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1. Introduction
We consider the second order linear differential equation
f"+Af=0, (1.1)

where A is an entire function. For an entire function f, let p(f) be its order,
p(f) its lower order, A(f) the exponent of convergence of its zeros and Ayxz(f)
the exponent of convergence of its non-real zeros. In addition, we assume that
the reader is familiar with the standard notation of Nevanlinna theory (see [4]).

When A is a polynomial, the distribution of zeros of solutions of (1.1) has
been studied extensively. The following theorem is well-known ([1]).

THEOREM A. If A is a polynomial of degree n=1, then every solution f=0
of (L.1) satisfies

o(N=(n+2)/2, (1.2)
and if f1, f» are two linearly independent solutions of (1.1), then
Af1f2)=(n+2)/2. (1.3)

Furthermore, G. Gundersen proved the following ([2]).

THEOREM B. Under the hypothesis of Theorem A,
Ane(f1f2)=(n+2)/2. 1.4)

When A is transcendental, we apply the lemma on the logarithmic deriva-
tive in Nevanlinna theory to (1.1) and can easily deduce that any solution fz£0
of (1.1) satisfies

p(f)=+oo. (1.5)

By analogy with Theorem A and Theorem B, we may hope that

* Supported by National Natural Science Foundation of P.R. China.
Received December 4, 1989; Revised July 5, 1990.

113



114 CUN-ZHI HUANG

Z(f1f2)=+00 1.6)
or

Anp(fifa)=—4, 1.7

where f; and f, are linearly independent solutions of (1.1). However, examples
in [1] show that (1.6) and (1.7) may not hold if p(A) is infinite or equal to a
positive integer. When the growth of A is suitably restricted, (1.6) and (1.7)
hold.
Before stating the following results of J. Rossi, we make some definitions.
Let ni(r, 1/f) (n_(r, 1/f)) be the number of zeros of f in {z:|z—(1/2)ir|
<(/2)yr} ({z: |z+1/2)ir| <(1/2)r}), where |z|>1 and »>0. Define

_w—log(n.(r,1/f)+n_(r,1/f)
A(NH)= lrl_{'{: log 7 .

Obviously 4,(f)<Ayzr(f). The lower exponent of convergence A4«(f) of the zeros
of an entire function f is defined by

logn(r, 1/f)
log

’

Ax(f)=lim

where n(r, 1/f) is the number of zeros of f in |z|<r.
J. Rossi proved the following ([8]).

THEOREM C. If p(A)<1/2 and fi, f. are linearly independent solutions of
(1.1), then

A(f1fe)=—40,
and

2*(f1fz)=+°° .
In this paper, we prove

THEOREM 1. Let A be a transcendental entive function of order p<+oo
with k distinct finite asymptotic values. Suppose that k=2p. If f, and f, are
linearly independent solutions of (1.1), then

Zl(flfz):‘!'oo .
THEOREM 2. Under the hypothesis of Theorem 1,
2*(f1f2)=+°° .

2. The Tsuji Characteristic

In [9] (c.f. [6] and [7]) M. Tsuji introduced a characteristic for a func-
tion f meromorphic in the upper half-plane based on the following Jensen-type
formula :
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rn+(t, 0) Tn+(t, 00)
S . dt—gl 2 dt

R g | Fr(sin B)et?)| 30

sim-1¢r-1) rsin?@

+0Q). (2.1)

=n|

Here n.(2, 0) (n+(¢, o)) denotes the number of zeros (poles) of f in {z: |z—(1/2)it|
=(1/2}, |z| =1}.

He defined
_ — () n—sm'l(r"l)l N ing 0 de 2.9
m+(r: OO)—.m+(7’, f)_( n) Ssm-l(r'l) Og !f(r(SIH )e )]m; ( . )
m(r, a)=m4(r, 1/(f—a)), a<C, (2.3)
= (7m0 sing, 1
Nutr, oy=Nur, =[P 2ae= 5 [S2_2] @4
where 7,e'¢* are the poles of f in Im z>0,
N.(r, a)=N.(r, 1/(f—a)), a=C, (2.5)
and
Ty(r, )=m(r, )+Nu(r, f). (2.6)

For f meromorphic in Im z>0, Tsuji proved the following properties.
(A) my(r, a)+Nu(r, a)=T(r, H+01), aeC.
(B) If f is also meromorphic in a neighborhood of the origin,

mi(r, f'/f)=0(log T(r, f)+logr), n.e

© @=2Tulr, HE A N:r, a)+0(0g To(r, f)+1ogr) n.e. (a,SCU{oo}).

(n.e. means except on a set of finite linear measure.)
(D) T.(r, f) is a monotone increasing function of ». In [7, p. 332] it is
also proved that

E) S:mu(rrs ip) dr§S:m+(rrZ, ip) dr  (R=1),

where

o v, £y=(2)y| log* | fre*®) 8.

Remark. Properties (A), (B) and (C) are analogues of Nevanlinna’s first
fundamental theorem, the lemma on the logarithmic derivative and Nevanlinna’s
second fundamental theorem, respectively.

Similarly, we can introduce the notations T_, m_ and N_ for the lower half-
plane analogues of the Tsuji functionals.
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3. Preliminary Lemmas

We need some lemmas.

LEMMA 1. Let A be an entire function of order p<4oo with k distinct
finite asymptotic values a, (1=<i<k) and L; (1<i<k) the asymptotic paths corre-

sponding to a,, which are simple curves from the origin to o and non-intersecting
except at the origin and divide the plane C into k disjoint simply connected do-
mains D, 1=<i<k). We may assume that D, is bounded by L, and L.+, 1<i<k;
Lya=L,). Suppose that k=2p, then

(1) there exists in D, a path I', going to oo such that

loglog A _, 3D
gl

(2) A(z) has no finite deficient values.
This lemma can be found in [10, p. 324 and p. 353].

LEMMA 2 [8]. Let f be entire with infinite lower order such that
ma(r, £)=0@*)

} (r——o0), 3.2)
m_(r, /)=0(@*)

where 0<a<co. Then, given A, )<<A< oo,
m(r, N=(+o)@n)™ |, log*| fre)Ido, n.e., (3.3)
where the angular measure is
meas (E@)=0@"%). (3.4)
Applying Wiman-Valiron theory (c.f. [5]), we can deduce that
LEMMA 3. If p(A)<p: <> and f is a solution of (1.1), then
loglog M(r, /)<rfr,  (rzr.). (3.5)

LEMMA 4. Let >0 be arbitrary and E be entire. If there exist e (0<p,
< o0) and a sequence R,—co such that

.mlog M(R., E) _

le R 0, (3.6)
then
J— dr
-1 <
1) Ll_r}; (log R,) SG(E)(\EI.RTL]_T’ <e, 3.7
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where G(e)={r:log M(2r, E)=r#1/},
(2) there exists a positive integer g=q(e) such that

[(E"/E)Xre*®)—2(E"/E)ret?)|<r?  for r=ry>1, (3.8)
r&G(e?) and € ],, where meas(J,)Zer.

We remark that Lemma 4 is due to J. Rossi [8, Lemma 5 and 6]. But in
his paper, he miswrote

m(r, (E'/E¥—2E"/E)=0(og T(r, E)+logr) for all r=R,
it should be written as

m(r, (E'/EY—2E”/E)=0(log T(2r, E)+logr) for all rR.

4. Proof of Theorem 2

Let f,, f, be linearly independent solutions of (1.1). Set E=f,f,, and we
note as in [1] that

—4A=(c/Ey—(E'/E}+2E"/E), 4.1

where ¢ is the constant Wronskian of f, and f,. Applying Nevanlinna theory
to (4.1), we have

T(r, E)=N(r, 1/E)+—;—T(r, A)+O(log T(r, E)+logr), n.e. (4.2)

Suppose that p(E)<-co, then there exist g, such that u(E)<y,<-4co, and
R,—co such that
im log M(R,, E) _

N0 R#l

0. 4.3)

Fix ¢>0. Since A has no finite deficient values, it must have infinitely
many zeros. Let by, by, -+, bg+1 be ¢+1 zeros of A with g=g¢(¢) as in Lemma
4. Define

Hz)=A(2) / Lf[i(z—bi),

then H is entire and of order p(H)=p(A)="Fk/2.
Set

D(H)={z: |H(z)| >1},
D(E)={z: | E(z)| >1},
D(e®)={z=re'?: 0 60<2x, rEG()},

D={z=re'?: 0= ],, rEG(?)},
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with J,, G(&?) as in Lemma 4.
From (3.8) and (4.1), we deduce that

AR clP 4219, zeD(EYND(END, (lzlzr). 4.4
But for z&D(H)ND(e®)\D,
14@1>(312)™, @lz1z max 15D, 5
1st5g+1

From (4.4) and (4.5), we have for » large enough (r=r.=7,)

{0 : ret® € D(H)N\D(E)N\D(e®)} S ] - . (4.6)
Set
1
L=UL,

1=1

Il

with L, (1<i<k) as in Lemma 1. It is easy to see that
D(H)N{z: |z|>r}NL=¢,

if » is large enough. Without loss of generality, we may assume that »=0.
By Lemma 1, there exists point z;,=D, (1<7/<k) such that

|H(z.)| >e.

Let 2, (1=:<k) be the connected component of D(H) containing the point z,,
then 2.CD, (1=<i<k). By the maximum modulus principle, we conclude that
2, (1<i<k) is unbounded.

Let
rl:max{r*) Izll; IZZI: Sty Izkl}

and 0;; (1<i<k;r,<t<oo) be the part of the circle |z| =t in 2, and t,(¢) the
the linear measure of #;;. We have

LEMMA 5.

(1/DRy/ dt k2
1 o £oa(, (8 51T =7 @

Proof. By a theorem of Tsuji [9], we have

/R dt

ery t04(2)
for R,>4r, and 1<:i<k.

log| H(z.)| <9+ Zexp(— S o) log M(R,, H), (4.8)

(4.8) gives

IR,y k1 \dt
wl, (S 5T Sk loglog M(Ra, H)+klog®VE).  (49)
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Noting that

<(H00)( & 5= (8 50)- (.10

from (4.9), we have

kz/zg(llz)ﬁtndt§ S(llz)Rn(k _1_d~t

2ry T 27y 1=1 ﬁz(t) t
<k loglog M(R,, H)+Fklog(Ov2). (4.11)
The desired conclusion follows from (4.11) and p(H)=Fk/2.
Let
k
A(e>={r: pS 01-(7')<(2—s)7r}
and
_— dt
— T -1 i
= }zl_g.} (log Rx) SA(&)AEZTI,(I/Z)Rn t’
then we have
LEMMA 6. B=0. (4.12)

Proof. First we note that

o (B30T

Il

k1 \dt e 1 \dt
= &
nlSA(s)n:zrl, 1/2)3,,](2“5 0i(t)) t ﬂS[271,(1/2)Rn]-A(e) (z_gl 01(1‘)) t

>71:S _,_ki___(_i_t S k* dt
=T dorneery. cmry1 (2—e)w t t2ry (2RI~ A6 or t
R R dt  kEranR, dt
——<—2—“‘—é_?)Sd(s)n[2rl,(1/2)Rn] T —2—Szrl T (4.13)

From (4.7) and (4.13), we have

k% _R? k2 P2

S r o (r__F

725 Ha=—7)8- (4.14)

We note that the right-hand side of (4.14) is strictly greater than %2/2 unless
B=0. Hence 8=0.

Let £(F) be a connected component of D(E) and 6, be the part of the
circle |z|=t in 2(E) and t6(¢) the linear measure of @,, then again by the theo-
rem of Tsuji [9], we have
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/DR, dt
27y te(t)

755 dt
27y (/2 Ry 1-G e -4yt O(2)

”S dt

[2ry. (/2R 1-G e ~4ce) 26t

> 1 (S(uzmnﬂ_g Qﬁ_g dt) ‘ (4.15)

e\Jer, t (271, RpInGe2) [2ry. (1/2)RyIndced

loglog M(R., E) ;ng

[\

v

v

From (3.7), (4.12) and (4.15), we have

. loglog M(R,, E) _ 1 .
LlTr?a————log R. 22—6(1—5 ). (4.16)

Since ¢ is arbitrary, we can make the right-hand side of (4.16) larger than
1, by choosing a small ¢ at the beginning. This contradicts (4.3). Hence
U(E)y=-+o0o0.

For any a>1, we have by (4.2)

1/2T(r, EYxN(ar, 1/E)+1/2T(ar, A), (r large enough). 4.17)

We note that p(A)<-+oco, then (4.17) and p(E)=+co give
lim

log N(», 1/E) _

T log v oo,

which implies Ax(f,f:)=-+cc. Theorem 2 is proved.

5. Proof of Theorem 1

Properties (A) and (B) together with (4.1) give

T (r, E)=N+(r, %)-l—%TAr, A)-+0(og T(r, E)+logr), n.e. (5.1)

We assume that
A(E)< o0 (5.2)

and will arrive at a contradiction from this assumption.
From (5.1) and (5.2), we have

T(r, E)y=0(@%), O<a<»), (5.3)
similary
T (r, Ey=0@*%), O<a<o). (5.4)

Since p(A)<+co, we can choose A such that p(A)<(1/2)A<+oo. Theorem
2 gives that pu(E)=+co. Applying Lemma 2 to E, we have
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m(r, E)y=0(r~*log M(r, E)) n.e. (5.5)

By a theorem of Hayman and Stewart [3, Theorem 6], for any constant K>1,
we have

log M(r, EYSm(r, E)[log m(r, EYJX, r&G, (5.6)
where
. dt
lim (log R)-ISW’R] Z>0. G.7)

From (5.5), (5.6), (5.7) and Lemma 3 with p,=(1/2)4, there exist a sequence
r,—>o0 and a constant ¢ such that

1= crn?[loglog M (r,, E)—2log ro+log c1¥ S crpftmnEd (5.8)

If we choose K<(2, (5.8) gives a contradiction. The proof of Theorem 1 is
complete.

Remark. Indeed, we have proved the following slightly stronger results.

THEOREM 3. Let A be the same as in Theorem 1 and P a non-constant poly-
nomial. If fi and f, are linearly independent solutions of the differential equation

f"+APf=0,
then
21(f1f2)=+°° .

THEOREM 4. Under the hypothesis of Theorem 3,
1*(f|f2)=+°° .
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