANABE

1. Introduction and results.

A measure g on R! is said to be unimodal with mode a if p(dx)=cd.(dx)
+ f(x)dx, where ¢=0, §, is the delta measure at a, f(x) is non-decreasing for
x<a and non-increasing for x>a. A probability measure ¢ on R' is said to
be strongly unimodal if, for every unimodal probability measure 7, the con-
volution gy is unimodal. Let {X,} (¢=0) be a Lévy process on R*' (that is a
process with stationary independent increments starting at the origin). The
process {X.} is said to be of class L if the distribution g, of X, is of class
L for every t>0 (equivalently, for some t>0). A necessary and sufficient
condition for an infinitely divisible distribution g¢ with Lévy measure v to be
of class L is that |x|u(dx) is unimodal with mode 0. The process {X,} is
said to be unimodal if the distribution g, is unimodal for every :>0. Medgyessy
[1] and Wolfe [13] show that symmetric Lévy processes are unimodal if and
only if their Lévy measures are unimodal with mode 0. Yamazato [14] proves
that every process of class L is unimodal. Watanabe [8] shows that there
exist unimodal non-symmetric Lévy processes that are not of class L. Also,
Watanabe [10] gives a necessary and sufficient condition for unimodality of
one-sided Lévy processes by using zeros of some polynomials. However it has
not been successful to find a necessary and sufficient condition in terms of their
Lévy measures. Other results on the unimodality of Lévy processes are obtained
by Sato [2, 3], Sato-Yamazato [4], Steutel-van Harn [6], Watanabe [9, 11],
Wolfe [12], and Yamazato [15]. The purpose of this paper is to improve the
previous paper [8] and to give sufficient conditions for unimodality of non-
symmetric Lévy processes that are not of class L, in terms of their Lévy
measures. To describe our results, we need to introduce some notations.

From now on, let n be a positive integer,

0=bo<al<b1<az<b2< <an<bn<an+1§oo ,

and let k(x) be a function on (0, o) such that 2(0+)<<oo, k(x)>0 on (0, a,4i),
B(x)=0 on [@ns+;, ), k(x) is non-increasing on [bn, Gn.1] (0Sm<n), non-
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decreasing and concave on (an, b,) (1=<m<n), and g:(1+x)"k(x)dx<oo. Let

E= ﬂQl(am, bn). Let

(L.1) dn=k(an—)—k(an+)>0,
en=k(bn—)—k(bu+)>0,
hn=k(bn—)—k(an+)>0,
On=hk*an+)<oo,

for 1<m<n, and

K(x ):S:(/e<0+)— Ru))u du< o

for 0<x< oo, where k*(x) is the Radon-Nikodym derivative of k(x) on FE.
Our results are as follows.

THEOREM 1.1. Let {X.} be a one-sided Lévy process without drift such that

(1.2) E exp(—zX:)=exp(td(z)),
(p(z):S:(e“”—l)x"k(x)dx

for z=0. Then {X,} is unimodal if the following additional conditions are
satisfied :
(H.1) k(O0+)=2.
(H.2) k(x)=g(x)+h(x), where g(x) and h(x) are nonnegative on (0, o),
g(0+)=1, the set {x:g(x)>0} is an interval, log g(x) is concave on
this interval, and h(x) is non-increasing on (0, o).
(H.3) There exists a real number a snch that 0<a<a,, and, for every m
(1<m=<n),
(Hga) a(em_hm)gem(bm"am)x
(H.3.b) (k(a—)—K(a))dn>k(a—)hn,
(H3.c) (kla=)—kbn—)dn=0n(k(a—)an+ak(bn—)).

Remark 1.1. Assume that
(H.4) logk(x) is concave on (B, a,+) for some B satisfying b,<B<an.:.

In this case, we can define a function g(x) on (0, ) such that g(x) is
absolutely continuous on (0, @,,,) and

g*(x)= sup k*(y), for 0<x<b.,
rsyeE

if ,B<an+1’
gx)=k(B+), for b,<x=p,
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=k(x), for B<x<oo,
if ﬁ=an+h
g(x)=k(B—) for b,<x<8B,

g(x)=0 for x>,

where k*(y) and g*(x) are the Radon-Nikodym derivatives of k(y) and g(x),
respectively. Then (H.2) is satisfied for this g(x) if g(0+)=1.

Remark 1.2. 1t should be noted that g(x) in (H.2) is positive and non-
decreasing on (0, b,). Hence k(x)=g(x)=g(0+)=1 for 0<x<b, and d.=<k(0+)
—g(0+)=1 for 1=m<n by (H.1) and (H.2). Also we note that, for every
m (1=m<n), a>bn—an, en>hn, and dn>h, by (H.3.2) and (H.3.b).

Combining the above theorem with Corollary 1.2 of Watanabe [11], we
obtain the following result.

COROLLARY 1.1. Let R™(x) and k®(x) be two functions satisfying the
conditions for k(x) and let {X*} and {X{®} be independent unimodal one-sided
Lévy processes in Theorem 1.1 associated with kP(x) and k®(x), respectively.
Let a, b, 0 be nonnegative, y=R*, and {B(t)} be a Brownian motion independent
of {X{V} and {X®}. Then the process X,=XR—X$ +aB@t)+7rt is unimodal.

In order to prove Theorem 1.1, we show in Section 2 integro-differential
equations and fundamental inequalities satisfied by the density function of the
process. In Section 3 we prove Theorem 1.1.

2. Preliminaries.

In this section, let {X,} be a one-sided Lévy process satisfying (1.2) with
k(x) described in the paragraph preceding Theorem 1.1.

Assume that
(S.1) k(x) is a step function on [bn, any ] for 0=<m=<n.
(8.2) bpn—an=a<a,, eén>hn, and dp>h, for 1I<m<n.

Remark 2.1. The condition (S.2) implies that k(u)=k(an—) for 0<u<an
for 1<m<n.

Let {c,: 0<7<N+1} be the union of {b,:0=7<n}, {a,:1=7=<n+1} and
the set of jumping points of k(x) in (bm, @m41) for 0<m<n. They are num-
bered so that

0=co<1<0< - <y <CN=ans1SCN 1 =00,
Let ¢jemy=am and Cjmy+1=bn for 1<m=<n. Define

Ji=1{7: 0<7<N and j+#j(m) for 1<m<n}
and
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J:={j:1=j=N and j+#j(m), j(m)+1 for 1Ism=n}.

Define p,=k(c;—)—k(c;+) for j=J,, understanding py=0 if cy=c0 and py>0
if cy<co. Define p,=0 for j=J5. The distribution p, of X, is absolutely

continuous for every t>0 by Tucker [7], since S:u"k(u)du———oo. Let f(x) be
the density function of g,. We do not write dependence of f(x) on ¢ explicitely.
LEMMA 2.1. For t>0, we have
]

@.1) xf(x):ts Flx—u)k(u)du
N
:tlF(x)-—tj};_‘{ piF(x—c,)
+ 3 {—de(x—am)—emF(x—bm)+gE Flx—u)k*wdu}

for x+0, where A=k(04), F(x)=g fuw)du, and E=(an, bn) for 1Sm<n.

xr
-0

Proof. The identity (2.1) follows from Steutel [5] and integration by
parts.

Remark 2.2. We see from (2.1) that f(x)=0 for x<0, f(x)>0 for x>0,
and f(x) is continuous for x>0.

LEMMA 2.2. For t>0, we have

(22)  xf(0)=(=Df(x)—t 3 p,f(x—c)

+t 3 {—dnfr—am—enf(x—ba+_ fGx—u)br(u)du}
for x+c, (0<7<N).

Proof. Since f(x) is continuous for x>0, F(x—c,) is differentiable for
x+#c, Because f(x) is integrable on (—oo, ) and k*¥(u)<0n<co on E,,

SE f(x—u)k*(u)du is continuous in x. We get
m

2.3) —51—§ F(x—wk*u)du=li hSd [, ro—wrrand
. a% ) u u)du=lim . yEm y—u u)du

=§E F(x—u)k*(u)du

for —co<x<oo for 1<m=<n. Hence, differentiating (2.1), we obtain (2.2).
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LEMMA 2.3. For t>0, we have

(2.4) fx)=Cx*t,

(2.5) f(x)=Cat—1)x*t-2,

and

(2.6) f7(x)=C(At—1)At—2)x? ¢

for 0<x<c,, where C is a positive constant which depends on t.

Proof. The identity (2.2) means
2.7 F(x)=@At—=1Df(x)
for 0<x<¢,. Hence we obtain (2.4), which implies (2.5) and (2.6).

Remark 2.3. We find from (2.2), (2.4), and Remark 2.2 that, for ¢>0,
f’(x) is continuous except at x=c, (0<7<N). Moreover, for t>21"!, f(x) is
continuous on (—oo, o) and f’(x) is continuous on (0, o).

LEMMA 2.4. For t>217%, we have

(28) 2" ()=RAt=2)f ()=t 3 p.f (x—c)

+t mé {—dmf’(x—am)—emf'(x—bm)-}-sE f'(x—u)k*(u)du}
for x#c¢, (OLj<N).

Proof. Since f'(x) is integrable on (0, M) for any M >0, SE flx—u)k*(u)du
is differentiable on (—oo, o) for every m (1=<m<n) as in (2.3). Hence,
differentiating (2.2), we get (2.8).

LEMMA 2.5. Let t>0 and x+#c, (O<X/<N). Suppose that f(u) is non-
increasing for 0<u<x.

(i) If erc=( ,}2 Em)°, then

2.9) 2 f(x)S(h(x—0—1Df(x).
(ii) If x€E, for some q (1=q<n), then
(2.10) x ()< f(x){th(aqt)—1+0,(b;—tagk(as+)k(a+)"} .

Proof. We have
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(2.11) f(x—e)2f(x)

for ¢;<x and

bm<lz

(2.12) 3 [, fa—wrdus 3 fx—buhn.
Ep bm<lz
Hence, if x<E°, then we obtain from (S.2) and (2.2) that
(2.13) 2 f'(x)={At—1—t ; pi—t Z<1 dunt f(x)
cj<z am<z

—t 2 (em_'hm)f(x—bm)
bp<x

S(k(x—x—1f(x),
noting that
A= 3 pi— 2 du— 2 (en—hn)=k(x—).
cj<x ap<lz bp<z

Similarly we get

(2.14) xf'(x)é(k(aq-i-)t—l)f(x)Jrl‘SE Flx—uw)k*(u)du
for xeE,. We have, for xcE,,
(2.15) S f(x——u)k*(u)du_géqu—aqf(u)du.
Eq 0
We obtain from (2.1) and Remark 2.1 that
(2.16) x f(x):tS: Flx—u)k(u)du
gtk(aq+)S:f(u)du

T -
0

ztk(aq-l—)g ) dutth(agt)anf(x)

for xE,, which implies that
0

2.17) (bq——ta.,k(aq+))f(x)>tk(aq+)g aqf(u)du.
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Hence (2.10) follows from (2.14), (2.15), and (2.17). Thus we have proved

Lemma 2.5.

LEMMA 2.6. Let At>1. Suppose that f(u) is non-decreasing for 0<u<x

and non-increasing for x<u<y.
(1) If co=x<cgqs1 for some Q (0SQ=N), then

(2.18) xf'(x)z(k(cq+t—1)f(x).
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(1) If a,=x<b,y for some q (1=q=<n) and y<a,+a, then

(2.19) Y NSR((y—x)+N—Df()—t((y—x)+)—k(bg—Nf(y—a,).
Proof of (i). We have

(2.20) fx—c)=f(x)

for ¢,<x and
(2.21) 3 [, fa—wkaduz 2 f(x—bu)hn.
bpsxTJEp bpsz
Hence we obtain from (S.2) and (2.2) that
(2.22) xf'(x)g(xt—1—t S pi—t S dm)f(x)—t S (emn—hn)f(x—bn)
cjsz amsz bpsz

2(k(cq+)—1f(x),

noting that A— 2;, bi— Es dm—-bzs (em—hmn)=k(co+). Thus we have proved
(i). ! " "

Proof of (ii). Let R be such that y—cp,<x<y—cg with 0SR<j(1). As
in the proof of (i), we get

(2.23) fy—c)z=f(¥)
for 0<;<R and
(2.24) fy—clz=f(y—ay)

for R+1<7<7(9). We have
(2.25) [, fo—wr@dusfo—amha

for 1=m<n, noting that y—an<a,<x for 1<m<n. Hence we obtain from
(S.2) and (2.2) that

@25  3rOs{(i-2e)-1o—t( 3 S en)fr—ar

=R+1
—t Wél(dm—hm)f<y—am)
SR —)HA =D f ) —t(k(y— 2)+)— k(b= f(y—ag),

i@ -
noting that FZH bt :glem-i- 33 (dn—hm)=((y—x)+)—k(b;—) and A~ é py=

k((y—x)+). Thus we have proved Lemma 2.6.
When 1<1t<2, define
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2.27) S={x: x>0 and f attains local maximum at x},
(2.28) T={x:x>0, x#¢, (0L7<N), and f"(x)=0},
and

(2.29) infS=s, and infT=y.

Obviously the set S is non-empty. The set T is also non-empty, because the
support of y, is unbounded. We find from (2.5) and (2.6) that

(2.30) sp>c, and y=¢,.
LEMMA 2.7. Let 1<At<2 and, in addition to (S.1) and (S.2), suppose (H.3.c).
Then we have

(2.31) yzSo.

Proof. Suppose that y<s,., We shall consider three possible cases and
show that absurdity occurs in each case.

Case 1. y<s, and y=cq (1ZQ=N). There exists a sequence y; such
that y<y.<so, f"(¥:)=0, and y,—7y as k—oo. Since f(¥,—u)=0 for 0<u<y,,
we get

(2.3 [, FOr =0k U S (7 am) = F(—bm)

for 1I<m=<n. Since, as k—co, f'(y4)—/f"(3)20,
f's—c)—> f/(y—c)>0  for 1<7<Q—1, f'(¥s—ce)—f'(0+)=c0,
f'e—c) —> f'(0—cp=0 for jzQ+1, and f(¥r—c)—f(y—c,)
for 0<7<N, we obtain from (2.8) and (2.32) that

(2.33) 0§ykf”(yk)é(it—-2)f’(yh)—tg“{ b, (ve—c,)

+t 3 {—dn /" (9x—am)—en [ (Ts—bu)+n(f(—an)— F(7s—ba))}

as k—oo, This is a contradiction.
Case 2. y<so and cq<y<cgs: With QeJ,. Since f'(»)=0, f'(y—c;)>0
for 1=7<0Q, and f'(y—u)<f'(y—bn) for ucE, (j(m)<Q), we have by (2.8)
Q
(2.34) 0§yf”(y)§(/1t-~2)f’(y)—tEl p.f(y—cp)
+t 5 A—daf'(y—an)—(en—hm)f'(y—bn)} <0.

2(mHKQ
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This is a contradiction.
Case 3. y<s, and @, <y<b, (1=¢=<n). We shall first prove that

(2.35) dof"(y—ag)>0f(y—a,).
We get by (i) of Lemma 2.6 that
(2.36) af'(y—apz=(y—a)f'(y—ay)

z(k(y—ap)+x—Df(y—ay)
2(k(a—)—1)f(y—a,),

noting that y—a,<a<a, by (S5.2). We obtain from (ii) of Lemma 2.6 with
y=x and from f(y)<f(y—ay)+f'(y—az)a, that

(2.37) 0=y f'(M=S@t=1)f(y)—t(A—k(bg—)f (¥ —aq)
S(thb—)—Df(y—a)+@At—1f"(y—agag,

and hence

(2.38) (—th(by—)+1)f(y—a)<f'(y—aga,,

noting that At—1<1. The identity (2.36) shows that (2.35) holds for t>T, and
the identity (2.38) implies that (2.35) holds for ¢t<T,, where

Ti=d7'k(a—)""(0,a+d,)
and
To=d7 k(by—)"(dg—0,a,).

Hence it is sufficient for (2.35) that T,=T,, which follows from (H.3.c). In
fact, we have by (H.3.c)

2.39)  T.—T,
=d7 k(bg—) " h(a—) " {(k(a—)—k(by—))d— 0 ak(a—)+ak(b,—))}
>0.

Since SE FO—w)k*(w)du <8,/ (y—a,) and SE FO— )k u)du< hmf (y—by) for
q m

1€m<qg—1, we obtain from (2.8) and (2.35) that

J¢

(2.40) 0=y/"(y)=@t-2)f"(y)—t Zq}: b,f'(y—cy)

+ S = dnf (= an)=(en—hn)f (y=ba)}

—t{dof'(y—ag)—0.f (y—ay)} <0.
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This is a contradiction. Thus we have proved Lemma 2.7.

3. Proof of Theorem 1.1.

Let {X;} be a one-sided Lévy process satisfying (1.2). Let g, be the dis-
tribution of X,.

PROPOSITION 3.1. Let At<1. Suppose (S.2) and that, for every m (1Sm<n),
(S.3.a) k(an+)=0nan,
(8.3.b) klan+)A—k(an+)Z20n(Abn—Fk(an+)an).

Then p, is unimodal with mode 0.

Proof. We divide the proof into two steps.

First step. Suppose (S.1) and continue to use the notation in Section 2.
The identity (2.5) implies that f'(x)<0 for 0<x<c¢,. We shall prove that
F(x)S0 for 0<x+#c, (IS7<N). Suppose that f'(x,)>0 for some x,+#c,
(ISjEN). Let

x;=inf{x: x>0, x#¢, (1<7<N), and f’'(x)>0}.

Then we note that ¢;<x,<<x,, f'(x,+)=0, and f'(x)<0 for 0<x<x, except at
x=c,(1<7<N). We shall consider three possible cases and show that absurdity

occurs in each case.
Case 1. co<x,<cqgs with 1=Qe/,. We get by (i) of Lemma 2.5 that

(CRY 0=x.f'(x)=S(k(x )t —1f (x)<0,

noting that k(x,)t—1<At—1=£0. This is a contradiction.
Case 2. a,<x,<b, with 1<¢<n. We find from (S.3.a), (5.3.b), and from
t<2A! that
3.2) th(aq+)—140,bs—tazk(as+))k(a+)"
SA k(@) {k(ag+ )X k(agH)— D +0,(Abg—agk(a+)} <0.
We obtain from (3.2) and (ii) of Lemma 2.5 that

3.3 0=x:f'(x)<[f(x1){th(agt+)—1+8q(bg—tack(as+)k(as+)"}

0.

This is a contradiction.

Case 3. x,=cq with 1ZSQ=<N. There exists a sequence y, such that
£1<¥e, f(3£)>0, and v,—x, as k—oco. Hence we can show that contradiction
occurs in this case by argument similar to Case 1. In fact let y,—x,<¢;.
Then we have

(3.4) f(ye—e)=f(x1)
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for ¢, <y, (721) and

(3.5) 2 |, foi—uordus | S For—budhn.

dm<¥i m<Yk

Hence we get, as in the proof of Lemma 2.5, that

(3.6) 0<yef/(YR)=At=1)f (32)—t(A— k(=) f(x1)
if 1£Q</,, and
3.7 0<yef (¥e)=(At—Df(ye)—t(A—k(ag+)f(x1)

+tS f(ye—u)k*(u)du
Eq
if cq=a, with 1<¢g=<n. Letting k—o in (3.6) and (3.7), we have

(3.8) 0=(k(x:+)—1)f(x1)<0.

This is a contradiction.

Second step. We can find a sequence of Lévy processes {X{™} such that
each {X{™} satisfies (S.1), (5.2), (S.3.a), and (S.3.b) and -the distribution u{™
converges weakly to u, as n—co for every ¢>0. Hence g, is unimodal with
mode 0. The proof of Proposition 3.1 is complete.

PROPOSITION 3.2. Let 1<<At<2. Suppose (H.1), (H.2), and (H.3). Then p,
is unimodal.

Proof. We first assume (S.1) and continue to use the notation in Section
2. As in the second step in the proof of Proposition 3.1, we can prove general
case. Let us suppose that p,(dx)=/f(x)dx is not unimodal for some ¢ (1<<At<2).
Then the set S defined in (2.27) contains at least two points and there are
two possible cases:

Case A. s, is an isolated point of S.

Case B. s, is a limit point of S.

In Case A, let s;=s, and

sy=inf{x: x>s, and f attains local minimum at x}.

Then ¢,<s;<s, by (2.30) and we have
(A} f(s)=f"(s)=0,

and
(A.2) f(x) is strictly increasing for 0<x<s; and strictly decreasing for
§;<x < 8.

In Case B, we can choose, for any ¢>0, s, and s, such that ¢;<s,<s;<s,
<Sote, f(s2)<f(sy), and f(x) attains local maximum at x=s, and local minimum
at x=s,. Hence we get
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(B.1) f'(s)=f"(52)=0.
We shall prove that

(a) Existence of s, and s, leads to a contradiction.

This will imply the unimodality of p,.
Consider Case A and let Q and R be such that

B.9)  co=s:1<cqs and s,—Cps1=5,<S;—cp With 1ZQ <N and 0SRZN.

There are two possible cases: Q<R (Case 1) and Q=R (Case 2). We shall
prove that absurdity occurs in each case. Define I(s,)=s,f’(s,) for i=1, 2.
Case 1. Q<R. We obtain from (2.2) and (A.1) that

(3.10) 0=1I(s,)= ,;L Li(s),
where

(3.11) 1,(82)=(Xl‘—l)]‘(sg)—t:Zl Dif(sa—c,)—t 0 dnf(ss—an)

J(mys

+t1(1§<q {—e"‘f(sr—bm)""gl,mf(sz—‘u)k*(u)du}» ,

(3.12) 12(52):'_‘t E‘ pjf(Sg‘—Cj)'—t 2 dmf(SZ—‘am)

)=Q+1 Q<y(MHIKR

ot Amenfsimbu+ | flemuradu},
(3.13) Iis0)=—td,f (s a,)—te fsi—b)+1]_ fls:—wk*(u)du

if R=j(r) (1Zr<n) (Is(sy)=0 if R<J,), and

B Liso=—t 3 p,f(s—c)

+t B {—dnf(si=an)—enf(s—ba)+ |, flsi—wk*w)duf.

R<Lj(m)

We shall prove that

(3.15) 0=1(s))=(k(co+Xt—1)f(s1)
and
(3.16) 0=1I(s2)<(k(co+X—1)f(s2),

which will lead to a contradiction. The inequality (3.15) follows from (2.18)
in Lemma 2.6. By argument similar to (2.9), we get
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3.17) Li(s)<(k(co+Xt—1)f(s2).
Since f(s,—u)<f(s;—by) for ucE,, (j(m)<R), we have

(3.18) (DS~ 3 pif(si—cp—t, 3 dnf(si—an)

J=Q+1 Q<f(

—t 2 (em—hm)f(sz—bm)éoo

Qsy(mIKR

We shall show that, if R=/(r) (1<r<n), then
(3.19) 14(52)=<0.

There are two cases.
(i) Suppose that s;,—a,.=a. Then we get by (H.3.a) that

(3.20) Sihr—e (ss—b,)<(se—a,)h,—e.(s;—b,)
=(ss—a,)h,—e.)+e.(b,—a;)
Za(h.—e.)+e (br—a,)=0

and s,—b,>0. We have f(s,)/si<f(ss—b,)/(s:—b,) by Lemma 2.7. Hence

(3.21) SE f(Sg—u)k*(u)du—‘erf(sz“‘br)<f(sl)hr—erf(sz—br)

f(SZ b ){ 1hr_er(s2—br)} §0

by (3.20). Therefore, (3.19) follows from (3.13) in this case.
(ii) Suppose that s,—a,<a. Then we note that s,<s,—a,<a<a;<Ss,.
Hence we have by (A.2)

(3.22) f(se—a.)>f(a).
It follows from (2.2) that
(3.23) 2 f'()zZAt=1)f(x)+tf(s)(k(x—)—A)

>tf(s)(k(x—)—2)

for s;<x<a. Hence we have

(3.24) F(s)=F@<tf(s)| A= k(x—Ndx,
equivalently,
(3.25) f@>A—tK(@)f(sy).

We obtain from (3.22), (3.25), and (H.3.b) that
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(3.26) SE F(Sa—)k*(w)du—d » f (53— )< f(sDhr—d 1 f()

<f(s){h,—(1—k(a—)"K(a)d } =0,

noting that t<k(ce+)'Sk(a)* from (3.15) and from co<a<a,. Therefore,
(3.19) follows from (3.13) and (3.26) in this case. Thus we have proved (3.19).
Since f(s;—u)<f(ss—an) for ucE, (j(m)>R), we find

(3.27) Mz(m){Lm F(sa—)k*(uw)du—dn f(sg—am)}
§R<§m)(hm_dm>f(sz_ am)go »

which shows

(3.28) L(s2)<0.

Hence (3.16) follows from (3.17), (3.18), (3.19), and (3.28). Thus the proof of
the assertion (a) in Case 1 is complete.
Case 2. R=ZQ. We obtain from (2.2) and (A.1) that, for /=1, 2.

(3.29) 0=I(s)= 3 L(s),
where
(3.30) Il(sz)=(/l7f-l)f(s,)—z‘;ﬁl p,f(si——c,)-—tj(gﬂdmf(si—am)
t 3 fmenslomba 4| flsmwrrdul,

@3)  s)=t], fsi—wkrdu—te f(si—b.)
if R=j(?) (1§7’§n) (12(S,)=0 if Re J)),
(332 L(s)=—t 3} pif(si—c)

tD J- e Gimam—enflo b+ flsimwkraodu},

(3.33) 14(sz)=tSE f(si—w)kXu)du—td,f(si—ag)—tegf(si—by)

if R<Q=j(g) 1=9=n) (I(s.)=0 if Q&J, or R=Q),
N

(8.34) Ii(s))=—t X2 pif(si—cy)

J=Q+1

+t X Q{’_dmf(si_am)_emf(si—bm)+SEmf(si_u)k*(u)du}.

J(mHy>
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We shall prove that

(3.35) Li(s)z(k(cr+)t—1)f(s1),
(3.36) Ii(s2)S(k(cr+)—1)f(se)

(equality holds if and only if R=0),
(3.37) Iy(s5)<0 if R=j(r) 1=r<n),
(3.38) In(s))<Ip(s)) if R=j(r) 1sr=n),
(3.39) Iy(s2)=0,
(3.40) Iy(se)=1Iy(s1),
(3.41) I(s))<0 if R<Q=j(q) (1=g¢=n),
(3.42) 1(s:)S1(s))  if R<Q=j(g) (1=¢=n),
(3.43) Iy(s1)=0,
and
(3.44) 15(s2)=0.

These inequalities lead to a contradiction. In fact, we obtain from (3.36),
(3.37), (3.39), (3.41), and (3.44) that

(3.45) 0=1(s:)<1,(s5)<(tk(cr+)—1)f(s2)
if R=1. Hence we have
(3.46) tk(cg+)—1>0.

Note that this holds even for R=0. We find from (A.2), (3.35), (3.36), (3.38),
(3.40), (3.42), (3.43), (3.44), and (3.46) that

(3.47) 0=1I(s)<(th(cr+)—D)f(s2)+Ta(s)+Is(s2)4-14(s2)
<@k(cr+)—Df(s)+1a(s)+1s(s1)+14(s1)
<I(s)=0.

This is a contradiction.

Now we prove the inequalities (3.35)-(3.44). We can prove (3.35) as in
(2.18) of Lemma 2.6 and (3.36) as in (2.9) of Lemma 2.5. Also the proof of
(2.9) shows that equality in (3.36) holds if and only if R=0, because f(x) is
strictly decreasing for s,<x<s, by (A.2). We can prove (3.37) as in (3.21).
To prove (3.38), we consider two possible cases.

(i) Suppose that Q>R=j(r) (1<r<n). Lemma 2.7 implies that
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f(se—w)=f(si—u)<f(ss—b:)—f(s:—b;)
for s,—s;<u<b, and
f(se—u)—f(si—wW= f(s)—f(s1—u)=<f(s2—b,)—[(s1—b>)
for a,<u<s,—s,. Hence, noting ¢,.>h, we have that

(3.48) I5(s2)—1(5,)<0,

which means (3.38).
(ii) Suppose that Q=R=j(r) (1<r<n). Then we note that Iy(s,)=
tSE f(si—u)k*(u)du=0. Therefore, (3.38) follows from (3.37). Thus we have

proved (3.38).
Since f(s;—u)<f(ss—an) for ucE, (R<j(m)<Q), we get

(3.49) I(s)S—t 3 pif(si—c)

=t 25 Aldn—hn)f(se—an)+enf(s2—bmn)} =0,

R<j(m)<Q

which implies (3.39). Since
f(sa—u)—f(s1—u)<[f(s2—bm)—f(s1—bm)
for ucE, (R<j(m)<Q) by Lemma 2.7, we have

(3.50) [, flomwrradu—enf(si—bn)

<SE F(s1—1)E*)d s —em f(51—bm)

for R<j(m)<Q as in (3.48). Hence (3.40) follows from f(s,—¢,)>f(s:—c,) for
R+1=57=0Q. If R<Q=j(¢q) (1=g=n), then

(3.51) 14(52)§t(hq’_dq)f(52—aq)—teqf(sz—bq)<0 ’

because f(s;—u)<f(s;—a,) for uE,. Thus we have proved (3.41). To prove
(3.42), we consider two possible cases.
(i) Suppose that s,—a,=a. We get as in (3.21) that

352)  {, fsrmwkrwdu—eof (s:—b) < f(s1=a)ho—eaf (s1=b0)

< TS o~ (siboed S LEfath e+ by aged

IA

0.
Hence (3.42) follows from f(s;—b,)=0 and from f(s;—aq)>f(s:—ay).
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(ii) Suppose that a>s,—a, Define
(3.53) G:Squ(sz—u)k*(u)du——Squ(sl—u)k*(u)du .

We shall show that
(3.54) Géaq(sz—sx)f(sz—aq)-

We can write G as
(3.55) G=SD f(u)k*(sg—u)du—gb f)k*(s,—u)du,

where D,=(s;—bq, s:—a,) and D,=(0, s;—a,). If s,—b,<s,—a, then, by con-
cavity of k(u) on E,, k*(s;—u)<k*(s;—u) for s,—b,<u<s,—a, and hence, by
(3.55),

(3.56) G=( | fukH(si—wduosi—s)f(si—ay),
where Dy=(s;—aq, S2—aq). If s;—b,>s,—a,, then by (3.55),

(3.57) cggn Fu)r¥(sa—u)du <8(bg—a)f (ss—ay)

<LO(Sa—s1)f(s2—ay).

Thus we have proved (3.54). We can show d,f'(s;—aq)>0,f(ss—a,) as in (2.35)
of the proof of Lemma 2.7, using (ii) of Lemma 2.6 with s;=x and s,=}.
Hence we obtain from (3.54) and Lemma 2.7 that

(3.58) 14(31)_]4(32)§tdq(f(32—aq)“f(sl"‘aq))“—tG
>1(se—$1)(dof '(S2—ag)—0of (52— ag))>0,

which means (3.42). The proof of (3.42) is complete.

The inequality (3.44) can be proved as in (3.28). This finishes the proof of
(3.35)-(3.44). Thus the assertion (a) is established in Case A.

In Case B, we can prove the assertion (a) more simply. In fact, we can
find s, and s, such that 0<s,—so<¢; and ¢=s5,<5:<5:<Cs1 With 1ZQ=ZN.
For /=1, 2, we obtain from (2.2) and (B.1) that

(3.59) 0=S,fl(st)=11(81)+12(81),

where

(3.60) Ix(sz)=(2t—1)f($1)—t;§=31 pif(si—es)

+t 3 {—dnf(si—am—enf(si—ba)t|, flsi—urradu},

Jmi<Q
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and
(3.61) Iz(sl)ztSqu(sl——u)k*(u)du—tdqf(si—aq)
if Q=j(g) (1=<g=<n) (I(s,)=0 if Q=/,). Since
0<f(se—u)—f(si—w)<f(sa—bm)— f(s1—bm)

for ueE, (j(im)<Q) by Lemma 2.7, we have

(3.62) [, Fsi—wkrwdu—enf(si—bn)

<(, fsi—wrrdu—enf(si—bn

for j(m)<Q as in (3.48). Since f(s;)=f(s;)and f(s,—c;)>f(si—c,) for 1750,
we get by (3.62) that

(3.63) Ii(s))>1y(ss).

If Q=j(g) (1£9<n), then, choosing s, and s, sufficiently close to s,, we have

(3.64) Iy(s1)=14(s2)
as in (3.42). Hence we obtain from (3.63) and (3.64) that
(3.65) 0=1Iy(s1)+1a(51)> 1 1(s2)+15(s2)=0.

This is a contradiction. Thus the assertion (a) is true in Case B and the proof
of Proposition 3.2 is complete.

Proof of Theorem 1.1. We divide the proof into three cases.

Case (I). 0<¢t<a'. We find from Proposition 3.1 that g, is unimodal
with mode 0, since (S.3.a) and (S.3.b) follow from (H.1), (H.2), and (H.3). In
fact, we note by Remark 1.2 that k(a,+)=1=d, for 1<m=<n. Hence, (S.3.a)
is true by (H.3.c). We obtain from (S.3.a) and from A'<k(a—)"' that

(3.66) k(am+)A—k(an+))—0n(Abn—k(ant)an)
22{Z_lk(am'*')(amam"‘k(am+))+k(am+)—5mbm}
=2 k(a—)"{k(an+)k(a—)—k(an+))—0n(k(a—)bn—k(ant)an)}

for 1<m<n. We note by (H.1) and Remark 1.2 that, for 1=<m=<n, 2=k(a—)
=k(an+)=1=d, and hence

(3.67) k(am+)k(a—)—k(an+))Zdn(k(a—)—k(bn—))

and



100 TOSHIRO WATANABE
(3.68) kla—)an+ak(bn—)—(kla=—)bn—k(an+)an)
Za(—k(a—)+2k(an+))=0.

Now (S.3.b) follows from (3.66), (3.67), (3.68), and (H.3.c).

Case (II). A'<t<1. Proposition 3.2 shows the unimodality of g, in this
case, because 1247t by (H.1).

Case (III). t=1. Let ¢(x)=h(x) and ¢(x)=g(x). For i=1, 2 define one-
sided Lévy processes {X{®} with the distribution p{* such that

E exp(—zX {?)=exp(t ¢«(2)),
gbi(z):S:(e“”—l)x"qh(x)dx.

Then we find from (H.2) that the process {X{} is of class L and hence
unimodal by Wolfe [12], and that p® is strongly unimodal for t=1 by
Yamazato’s theorem [15]. Hence g,=p{ *p® is unimodal for t=1. The proof
of Theorem 1.1 is complete.
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