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REAL ZEROS OF SOLUTIONS OF SECOND ORDER

LINEAR DIFFERENTIAL EQUATIONS

BY CUN-ZHI HUANG

1. Introduction

We consider the second order linear differential equation

f"+Af=0, (1.1)

where A is an entire function. For an entire function /, let p(f) be its order,
μ(f) its lower order, λ(f) the exponent of convergence of its zeros and λNR{f)
the exponent of convergence of its non-real zeros. In addition, we assume that
the reader is familiar with the standard notation of Nevanlinna theory (see [4]).

When A is a polynomial, the distribution of zeros of solutions of (1.1) has
been studied extensively. The following theorem is well-known ([!]).

THEOREM A. // A is a polynomial of degree n ^ l , then every solution /Ξ}ΞO
of (1.1) satisfies

p(f)=(n+2)/2, (1.2)

and if fu f2 are two linearly independent solutions of (1.1), then

Kfif*)=(n+2)/2. (1.3)

Furthermore, G. Gundersen proved the following ([2]).

THEOREM B. Under the hypothesis of Theorem A,

λNάfifi)=(n+2)/2. (1.4)

When A is transcendental, we apply the lemma on the logarithmic deriva-
tive in Nevanlinna theory to (1.1) and can easily deduce that any solution / ^ 0
of (1.1) satisfies

+ oo. (1.5)

By analogy with Theorem A and Theorem B, we may hope that
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Λ(/l/2)= + °O (1.6)

or

W / i / i ) = + «>, (1.7)

where fx and f2 are linearly independent solutions of (1.1). However, examples
in [1] show that (1.6) and (1.7) may not hold if p(A) is infinite or equal to a
positive integer. When the growth of A is suitably restricted, (1.6) and (1.7)
hold.

Before stating the following results of J. Rossi, we make some definitions.
Let n+(r, 1//) (n_(r, 1//)) be the number of zeros of / in {z: \z—(l/2)ir\

<(l/2)r} ({*: |*+(l/2)ιr|<(l/2)r}), where | * | > 1 and r>0. Define

Obviously λι(f)^*λNR(f). The lower exponent of convergence λ*(f) of the zeros
of an entire function / is defined by

2 r n i i τ n

^*(/)-|™ logr '
where n(r, 1//) is the number of zeros of / in \z\<r.

J. Rossi proved the following ([8]).

THEOREM C. // ρ(A)<>l/2 and fu f% are linearly independent solutions of
(1.1), then

λi(f if *)= + <*>,

and

In this paper, we prove

THEOREM 1. Let A be a transcendental entire function of order p<-\-oo
with k distinct finite asymptotic values. Suppose that k=2p. If fλ and f2 are
linearly independent solutions of (1.1), then

Uf if *)= + <*>.

THEOREM 2. Under the hypothesis of Theorem 1,

2. The Tsuji Characteristic

In [9] (c.f. [6] and [7]) M. Tsuji introduced a characteristic for a func-
tion / meromorphic in the upper half-plane based on the following Jensen-type
formula:
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dθ
•+O(1). (2.1)

Here n+(t, 0) (n+(t, oo)) denotes the number of zeros (poles) of / in {z: \z~-(l/2)zί |
^(l/2)ί, \z\^l}.

He defined

m+(r, co)=m+(r, Ω^πT^Zl'-h' loS+\f(r(sinθ)eiβ)\ j^ψ, (2.2)

m+(r, a)=m+(r, l/(/-α)), α e C , (2.3)

Λ= Σ fU^-l], (2.4)
I φ[ r rl

Γ ISΓJSΓ sin φk k

where r*e*^* are the poles of / in Im z>0,

N+(r, a)=N+{r, l / (/-α)) , β e C , (2.5)

and

T+(r, /)=m+(r, f)+N+(r, f). (2.6)

For / meromorphic in Imz>0, Tsuji proved the following properties.

(A) m+(r, α)+#+(r, α)=T + (r,/)+O(l), α e C .

(B) If / is also meromorphic in a neighborhood of the origin,

m+{r, /'//)=O(log T+(r, /)+log r) , n. e.

(C) (ί-2)Γ+(r, f)< ΈN+(r, ak)+O{\ogT+{r, /)+logr) n.e.

(n.e. means except on a set of finite linear measure.)
(D) T+(r, f) is a monotone increasing function of r. In [7, p. 332] it is

also proved that

(E) j d r ^ )

where

Remark. Properties (A), (B) and (C) are analogues of Nevanlinna's first
fundamental theorem, the lemma on the logarithmic derivative and Nevanlinna's
second fundamental theorem, respectively.

Similarly, we can introduce the notations T_, m_ and AL for the lower half-
plane analogues of the Tsuji functionals.
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3. Preliminary Lemmas

We need some lemmas.

LEMMA 1. Let A be an entire function of order io< + oo with k distinct
finite asymptotic values aτ (l<i<k) and Lt (l<i^k) the asymptotic paths corre-
sponding to ai, which are simple curves from the origin to oo and non-intersecting
except at the origin and divide the plane C into k disjoint simply connected do-
mains D% (l^i^k). We may assume that Dt is bounded by Lt and Lt+1 (l ̂ i^k
Lk+ί=Lί). Suppose that k—2p, then

(1) there exists in Dt a path Γτ going to co such that

\og\og\A{z)\
hm - — — =p , (3.1)
M ? Γ log |z|

(2) A(z) has no finite deficient values.

This lemma can be found in [10, p. 324 and p. 353].

LEMMA 2 [8]. Let f be entire with infinite lower order such that

m+(r, f)=O{ra)
. ( r — o o ) , (3.2)

m.(r, f)=O(r")

where 0<α<co. Then, given λ,

m(r, f)=a+oa)X2π)-1\ log+| f(reιβ)\dθ, n.e., (3.3)

where the angular measure is

meas(£(r))=O(r-^). (3.4)

Applying Wiman-Valiron theory (c. f. [5]), we can deduce that

LEMMA 3. // p(A)<ρx<oo and f is a solution of (1.1), then

loglog M(r, f)^r^ , (r^r0). (3.5)

LEMMA 4. Let ε>0 be arbitrary and E be entire. If there exist μλ (0<μλ

<oo) and a sequence i?n->oo such that

\ogM(Rn,E)

M = 0 ' (3 β)

then

(1) limOogi^H — <ε, (3.7)
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where G(ε)={r: log M(2r, E)^r^/ε}.
(2) there exists a positive integer q=q(ε) such that

\(E'/E)\reiθ)-2(E"/EXreiθ)\^r* for r^ro>l, (3.8)

r~e[G(ε2) and ΘΊΞjr, where meas(Jr)^επ.

We remark that Lemma 4 is due to J. Rossi [8, Lemma 5 and 6]. But in
his paper, he miswrote

m(r, (Er/E)2-2E"/E)=O{\og T(r, £)+log r) for all r^R,

it should be written as

m(r, (Ef/E)2-2E"/E)=O(\og T(2r, E)+\og r) for all r^R.

4. Proof of Theorem 2

Let /i, / 2 be linearly independent solutions of (1.1). Set E—fιf2, and we
note as in [1] that

-iA-^{c/E)2-{E'/E)2+2{E"/E), (4.1)

where c is the constant Wronskian of fx and / 2 . Applying Nevanlinna theory
to (4.1), we have

T(r, E)=N(r, l / £ ) + | T ( r , ^)+O(log T(r, E)+\og r), n.e. (4.2)

Suppose that μ(E)< + oo, then there exist μx such that μ(E)<μ1< + oo> and
Rn-*oo such that

Fix ε>0. Since A has no finite deficient values, it must have infinitely
many zeros. Let b1} b2, ••• , bq+1 be q+l zeros of A with q=q(ε) as in Lemma
4. Define

then H is entire and of order ρ(H)=p(A)=k/2.
Set

D(E)={z: \E(z)\>l},

D(ε2)={z=reiθ: 0^(?^2π,
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with Jr, G(ε2) as in Lemma 4.
From (3.8) and (4.1), we deduce that

(\z\>r0). (4.4)

But for zϊΞD(H)Γ\D(ε2)\D,

hT\ max 16*1), (4.5)

From (4.4) and (4.5), we have for r large enough (r^r*^

{θ : reίθeΞD(H)nD(E)Γ\D(ε2)} £ / r . (4.6)

Set

L=\J Lt
1 = 1

with Lt (l<i<k) as in Lemma 1. It is easy to see that

D(H)ΓΛ{z: \

if r is large enough. Without loss of generality, we may assume that r = 0 .
By Lemma 1, there exists point Zi(=Dt (l^i^k) such that

\H(zx)\>e.

Let Ωt (l<i^k) be the connected component of D(H) containing the point zlf

then ΩidDι (l<i^k). By the maximum modulus principle, we conclude that
is unbounded.

L e t
*, \ z x \ , \ z 2 \ , ••• , \ z k \ )

and Bu (l^z^k r i ^ ί < o o ) be the part of the circle \z\—t in Ω% and tθχ{t) the
the linear measure of θit. We have

L E M M A 5.

k 1 χdt k2

t 2 '

Proof. By a theorem of Tsuji [9], we have

lnyH), (4.8)

for Rn>4rί and l^i^fe .
(4.8) gives

ί
(l/2)Λ«/ fe 1 \dt .

(Έ-fΓjrΛ-Γ^kloEXogMiRn, ίf)+felog(9V2). (4.9)
2rx \ ι = l Ui\t)/ I
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Noting that

^ ( W S ί k H l ί j Γ ) ) ' (4 10)

from (4.9), we have

^k loglog M(Rn, H)+k log(9VT). (4.11)

The desired conclusion follows from (4.11) and p(H)~k/2.
Let

Δ(ε)={r: Σ 0i(r)<(2-β)jr}

β=ϊmί(logR.)-1\4 ^,

n-*co JJ(ε)ΛC2r1,ci/2)/en t

and
dt

then we have

LEMMA 6. 0 = 0 . (4.12)

Proof. First we note that

rci/2)Λn/ * 1. \ Λ

>

\2— δ

From (4.7) and (4.13), we have

7l] (2—β)π ί Jc2r1.(l/2)ΛΛ]-J(β) 2/Γ ί

We note that the right-hand side of (4.14) is strictly greater than k2/2 unless
β=0. Hence β=0.

Let Ω(E) be a connected component of D(E) and θt be the part of the
circle \z\=t in Ω(E) and tθ{t) the linear measure of θt, then again by the theo-
rem of Tsuji [9], we have
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E)^π[
J2

5

dt

Wt)

dt

Isπt

Zε\j2r 1 ί Jc2rltΛn:Λσcβ2) ί JC2r1,Cl/2)Λn:π^Cβ) ί /

From (3.7), (4.12) and (4.15), we have

^ ) 1

Since ε is arbitrary, we can make the right-hand side of (4.16) larger than
μlf by choosing a small ε at the beginning. This contradicts (4.3). Hence

For any α>l, we have by (4.2)

l/2T(r, E)£N(ar, l/E)+l/2T(ar, A), (r large enough). (4.17)

We note that p(A)< +oo, then (4.17) and μ(E)= + co give

which implies λ*(f1f2)= + °° Theorem 2 is proved.

5. Proof of Theorem 1

Properties (A) and (B) together with (4.1) give

T+(r, E)=N+(r, ]?)+\τ+(r, A)+O(log T+(r, E)+logr), n.e. (5.1)

We assume that

(5.2)

and will arrive at a contradiction from this assumption.
From (5.1) and (5.2), we have

T+(r, E)=O(ra), (0<α<oo), (5.3)
similary

T_(ry JS)=O(rα), (0<α<oo). (5.4)

Since p{A)< + oo9 we can choose λ such that io(^4)<(l/2)A< + oo. Theorem
2 gives that μ(E)= + oo. Applying Lemma 2 to E, we have
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mix, E)=O(r'λ log M(r, E)) n. e. (5.5)

By a theorem of Hayman and Stewart [3, Theorem β], for any constant K>1,
we have

log M(r, E)£m(r, E)[\og mix, E)~]κ , r^G , (5.6)

where

limdogi?)-^ ^ > 0 . (5.7)

From (5.5), (5.6), (5.7) and Lemma 3 with ρ1=(l/2)λ, there exist a sequence
rn-->oo and a constant c such that

(rn, E)-λlogrn+\og c~]κ^crΰλ+σ/2>κλ . (5.8)

If we choose K<2, (5.8) gives a contradiction. The proof of Theorem 1 is
complete.

Remark. Indeed, we have proved the following slightly stronger results.

THEOREM 3. Let A be the same as in Theorem 1 and P a non-constant poly-
nomial. If fx and f2 are linearly independent solutions of the differential equation

f"+APf=0,

then

THEOREM 4. Under the hypothesis of Theorem 3,
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