INNER RADII OF TEICHMÜLLER SPACES OF FINITELY GENERATED FUCHSIAN GROUPS

BY HIRO-O YAMAMOTO

1. Introduction

Let Γ be a Fuchsian group keeping the lower half plane L invariant. The Teichmüller space $T(\Gamma)$ of Γ is a bounded domain of the Banach space $B(L, \Gamma)$ of bounded quadratic differentials for Γ. The inner radius $i(\Gamma)$ of $T(\Gamma)$ is the radius of the maximal ball in $B(L, \Gamma)$ centered at the origin which is included in $T(\Gamma)$. If $T(\Gamma)$ is not a single point, then by a theorem of Ahlfors-Weill [3] it holds that $i(\Gamma) \geq 2$. In particular, if Γ is finitely generated of the first kind and if $T(\Gamma)$ is not a single point, then the strict inequality $i(\Gamma) > 2$ holds (cf. [10]). Denote by $I(\Gamma) = \inf \{i(WGW^{-1})\}$, where the infimum is taken over for all quasiconformal automorphisms W of the upper half plane compatible with Γ. Recently T. Nakanishi [10] proved the following.

THEOREM 1 (T. Nakanishi). Let Γ be a finitely generated Fuchsian group of the first kind such that $T(\Gamma)$ is not a single point. Then $I(\Gamma)$ is equal to 2.

The purpose of this note is to prove the following generalization to Theorem 1.

THEOREM 2. Let Γ be a finitely generated Fuchsian group such that $T(\Gamma)$ is not a single point. Then $I(\Gamma)$ is equal to 2.

The proof of Theorem 2 is immediate from Theorem 1 and the following.

THEOREM 3. Let Γ be a finitely generated Fuchsian group of the second kind. Then $i(\Gamma)$ is equal to 2.

A careful reading of the proof of Theorem 3 shows the readers an alternative proof of Theorem 1, though we omit it. Our proof of Theorem 3 depends on results on B-groups [1], [4] and Koebe groups [9].

The author expresses his hearty thanks to the referee and Professor H. Sekigawa for their pointing out a lot of errors in the original manuscript of this note.

Received September 13, 1990; revised December 21, 1990.
2. Preliminaries

2.1. Let $PSL(2, C)$ be the group of all conformal automorphisms of the extended complex plane $C \cup \{\infty\}$. Denote by $PSL(2, R)$ the subgroup of $PSL(2, C)$ which consists of all conformal automorphisms of the upper half plane $U=\{z; \text{Im} z>0\}$. A Fuchsian group is a discrete subgroup of $PSL(2, R)$. A Fuchsian group is of the first kind (resp. the second kind) if it acts discontinuously at no point (resp. some point) of the real axis.

2.2. We define a hyperbolic metric $\rho_{U}(z)|dz|$ in U as $(2\text{Im} z)^{-1}|dz|$. Let f be a holomorphic function of U onto a domain $D\subset \mathbb{C}$ with more than two boundary points. Then the hyperbolic metric $\rho_{D}(z)|dz|$ is defined by $\rho_{D}(f(z))|f'(z)|=\rho_{U}(z)$. Assume moreover that D is a connected and simply connected domain of \mathbb{C}. Then $(4X(z))^{-1}\leq \rho_{\mathbb{C}}(z)$, where $X(z)$ is the Euclidean distance between a point z of D and the boundary of D. In particular, if $D=\{z; |\text{Im} z|<\pi/2\}$, then $1/(2\pi)\leq \rho_{D}(z)$. If $D,\subset D_{a}$, then by Schwarz's lemma we see that $\rho_{D_{1}}(z)\leq \rho_{D_{2}}(z)$ [5; p. 45].

2.3. A holomorphic function $\phi(z)$ in the lower half plane $L=\{z; \text{Im} z<0\}$ is a bounded quadratic differential for a Fuchsian group Γ if

$$\|\phi\| = \sup_{z\in L} \rho_{L}(z)^{-1}|\phi(z)| < \infty$$

and

$$\phi(\gamma(z))\gamma'(z)\phi(z)$$

for all $\gamma \in \Gamma$ and all $z \in L$.

The space $B(L, \Gamma)$ of all bounded quadratic differentials for Γ can be regarded as a Banach space with the norm $\|\|$ defined above.

2.4. An element γ of Γ is primitive if $j^{n}=\gamma$ has no solution in Γ for $n \neq \pm 1$. The following lemma is well known but the author has never seen what is stated in this form.

Lemma 1. Let Γ be a Fuchsian group keeping the upper half plane invariant which contains a primitive parabolic element $p(z) = z + 1$. Then for each $\phi \in B(L, \Gamma)$ it holds that

$$\sup_{|\text{Im} z| < 1} \rho_{L}(z)^{-1}|\phi(z)| = \sup_{|\text{Im} z| < 1} \rho_{L}(z)^{-1}|\phi(z)|.$$

Proof. Recall that $\phi(z)$ has a Fourier expansion $\sum_{n=-1}^{\infty} \exp(-2\pi inz)$ [5; p. 111]. Note that

$$4y^{4}|\phi(z)| = 4y^{4}\exp(2\pi y)|\sum_{n=1}^{\infty} \exp(-2\pi i(n-1)z)|,$$

where $y=\text{Im} z$. Then by the principle of the maximal absolute value and $d(y^{4}\exp 2\pi y)/dy \geq 0$ for $y \leq -1/\pi$, we have the desired conclusion. \qed

2.5. Let $Q(\Gamma')$ be the set of all conformal homeomorphisms f of L admitting quasiconformal extensions \hat{f} to the extended complex plane which are
compatible with Γ, that is, $f\Gamma f^{-1}\subset PSL(2, C)$. For each $f\in Q(\Gamma)$, its Schwarzian derivative $[f]=(f''/f')-(f''/f')/2$ belongs to $B(L, \Gamma)$. The Teichmüller space $T(\Gamma)$ of Γ is the image of $Q(\Gamma)$ under the mapping $f\rightarrow [f]$. The inner radius $i(\Gamma)$ of $T(\Gamma)$ is $\inf_{\phi\in L, n-\tau cn}\phi l$. If $g\in PSL(2, \mathbb{C})$, then $[s, / sJ=(l\Omega°gi)gi'$ and $||[s, / sJ||=||\phi||$. In particular, if $g\in PSL(2, \mathbb{R})$, then $f\circ g\circ f^{-1}=Q(g\Gamma g^{-1})$ and $i(g\Gamma g^{-1})=i(\Gamma)$.

2.6. A component of the region of discontinuity of a Kleinian group G is called a component of G. An invariant component of G is a component of G which is invariant under G. A Kleinian group G is a B-group if G has exactly one simply connected invariant component. An Euclidean disc (including a half plane) D is a horodisc of a primitive parabolic element g of G if $j(D)=D$ for each $f\in\langle g\rangle$, the cyclic group generated by g and $j(D)\cap D=\emptyset$ for each $f\in G-\langle g\rangle$. A B-group G is regular if for each primitive parabolic element g of G there exist two mutually disjoint horodiscs of g (Abikoff [1]). A regular B-group is a Koebe group if each noninvariant component of G is an Euclidean disc. Note that our definition of a Koebe group is stronger than Maskit’s original one [9].

3. Proof of theorem 3

3.1. Let Γ be a finitely generated Fuchsian group of the second kind such that L/Γ is a compact Riemann surface with finitely many points and $m\geq 1$ discs removed. Then classical is the existence of a hyperbolically convex fundamental region ω for Γ in L satisfying the following: There exist $2m$ sides S_1, \ldots, S_{2m} of ω consisting of hyperbolic half lines and primitive hyperbolic elements a_1, \ldots, a_m of Γ such that $a_1(S_1)=S_{k+1}$ and such that a component of $R\cup\{\infty\}$ minus the fixed points of a_k is included in the region of discontinuity of Γ, $k=1, \ldots, m$.

Let E_k be the geodesic included in ω tangent to S_k and S_{k+1}, $k=2, \ldots, m$. Let H_k, H_k' and $E_{1, n}$ be geodesics included in ω such that $S_k, H_k, E_{1, n}, H_k'$ and S_{k+1} lie in this order and such that the hyperbolically convex domain ω_n surrounded by all sides of ω together with $H_k, E_{1, n}, H_k'$ and E_k, \ldots, E_m is of a finite hyperbolic area. Let $\varepsilon_k\in PSL(2, \mathbb{R})$ (resp. $\varepsilon_k\in PSL(2, \mathbb{C})$) be an elliptic transformation of order 2 keeping E_k (resp. $E_{1, n}$) and the middle point of E_k (resp. $E_{1, n}$) invariant, $k=2, \ldots, m$. Let γ_n be a hyperbolic transformation with $\gamma_n(H_k)=H_k'$ and $\gamma_n(\omega_n)\cap \omega_n=\emptyset$. Then Γ and γ_n and $\varepsilon_{1, n}, \varepsilon_2, \ldots, \varepsilon_m$ generate a finitely generated Fuchsian group Γ_n of the first kind with the fundamental region ω_n. We assume that $\{\gamma_n\}_{n=1}^\infty$ converges to a parabolic transformation. Then $\{E_{1, n}\}_{n=1}^\infty$ necessarily degenerates to a point.

3.2. Let $P_1, \ldots, P_{k, n}$ be a maximal list of primitive parabolic elements of Γ whose fixed points lie on the boundary of ω_n such that $P_{r, n} \neq P_{s, n}^{-1}, 1\leq r<s\leq t$. Let $D_{s, n}={\xi}_{s, n}(\{z; \operatorname{Im} z<1\})$ be the horodisc of the primitive parabolic element $P_{s, n}$, where $\xi_{s, n}$ is the element of $PSL(2, \mathbb{R})$ such that $\xi_{s, n}\circ P_{s, n}\circ \xi_{s, n}^{-1}$ is of the form $z \rightarrow z+1$. The existence of such a horodisc is
immediate from Shimizu's lemma [5; p. 58]. For our later use, we prove a preliminary lemma.

Lemma 2. Let \(u_n \) be a point of \(\omega_n - \bigcup_{i=1}^{n} D_{i,n} \). Then \(\{d_L(u_n, \gamma_n(u_n))\}_{n=1}^{\infty} \) is bounded, where \(d_L(u_n, \gamma_n(u_n)) \) is the hyperbolic distance between \(u_n \) and \(\gamma_n(u_n) \) measured by \(\rho_0(z) \mid dz \).

Proof. The axis \(A_n \) of \(\gamma_n \) divides \(\omega_n \) into \(\omega_n^{-1} \) and \(\omega_n^* \) whose boundary includes \(E_{1,n} \). Let \(v_n \) be a point of the closure of \(\omega_n - \bigcup_{i=1}^{n} D_{i,n} \) such that \(d_L(v_n, A_n) \geq d_L(z, A_n) \) for all \(z \in \omega_n - \bigcup_{i=1}^{n} D_{i,n} \). Note the existence of a compact subset of \(L \) containing all \(v_n \in \omega_n^{-1} \). Then \(d_L(v_n, \gamma_n(v_n)) \) is less than a constant for all \(v_n \in \omega_n^{-1} \). Let \(\tau_n \) be the element of \(\text{PSL}(2, \mathbb{R}) \) such that \(\tau_n(z_n^*) = -1 \) and \(\tau_n(z_n^*) > 0 \), where \(z_n^* \) is the fixed point of \(\varepsilon_{1,n} \) in \(\omega_n \). Then \(\{\tau_n^{*} \gamma_n^{*} \tau_n^{-1}\}_{n=1}^{\infty} \) converges to a parabolic transformation and a compact subset of \(L \) contains all \(\tau_n(v_n) \) for all \(v_n \in \omega_n^* \). By the same reasoning as above we see that \(d_L(v_n, \gamma_n(v_n)) = d_L(\tau_n(v_n), \tau_n^{*} \gamma_n^{*} \tau_n^{-1}(\tau_n(v_n))) \) is less than a constant for all \(v_n \in \omega_n^* \). Note that \(d_L(u_n, A_n) \leq d_L(v_n, A_n) \). Then \(d_L(u_n, \gamma_n(u_n)) \leq d_L(v_n, \gamma_n(v_n)) \). Now our assertion is obvious. \(\square \)

3.3. Now we begin to make a proof of Theorem 3. Let \(x_n \) be the isomorphism of \(\Gamma_n \) onto a regular B-group \(\chi_n(\Gamma_n) \) on the boundary of \(T(\Gamma_n) \) such that \(\chi_n(\gamma) \) is parabolic if and only if \(\gamma \) is either parabolic or conjugate to \(\gamma_n \) in \(\Gamma_n \). Let \(w_n \) be a conformal homeomorphism of \(L \) onto the invariant component of \(\chi_n(\Gamma_n) \) such that \(\chi_n(\gamma) \cdot w_n(z) = w_n \cdot \gamma(z) \) for all \(z \in L \) and all \(\gamma \in \Gamma \).

The existence of such a \(x_n \) and a \(w_n \) is shown in Bers [4] and Abikoff [1]. Maskit [9] proved that there exist a Kobke group \(G_n \) and a conformal homeomorphism \(j_n \) of the invariant component of \(\chi_n(\Gamma_n) \) onto that \(A_n \) of \(G_n \) such that \(j_n \chi_n(\Gamma_n) j_n^{-1} = G_n \) and such that \(j_n \chi_n(\Gamma_n) j_n^{-1} \) is parabolic if and only if so is \(\chi_n(\gamma) \). Set \(f_n = j_n \cdot w_n \). Then \(\zeta = f_n(z) \) is a conformal homeomorphism of \(L \) onto \(\Delta_n \) and \(f_n^{*} \gamma_n^{*} f_n^{-1} \) is parabolic, so that \([f_n]\) does not belong to \(T(\Gamma_n) \). Since \(||[f_n]|| = ||[\gamma_n f_n]\| \) for all \(\gamma \in \text{PSL}(2, \mathbb{R}) \), without loss of generality we may assume that \(g_n = f_n^{*} \gamma_n^{*} f_n^{-1} \) is of the form \(\zeta - a \cdot b_n \cdot b_n > 0 \), and that two non-invariant components \(D_n^{+} \) and \(D_n^{-} \) of \(G_n \) invariant under \(g_n \) are \(\{\xi; \text{Im} \zeta > \pi/2\} \) and \(\{\xi; \text{Im} \zeta < -\pi/2\} \), respectively. Let \(z_n \) be a point of both the axis of \(\gamma_n \) and the fundamental region \(w_n \) constructed in No. 3.1. Then by the same reasoning as above, we may also assume that \(\text{Re} f_n(z_n) = 0 \). From basic properties of the hyperbolic metric stated in No. 2.2 we have

\[
D_L(z_n, \gamma_n(z_n)) = d_{\Delta_n}(f_n(z_n), f_n(\gamma_n(z_n))) \\
\geq d_{[\xi; \text{Im} \xi < \pi/2]}(f_n(z_n), g_n(f_n(z_n))) \geq b_n/2\pi.
\]

Since \(\{\gamma_n\}_{n=1}^{\infty} \) converges to a parabolic transformation, the first term in the above inequalities converges to zero. Now we have the first assertion in the
LEMMA 3. (i) The sequence \(\{b_n\}_{n=1}^{\infty} \) of positive numbers converges to zero.

(ii) The invariant component \(\Delta_n \) of \(G_n \) includes the region \(\{\zeta; |\text{Im}\zeta| < (\pi/2) - b_n\} \).

Proof. We have only to prove (ii). By the assumptions on \(X_n \) we see that \(G_n \) is constructed from Fuchsian groups \(H_n^+ = \{g \in G_n; g(D_n^+)=D_n^+\} \) and \(H_n^- = \{g \in G_n; g(D_n^-)=D_n^-\} \) with the amalgamated parabolic cyclic subgroup generated by \(g_n \) via Maskit's combination theorem I. For terminologies see [6], [7] and [8].

For a Möbius transformation \(h \) of the form \(z \mapsto (az+b)/(cz+d) \) with \(c \neq 0 \), that is, \(h^{-1}(\infty) = -d/c \neq \infty \), we define the isometric circle \(I(h) \) of \(h \) as \(\{z; |z-h^{-1}(\infty)| = 1/|c|\} \). Denote by \(\text{ext}(\mathcal{C}, I(h)) \) the unbounded component of \(\mathbb{C} - I(h) \). The region \(\omega_n^+ = \{\zeta; 0<\text{Re}\zeta < b_n\} \cap (\bigcap \text{ext} I(h)) \) (resp. \(\omega_n^- = \{\zeta; 0<\text{Re}\zeta < b_n\} \cap (\bigcap \text{ext} I(h)) \)) is a fundamental region for \(H_n^+ \) (resp. \(H_n^- \)), where the intersection \(\bigcap \) (resp. \(\bigcap \)) is taken over for all elements of \(J_n^+ = \{h \in H_n^+; h(\infty) \neq \infty\} \) (resp. \(J_n^- = \{h \in H_n^-; h(\infty) \neq \infty\} \)). Maskit's combination theorem I shows that \(\omega_n^+ \cup \omega_n^- \) is a fundamental region for \(G_n \). Note that centers \(h^{-1}(\infty) \) of the isometric circles of \(h_n \in J_n^+ \) (resp. \(J_n^- \)) lie on the line \(\{\zeta; |\text{Im}\zeta| = \pi/2\} \) (resp. \(\{\zeta; |\text{Im}\zeta| = -\pi/2\} \)). Since \(G_n \) contains the element \(g_n(z) = z+b_n \) the radius of the isometric circle of each element of \(J_n^+ \cup J_n^- \) is less than or equal to \(b_n \) by Shimizu's lemma. Therefore \(\Delta_n \) includes the region \((\bigcap_{n=1}^{\infty} \omega_n^+ \cup \omega_n^-) \cap \{\zeta; |\text{Im}\zeta| < \pi/2\} \), which also does the region \(\{\zeta; |\text{Im}\zeta| < (\pi/2) - b_n\} \). \(\square\)

3.4. Denote by \(A_n \) the axis of \(\gamma_n \).

LEMMA 4. There exists a sequence \(\{t_n\}_{n=1}^{\infty} \) of positive numbers converging to zero such that \(f_n(A_n) \) is included in \(\{\zeta; |\text{Im}\zeta| < t_n\} \).

Proof. Assume that our assertion is false. Let \(a_n \) be the subarc of \(A_n \) bounded by \(z_n \) and \(\gamma_n(z_n) \). Let \(\zeta_n \) be a point of \(f_n(a_n) \) such that \(|\text{Im}\zeta_n| = \max_{\zeta \in f_n(a_n)} |\text{Im}\zeta| \). Then without loss of generality we may assume the existence of a subsequence, again denoted by \(\{\zeta_n\}_{n=1}^{\infty} \), of \(\{\zeta_n\}_{n=1}^{\infty} \) such that \(\{\text{Im}\zeta_n\}_{n=1}^{\infty} \) converges to a positive number \(v_0 \). By means of basic properties of the hyperbolic metric stated in No. 2.2, we have

\[
\int_{a_n} \rho_1(z) |dz| = \int_{f_n(a_n)} \rho_{f_n}(\zeta) |d\zeta| \\
\geq \int_{f_n(a_n)} \rho_{|\text{Im}\zeta|<v_0/2}(\zeta) |d\zeta| \geq (1/2\pi) \int_{f_n(a_n)} |d\zeta|.
\]

Since the first term converges to zero, so does the Euclidean length \(\int_{f_n(a_n)} |d\zeta| \) of \(f_n(a_n) \). Therefore for a sufficiently large \(n \) on, the arc \(f_n(a_n) \) is included
in \(\{ \zeta; \text{Im} \zeta > v_0/2 \} \), and so is \(f_n(A_n) = \bigcup_{n=1}^\infty g_n(f_n(a_n)) \). The geodesic \(f_n(A_n) \) in \(A_n \) divides \(A_n \) into the upper half \(A_n^+ \) and the lower half \(A_n^- \), both of which are invariant under \(\langle g_n \rangle \). The region \(A_n^+ \) is included in \(\Pi_n^+ = \{ \zeta; v_0/2 < \text{Im} \zeta < \pi/2 \} \) and by Lemma 2 \(A_n^- \) includes \(\Pi_n^- = \{ \zeta; -\pi/2 + b_n < \text{Im} \zeta < v_0/2 \} \). Let \(S_{1,n}, S_{2,n}, S_{3,n} \) and \(S_{4,n} \) be sets of all loops separating two boundary components of \(A_n^+ \langle g_n \rangle, \Pi_n^+ \langle g_n \rangle, \Pi_n^- \langle g_n \rangle \) and \(A_n^- \langle g_n \rangle \), respectively. Denote by \(\lambda_{k,n} \) the extremal length of \(S_{k,n} \). Then \(\lambda_{1,n}^{-1} \geq \lambda_{2,n}^{-1} \geq \lambda_{3,n}^{-1} \geq \lambda_{4,n}^{-1} \) if \(n \) is large enough so that \(v_0/2 > b_n \) [2; p. 15]. On the other hand, the Möbius transformation \(r_n \) of the form \(z \rightarrow -iz \) maps \(f_n^{-1}(A_n^+) = \{ z; -\pi/2 < \text{arg} z < 0 \} \) onto \(f_n^{-1}(A_n^-) = \{ z; -\pi < \text{arg} z < -\pi/2 \} \) and it holds that \(r_n \circ r_n = r_n \). Hence the conformal homeomorphism \(f_n \circ r_n \circ f_n^{-1} \) maps \(A_n^+ \) onto \(A_n^- \) and \(f_n \circ r_n \circ f_n^{-1} \) \(g_n = g_n \circ f_n \circ r_n \circ f_n^{-1} \). Therefore \(A_n^+ \langle g_n \rangle \) is conformal to \(A_n^- \langle g_n \rangle \) and \(\lambda_{1,n} = \lambda_{4,n} \). This contradiction yields us to conclude that our assertion is true.

3.5. Let \(u_n \) be a point of the closure of \(w_n - \bigcup_{k=1}^\infty D_{k,n} \) with \(\rho_\bar{L}(u_n)^{-2} = \sup_{z \in \bar{L}(u_n)} |[f_n(u_z)]| \). The existence of such a point is immediate from Lemma 1. Without loss of generality we may assume that \(d_L(u_n, A_n) \leq d_L(u_n, \gamma(A_n)) \) for all \(\gamma \in \Gamma_n \) and that \(0 \leq \Re f_n(u_n) < b_n \). As is stated in No. 3.2, the point \(z \in w_n \) lies on the axis of \(f_n \).

Now two cases can occur: (i) \(\{ d_L(u_n, z_n) \} \) is bounded. (ii) Otherwise.

We shall prove that (ii) never happens. Assume that (ii) does. Then since \(\{ d_L(f_n(u_n), f_n(z_n)) \} \) is unbounded, a subsequence, again denoted by \(\{ f_n(u_n) \} \), converges to a point \(\xi_0 \), which is either \(\pi i/2 \) or \(-\pi i/2 \). Let, say, \(\xi_0 = \pi i/2 \). Then each \(f_n(u_n) \) is contained in \(A_n^+ \). Set \(\eta_n(\xi) = (\xi - \Re f_n(u_n) - \pi i/2) / |\text{Im} f_n(u_n)|^{-\pi/2} \). Then \(\eta_n \) takes the point \(f_n(u_n) \) and the line \(\Re \text{Im} \xi = \pi/2 \) into \(-i\) and the real axis, respectively, and \(\eta_n(A_n) \subseteq L \). Note that \(\eta_n(A_n) \) includes the domain surrounded by \(\bigcup \eta_n(h(f_n(A_n))) \), where the union is taken over all \(h \in H_n^+ \). The parabolic transformation \(\eta_n \circ g_n \circ \eta_n^{-1} \) is of the form \(\zeta \rightarrow \zeta + e_n, e_n > 0 \). Note that

\[
d_L(u_n, \eta_n(u_n)) = d_{\eta_n \circ f_n}(\eta_n \circ f_n(u_n), \eta_n \circ f_n(\eta_n(u_n)))
\]

\[
\geq d_L(\eta_n \circ f_n(u_n), \eta_n \circ g_n(f_n(u_n))) = d_L(\eta_n \circ f_n(u_n), \eta_n \circ f_n(u_n) + e_n).
\]

Since \(\{ d_L(u_n, \eta_n(u_n)) \} \) is less than a constant \(e_0 \) by Lemma 2, so is \(\{ e_n \} \). This together with Shimizu's lemma shows that each element of \(\eta_n f_n \eta_n^{-1} \) has the isometric circle whose radius is less than or equal to \(e_n \). Since \(K_n = \inf_{\xi \in \Gamma_n, f_n(A_n)} |\text{Im} \xi| \rightarrow \infty \) by Lemma 4 and since for each \(h \in H_n^+ \) the arc \(\eta_n(h(f_n(A_n))) \subseteq \eta_n(A_n) \) is included in \(\{ \xi \in L; \text{Im} \xi > -e_0^{-1}/K_n \} \), the kernel of \(\{ \eta_n(A_n) \} \) is \(L \). Let \(\xi_n \) be the element of \(\text{PSL}(2, \mathbb{R}) \) such that \(\xi_n(-1) = u_n \) and \((\eta_n \circ f_n \circ \xi_n)(-i) > 0 \). Then by Carathéodory kernel theorem \(\eta_n \circ f_n \circ \xi_n \) converges locally uniformly to a conformal homeomorphism \(F \) which maps \(L \) onto the kernel \(L \) of \(\{ \eta_n(A_n) \} \). Obviously \(F \) is a Möbius transformation and \([F](z) = 0 \). Using a theorem of Weierstrass, we have
This contradicts the fact \(\|f_n\| \geq 2 \) due to Ahlfors-Weill [3], and the case (ii) never happens.

3.6. Now we shall complete the proof of Theorem 3 under the condition (i). Since \(d_{\mathcal{H}}(f_n(u_n), f_n(A_n)) = d_L(u_n, A_n) \leq d_L(u_n, z_n) \) is less than a constant for each \(n \), Lemmas 3 and 4 show the existence of a subsequence, again denoted by \(\{f_n(u_n)\}_{n=1}^\infty \), of \(\{f_n(u_n)\}_{n=1}^\infty \) which converges to a point \(\zeta_0 \) with \(\Re \zeta_0 = 0 \) and \(|\Im \zeta_0| < \pi/2 \). Let \(\mu_n \) be the element of \(PSL(2, \mathbb{R}) \) such that \(\mu_n(-i) = z_n \) and \((f_n \circ \mu_n)(-i) > 0 \). Carathéodory kernel theorem together with Lemma 3 shows that \(\{f_n \circ \mu_n(z) - f_n \circ \mu_n(-i)\}_{n=1}^\infty \) converges locally uniformly to \(F(z) = 3\pi i/2 + \log z \) which maps \(L \) onto the kernel \(\{\zeta; |\Im \zeta| < \pi/2\} \) of \(\{f_n \circ \mu_n(L)\}_{n=1}^\infty \), where we take the branch of \(\log z \) satisfying \(F(-i) = 0 \). Let \(E \) be a compact subset of \(L \) containing all \(\mu_n^{-1}(u_n) \). Then we see that

\[
\|f_n\| = \rho_L(u_n)^{-1} \|f_n\|(u_n) \\
= \rho_L^{-1}(u_n) \|f_n\|(u_n) \\
= \sup_{z \in \mathcal{E}} \rho_L(z)^{-1} \|f_n\|(z) \\
\rightarrow \sup_{z \in \mathcal{E}} \rho_L(z)^{-1} (3\pi i/2 + \log z) = 2.
\]

Recall that \(f_n \Gamma_n f_n^{-1} \) is a Koebe group. Then \(T(\Gamma_n) \) does not contain the point \([f_n] \) and neither does \(T(\Gamma) \). Therefore \(2 \leq i(\Gamma) \leq \|f_n\| \rightarrow 2 \). Now we obtain \(i(\Gamma) = 2 \) and complete the proof of Theorem 3.

Addendum. After this note was completed, Professor T. Nakanishi informed the author that T. Nakanishi and J.A. Velling know a proof of the following Theorem A which is a generalization of Theorems 1, 2 and 3.

Theorem A. Let \(\Gamma \) be a Fuchsian group keeping \(L \) invariant. Then \(i(\Gamma) \) is equal to 2 if \(\Gamma \) satisfies one of the following:

1. For any positive number \(d \), there exists a hyperbolic disc of radius \(d \) which is precisely invariant under the trivial subgroup of \(\Gamma \).
2. For any positive number \(d \), there exists the collar of width \(d \) about the axis of a hyperbolic element of \(\Gamma \).

He also informed the author that their proof of Theorem A is different from the proof of Theorem 3 and depends on properties of a family of functions constructed in Kalme [11].
REFERENCES

Department of Mathematics
The National Defense Academy
Hashirimizu Yokosuka 239
Japan