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ON THE ZEROS OF THE SOLUTIONS OF THE EQUATION

BY STEVEN B. BANK AND J. K. LANGLEY'

1. Introduction.

It was shown in [3; §5(b), p. 356] that for any polynomial P(z) of degree
^l, there is a polynomial Q(z) of degree 2r—2 such that the equation,

(1.1)

possesses two linearly independent solutions each having no zeros. This result
led to an investigation in [4] of the more general equation of arbitrary order

(1.2)

where P, Q, and R are any polynomials, with P of degree r^l, and
It was shown in [4] that if the degree of Q is less than kr—k, then the ex-
ponent of convergence (denoted λ(f)) of the zero-sequence of any solution /^O
satisfies Λ(/)=oo. (We recall (see [12; p. 250] that if (zlf z2, •••) is the sepuence
of zeros of f(z) in z >0, then λ(f) is the infimum of all α>0 for which the
series | z ι |~ α +|2r 2 |~ α + converges if such an a exists. Otherwise, λ(f) is
defined to be infinity.)

The above results lead naturally to an investigation of the zero-sequences
of solutions of (1.2) in the case when the degree of Q exceeds kr—k. One
special case has already been successfully treated by the second author in the
paper [7] which concerns a problem of M. Ozawa [8], It was shown in [7]
that the conclusion A(/)=oo holds for all solutions /^O of (1.1) when P is
linear and Q is nonconstant. In the present paper, we treat the general equation
(1.2) of arbitrary order k:>2 where the degree of Q exceeds kr—k, and we
prove that all solutions /^O satisfy Λ(/)— °o except possibly when a very special
relation exists between P and Q. Our main result is:

THEOREM 1.1. Let k be an integer greater than 1, and let P, Q, and R be
polynomials with R^O, deg(P)— r^l, and άeg(Q)=n>kr— k, say Q(z)=anz

n + ~,
and P(z)=brz

rjr -. Let clt ••• , ck be the distinct roots of the equation ck + an=Q,
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and assume that there exists a real number ΘQ in (—π, TT] for which,

(1.3) cos(r0o-l-arg6r)=0

and

(1.4) cos(((n + fe)/£)0o+arg £,)=£() for / = ! , - , f e .

Then the exponent of convergence of the zero-sequence of any solution /^O
of (1.2) is infinite.

We remark that in the exceptional case when no such point ΘG exists satisfy-
ing (1.3) and (1.4) simultaneously, the situation concerning λ(f) is still unclear,
but the authors conjecture that the conclusion Λ(/)=oo is still valid for all
solutions /=£0. However, our proof will not handle this special case for the
following reason: A ray arg z—Θ0 for which (1.3) holds represents a dividing
line between two adjoining sectors where the growth of ep is changing from
very fast to very small. For a solution /^O with λ(f)<°o, we can obtain
extensive information on the form of / in the sector where ep is growing fast
by using certain techniques from Nevanlinna theory (notably Clunie's lemma
(see [6; p. 68])). In the adjoining sector where ep is decaying, the equation
(1.2) is. approximated by the equation, w^^ + Qw—^, and this fact allows us to
asymptotically integrate (1.2) in this sector to yield a fundamental set (see §3
below). The condition (1.4) is needed in our proof to ensure that the dominant
terms in this fundamental set have the same growth pattern in both of the
adjoining sectors thus providing a "connection" between the two sectors.

Finally, the authors would like to thank the referee for valuable suggestions
to improve the readability of the paper.

2. Preliminaries.

(A). [5; pp. 11-12]. An J?-set is a countable union of disks whose centers
converge to oo, and whose radii have finite sum. The set of all real θ for
which the ray z=reτθ meets infinitely many disks in an R-set, has measure zero.

(B). Let f(z) be a meromorphic function on the plane. If //(/) is a poly-
nomial in /, /', /", •••, /cί!), whose coefficients are meromorphic functions, say
H(f) is a sum of terms of the form αW/X/')*1"^/'*')**, where a(z) is not
identically zero, then the maximum of all the numbers, z0-HιH \-ik in the
terms of H(f), is called the total degree of //(/). In addition, we use the
standard notation (see [β; p. 4]) for the Nevanlinna proximity function m(r, /)

of the function /(*), which is defined as m(r, f}=(2πYl^π\Qg+\f(relθ)\dθ, where
Jo

log+;c denotes the maximum of log* and zero. We will need the following
slight variant of Clunie's lemma [6; p. 68]. The proof is identical to the proof
in [6].
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LEMMA 2.1. Let n be a positive integer, and let f be a transcendental,
meromorphic solution of the equation fnG(f)=H(f), where G(f) and H(f) are
polynomials in /, /', ••• , /c*° (for some &^1), whose coefficients are meromorphic
functions. Let Δ denote the set of all coefficients, and assume that the total degree
of H(f) is at most n. Then,

(2.1) m(r, G(/))=θ(y(r)+l+ Σ m(r, /<»//)) as r— >oo,
\ J=l /

where Ψ(r)=max{m(r, ά):

(C). We will need the following concepts from [11] :
(α) [11: §94]: The neighborhood system F(α, b). Let —π^α<b^π. For

each nonnegative real-valued function g on (O.(ft— α)/2), let V(g) be the union
(over all <5e(0.(ft-α)/2)) of all sectors, α+<Karg(z-A(d))<ft-<5, where A(δ)=
g(3)0*c«+<»/*. The set of all y^) (for all choices of g) is denoted F(α, V), and
is a filter base which converges to °°. Each V(g) is a simply-connected region
{see [11 § 93]), and we require the following simple fact which is proved in
.[2; p. 74]:

LEMMA 2.2. Let V be an element of F(a, b), and let ε>0 be arbitrary. Then
there is a constant 7?0(e)>0 such that V contains the set, a+ε^arg z^ίb—ε,

As in [1], we will say that a statement holds "except in finitely many
directions in F(a, ft)", if there exist finitely many points rl<r2<"'<rq in (a, b)
such that the statement holds in each of F(a, n), F ( r l f r2), ••• , F(rq, b) separately.

(b) [11 : § 13] : The relation of asymptotic equivalence. If f(z) is an analytic
function on some element of F(a, b}, then f(z) is called admissible in F(a, b).
If c is a complex number, then the statement f-+c in F(a, b) means (as is
customary) that for any ε>0, there exists an element V of F(a, b) such that
\f(z)—c\<ε for all zeF. The statement /<! in F(a, b\ means that in addi-

tion to /->0, all the functions ^J/->0 in F(a, b), where θ 3 denotes the operator
θJf=z(Logz)'~(Logj-1z)f'(z), and where (for &^0), θ] is the kth iterate of Θ3.
The statements /ι</2 and /ι~/2 in F(a, b) mean respectively /ι//2<l and
/i— /2</2 (This strong relation of asymptotic equivalence is designed to
•ensure that if M is a non-constant logarithmic monomial of rank ^p (i.e. a
function of the form,

<2.2) M(z)=Kza»(Logz)aι ••• (Logpz)ap,

for real α;, and complex KΦϋ), then /~M implies f'^M' in F(α, ^) (see [11:
§28]). As usual, ,εα and Logz will denote the principal branches of these func-
tions on \argz\<π.) We will write /ι~/2 to mean /ι~c/2 for some nonzero

•constant c. An admissible function /(z) in F(a, b) is called trivial in F(α, 6)
:if f<z~a in F(α, ft) for every α>0. If f^cz~1+d in F(α, ft), where c^O and
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0, then the indicial function of / is the function.

(2.3) IF(f, ρ)=cos(fify>+argc) for a<φ<b.

If g is any admissible function in F(a, b), we will denote by \g, any primitive

of g in an element of F(a, b). We will require the following fact (see [2 p.
75]):

LEMMA 2.3. Let f^cz'l+d in F(a, b), where c^O and d>0. // (al9 b,) is
any subintervaί of (a, b) on which IF(f, 0)<0 (respectively, IF(f, 0)>0), then

for all real a, exp\f<za (respectively, exp\/>zα) in F(aίf bj.

(c) The operator Θ1 defined by θlf=zf, will be denoted simply θ. It is
easy to prove by induction that for each n— 1, 2, •••

(2.4) /<">=*-"( ΣM'/)

(d) [11: §49]. A logarithmic domain of rank zero (briefly, an LD0) over
F(a, b} is a complex vector space L of admissible functions in F(a, b), which
contains the constants, and such that any finite linear combination of elements
of L, with coefficients which are logarithmic monomials of rank <ίp for some
£^>0, is either trivial in F(a, b) or is ~ to a logarithmic monomial of rank <p
in F(a, b). (The simplest examples of such sets L (where we can take (α, b)
to be any open subinterval of (—π, π)) are the set of all polynomials, the
set of all rational functions, and the set of all rational combinations of
logarithmic monomials of rank <£0. More extensive examples can be found in
[11: §§128, 53].)

(e) [1 §3], If G(v) is a polynomial in v, whose coefficients belong to an
LD0 over F(a, b), then a logarithmic monomial M is called a critical monomial
of G if there exists an admissible function Λ~M in F(a, b) such that G(h) is
not ~G(M) in F(a, b\ The set of critical monomials of G can be produced
by using the algorithm in [10; p. 236] which is based on a Newton polygon
construction. This algorithm shows that the critical monomials are of rank
<^0. (In the special case where the coefficients of G(v) are rational functions,
the critical monomials are precisely the functions cza which form the first term
of one of the expansions around z=oo of the algebraic function defined by
G(v)=0. This fact follows from [10; §26]).) Associated with a critical mono-
mial M of G(v) is a positive integer which is called its multiplicity. The mul-
tiplicity is defined as the smallest positive integer / such that M is not a
critical monomial of 3JG/dvJ. (See [10; p. 231]). If the multiplicity is equal
to 1, the critical monomial M is called simple.

(D). We will need the following concepts from [1] and [9] :
(a). Let n be a positive integer, and let {RQ(z\ ••• , Rn(z)} be contained in

an LA) over F(a, b) for some (a, b) with —π<a<b^π, and assume that Rn(z)
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is non-trivial (see §2(C) in F(α, b). Using (2.4), rewrite the equation,

(2.5) R*(z)w™+Rn-ι(z)w<*-l'>+ - R0(z)w=Q,

in the form,

(2.6) Ω(w)=Σ,Bj(z)θJw=Qf where θ°w=w.
J=0

By dividing equation (2.6) through by the highest power of z which occurs
in the expansions of all the functions Bj(z) for all /=0, •••, nt we may assume
that for each /, we have either B^l or B^l in F(a, b), and there exists an
integer p^O such that -#/<! for />/>, while Bp is ~ to a nonzero constant
(denoted Bp(oo)). The integer £ is called the critical degree of the equation
(2.5). The equation,

(2.7) F*(α)=Σflχoo)αJ=0,
.7=0

is called the critical equation of (2.5). Clearly, F*(ot) is a polynomial in a, of
degree p, having constant coefficients.

When (2.5) is written in the form (2.6) we form the algebraic polynomial
in vt

(2.8) H(v)=Σ,zJBj(z)υ>,
J=Q

which we will call the full factorization polynomial for (2.5).
Let W belong to an LDQ over F(a, b), and assume that W^z"1 in F(α, b).

Set λ=expUF, and let L(v) be the operator defined by L(v)—Ω(hv)/h. Let H(u)

and #(M) denote respectively, the full factorization polynomials for Ω(w} and L(υ).
In [9 § 10], the following concept is introduced: W is said to have transform
type (m, q) with respect to H (briefly, trt(W, H}=(m, q}) if Z,(v)=0 has critical
degree m, and if 0 is the minimum multiplicity of all critical monomials M of
K(u) which satisfy z~l<M<W in jp(α, b). (If there are no such M, then we
set 0=0.)

3. We will require the following lemma on asymptotic integration.

LEMMA 3.1. Let k be a positive integer, and let Q(z) be a rational function
whose expansion around oo is Q(z)=anz

n+an-1z
n-1-\-'-, where α^O and n/k>

—1. Let cίt •••, ck be the distinct roots of the equation ckjτan—^ Let (a, b) be
any open subinterval of (—π, π), and let G(z) be an analytic function in an element
of F(a, b} which satisfies G<zβ over F(a, b\ for every real number β. Then, for
each integer j in {1, •••, k}, there exist a complex number a} and a function E3

which is analytic in an element of F( — π, π\ which have the following two pro-
perties :
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(a) Ej^CjZ71^ over F(-π, π)\
(b) Except in finitely many directions in F(a, ft), the equation, u/c*>+(Q+

G)w=Q, possesses a fundamental set of solutions φ ί f •••, φk, where each φ3 is

of the form ψj—h3 explE, for some analytic function h} satisfying h^z0*.

Remark. (1) The proof will show that each function E3 is actually a
single-valued branch of an algebraic function (which depends on c}\

(2) As will be seen from the proof, the lemma will hold if the hypothesis
that Q is rational is replaced by the assumption that in some element of
F(—π, π\ the function Q is a single-valued analytic branch of an algebraic
function, and satisfies Q^anz

n in F(—π, π) for some complex αn^0, and some
rational number n> — k.

4. Proof of Lemma 3.1.

We will apply results from [1] and [9] to the operator L(u )—wcA°4-Qw;.
For this purpose, we rewrite the operator L in terms of the operator θ defined
by θw=zw' (and Θ2w = θ(θw) etc.). It is easy to see that we obtain

(4.1) L(w}=z~k(θ(θ-l} ••• (θ-k+l}w}+Qw.

Following §2(D), we associate with L the full factorization polynomial H(v)
defined by,

(4.2) H(v)=z~k(zv(zv-l) ••• (zv-k+ΐ))+Q.

In view of the expansion of Q around oo, it is clear that each function Nj=
CjZn/k is the first term of one of the k expansions around oo of the algebraic
function defined by H(v)=Q. (In the terminology of § 2 (C), the functions Nj
are the critical monomials of H(υ) and each is simple.) Using the terminology
of §2(D), it follows from [9; Lemmas 10.3, 10.5] that for each j, there is an
analytic function E3 satisfying Part (α) of the lemma and having the property
that its transform type with respect to H(v) is (1, 0). This means that the
operator L/w) defined by

(4.3) L/M)

has critical degree 1 in the terminology of §2(D), and therefore from [1 p.
147, Formulas (α), (ft)], there is a real number ί such that when the operator
z~tLj(u) is written in terms of θ, say

(4.4) 2-%<zO= ΣBm(z)θmu,
171 = 0

the following asymptotic relations hold over F(—π, π): For each m>l, we
have 5TO<1; there is aneonzero constant Kl such that B1^K1; either B0€.l or
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BQ^KQ for some nonzero constant KQ.
We now define M(w)=w<k>+(Q+G)w, and as above define,

(4.5) MXM)

Since M(w}=L(w)+Gwt we have,

(4.6) z-tMj(u)=z-tLj(u)+z-tGu= Σ Dmθmu ,
m=0

where Dm = Bm for ra>0, and D0=Bo+z~tG. In view of the hypothesis that
G<zβ over F(ay b) for every real β, it follows from [11; Lemma 53(c)] that
with F(a, b) as the neighborhood system, the operator z~lMj(u} is of the type
treated in [1] (i. e. the coefficients belong to a logarithmic domain of rank zero
over F(a, b)). In addition, the asymptotic relations for the Bm listed above show
that the critical degree of z~tMj(u) is 1. Thus if a3 is the root of the critical
equation (see [1; §3(e)]) for z~lMj(u\ then it follows from [1; Lemma 5 and
Theorem 1] that except in finitely many directions in F(a, b)} the equation

z~tMj(u)=0 possesses a solution hj^zaJ. Thus, such functions ^=/^exρ\E,

for /=!, ••• , k, exist except in finitely many directions in F(a, b), and are
solutions of w(ik'>+(Q + G)w= 0. The fact that they are linearly independent
follows immediately by applying Lemma 2.3 to f=Ei—Ej for each pair (i, /)
with iφj.

5. Proof of Theorem 1.1.

We observe first that we can assume that Θ0 belongs to (— π, π), since if
Θ0=π, then the change of variable p = —z in (1.2) transforms (1.2) into an
equation in p for which the hypothesis is satisfied for #0=0.

We assume contrary to the conclusion that (1.2) possesses a solution /^O
satisfying A(/)<oo. Thus we may write f=Geh, where G and h are entire
functions with G of finite order. Thus, from (1.2) we obtain,

(5.1) (hf)k + Φk^(hf)+Rep+Q=Qf

where Φk^(hr) is a differential polynomial of total degree at most k—l in
h', h", •" , whose coefficients are polynomials in G'/G, G"/G, ••• , G ( *YG having
constant coefficients. Applying Lemma 2.1 to (5.1), we find that h' is of finite
order.

Now set

(5.2) S = h"-((RP'+R')/kRW .

We now differentiate (5.1) and subtract this new expression from the expression
obtained from (5.1) by multiplying it by (RP'+R'}/R. The terms in ep cancel
and we obtain
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(5.3) (A/)*-1(-*S)=y*.1(A/),

where Ψk.ι(h') is a differential polynomial of total degree at most k—1 whose
coefficients are all meromorphic functions φ satisfying m(r, ^)^O(logr) as r— >o°.
Since hf is of finite order, it follows from Lemma 2.1 that m(r, S)=0(logr) as
r->oo. However, since R is a polynomial, we see from (5.2) that S can have
only finitely many poles. Thus S is a rational function.

We now consider the equation,

(5.4) wf-((RP'+R')/kR)w=S .

If SΞEO, set M;0(2)Ξθ. If S^O, it follows from [11 Theorem III, Part (b), p. 72]
that there exist ει>0 and an analytic solution WQ(Z) of (5.4) in an element of
F(Θ0-£1} 0o+si), such that,

(5.5) wQ^-kS/P' over F(θ0-εlt 00+eι)

(Thus, in both of the cases, S~0 and S^O, the function w0 solves (5.4).)
Now, let D(z} denote a single- valued analytic branch of R1/k on an element

of F(-π, π). (Thus clearly, if R(z)=tpz
p + ••• , then D~t]!kz*lk over F(-π, π),

for some choice of t p / k . ) . In view of (5.2) and (5.4), it easily follows that for
some constant Klf we have

(5.6) h'^Wo+KίDe*3'* in some element of F(θQ-εί} 00+eO.

Now the terms of total degree k — 1 in the differential polynomial
in (5.1) are easily seen to be,

(5.7)

Hence, when (5.6) is substituted into (5.1), we obtain an equation,

(5.8) Σβm(z)0mp(2)/*Ξθ,
771 = 0

where,

(5.9)

(5.10)

where,

(5.11) V

and where for each m, the function Ωm(z) is a polynomial (with constant
coefficients) in the variables G'/G, — , G^/G, w*9 wί, — , D, D', — , and
Q, P', P/x, ••• . Standard estimates on the logarithmic derivative of an entire
function of finite order, together with the known asymptotic behavior of wύ
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and D developed earlier (and the remarks in Parts (A), (B), and (C) in §2),
yield a real number Λ/>0 with the following property: For all θ in
(00— εi, 0o+ει) outside a set of zero measure, we have for all m— 0, 1, ••• , k,

(5.12) \Ωm(re*θ)\=Q(rN) as r-»-foo.

Noting that the left side of (1.3) is simply the indicial function IF(P', φ)
evaluated at φ=θ0, (see (2.3)) we can choose ε2>0 so small that ε2<£ι and such
that the only zero of IF(P', φ) on (00-ε2, 004-ε2) is at φ=θ0. Since ΪF(P', φ)
must change sign at φ—θ0, this function has constant signs on (00— ε2, 00) and
(0o, 0o+ε2), and these signs are different. Without loss of generality we can
assume that

(5.13) IF(P', <p)>0 on (00-ε2, 00),

and

(5.14) IF(P', φ)<0 on (00, 00 + ε2),

since the argument will be symmetric if we interchange the two intervals.
Now from (5.13) and Lemma 2.3, we see that for w=l, ••• , k, we have

e-mpik<zβ for all real β^ oyer p(0Q-ε2) 0o)β Thus, if we divide the equation

(5.8) by ep, and evaluate the resulting relation on any ray argz=θ, where θ
is an element of (00— ε2, 00) for which (5.12) is valid, we see that Ωk(reiθ)=o(rβ)
for all real β as r-*+oo. Since R in (5.9) is a polynomial which is not identi-
cally zero, we must have K*= — l. Thus, Ωk(z)=0. We now divide the relation
(5.8) by e<*-w*, and as above we find that for all θ in (00-ε2, 00), with the
possible exception of a set H1 of zero measure where (5.12) fails to hold, we have
Ωk_l(reiθ)=o(rβ) for all real β as r— »+oo. Since Kι is a nonzero constant, and
D in (5.10) satisfies D^t1

p

/kzp/k over F(—π, π) for certain constants p and tp,
it follows from (5.10) that V(z) has the property that for all θ in (00— ea, 0)o— //",
we have

(5.15) V(reiθ)=o(rβ) for all real β as r^+oo.

In view of the asymptotic behavior of D, clearly there exists an analytic branch
D! of D<k~Ό/2 in an element T of F(θ0—ε2) 0o+ε2), and we can assume that
WQ(Z} is also analytic in T. We now define a function W(z) on T by,

(5.16) W^GD

where \WQ represents a fixed primitive of wϋ on T. In view of the asymptotic

behavior of D and w0 (see (5.5)) and the fact that G is of finite order, it easily
follows (using Lemma 2.2) that if we set ε3=ε2/2, then there is a constant r0>0
such that W is analytic and of finite order in the region,

(5.17) Θo-ε3<aτgz<θ0+εs, \z\>r0.
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It is clear that W'/W= V on T, and hence from (5.15) it easily follows that
for each θ in (θ0~εB, Θ0)—H, there is a nonzero constant Jθ such that W(reίθ}-*Jθ
as r-»+oo. It follows from Phragmen-Lindelof principles [12; §5.61, 5.64, pp.
176-180] that all Jθ are equal to a single number /, and we have,

(5.18) W(reiθ)-+JφQ as r-^+oo for θQ-ε,<θ<θ,.

Since f=Geh, it follows from (5.6) and (5.16) that we can write on the
domain T,

(5.19) W=ψfD1e<k-ί>p'2k, where

(5.20) ψ=

for some constant K2Φ§ and some fixed choice of the primitive in (5.20). In
view of (5.14) and Lemma 2.3, we see that —KlDep'k<zβ for all real β, over
F(ΘQ, #0+s2), and it immediately follows from [2; §2, Lemma B, Part (b)] that
for some constant 7Γ3^0, we have

(5.21) ψ-+K9 over F(θϋ, Θ0+ε2).

Again in view of (5.14) and Lemma 2.3, we see that in F(Θ0, /Vf^X the
function Rep satisfies the hypothesis for G in Lemma 3.1. Hence by Lemma
3.1, there exists ε4 in (0, εs) such that in some element of F(ΘQ, θύ+ε^\ the

equation (1.2) possesses a fundamental set of solutions ^=/ι ;exp\E ; for

7=1, ••• , fe, where

(5.22) Ej~cjznlk over F(-π, π\ and

(5.23) hj~zaι over F(θϋ, #o+ε4) for some constant a3.

Hence, we can write / as a linear combination of φίf ••• , φk, say /=Σ βjψj.
Since some /3^0 (since /^O), the set / consisting of all 7 in {1, ••• , k] for
which βjΦϋ, is not empty. Since the constants c3 in (5.22) are distinct, the
union of the sets of zeros on (— π, π) of the functions IF(£<— EJt θ) for all pairs
(/, 7) in /X/ with iΦj, is a finite set. Letting ε5>0 be so small that (ΘQ, θo+εs)
contains none of these zeros, it follows from Lemma 2.3 (applied to f—Ei—Ej}
that for each pair (i, 7) in 7x7 with iΦj, either ψi<φj or ψj<φi in F(θύ, θQ-rε5).
Thus, there exists an element m in 7 such that φj<tφm in F(^0, #o-f £5) for all 7
in 7 with jφm. Hence we have,

(5.24) f=βmφm(l+E) where E->0 over F(Θ0, 6Ό+ε5).

Now for 7— m, the left side of (1.4) is simply IF(Em, θ) evaluated at Θ=ΘQ, and
is nonzero by hypothesis. Hence we can assume that ε5 chosen above is so
small that
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(5.25) lF(Em, θ} is nowhere zero on (6Q—ε5, Θ0+ε5).

Now, in view of (5.19), (5.21), (5.24), and the definition of Dlf we can write,

(5.26) TΓ=ί&1ATO(l+£)expjί7 on F(00, #o+ε5),

where

(5.27) U=En+((k-l)/2k)P'+((k-U/2XD'/D),

and where for some constant K4^Q,

(5.28) φi-tK^Q over F(Θ0, Θ0+ε5).

Since D is a branch of an algebraic function and satisfies D~tl^kzp'k over
F(-π, π\ it follows from § 2 ( C ) that either D'/D^z'1 or Df/D~(p/k}z~l over
F(—π, π). In addition, by hypothesis, we have n/k>r—l where r is the
degree of P, and hence from (5.22), we see that

(5.29) U~Em over F(-π, π).

We now distinguish the two cases given by (5.25).

Case I. IF(Em, #)<0 on (Θ0—ε6> θQ+ε5). In this case, it follows from (5.29)

and Lemma 2.3 that exp\U<zβ for all real β, over F(θ0—ε5, ΰϋ+ε5). Hence, in

view of the representation (5.26) (and the asymptotic relations (5.23), (5.24) and
(5.28)), we see that W->0 over F(Θ0, Θ0+ε5). This fact, together with (5.18)
provides a contradiction of the Phragmen-Lindelof principle [12; §5.64, p. 179].

Case II. lF(Emf #)>0 on (Θ0—ε5, θ0-\-ε5). In this case, we define,

(5.30) W0=z-°™W exp(-Jc/).

Since W is analytic on the region (5.17), and since z~am and exp(— \ί7) are

analytic on an element of F(—π, π\ clearly WQ is analytic on the region (5.17)
(possibly with a larger r0). Since W is of finite order on the region (5.17), the
same is clearly true of WQ (by (5.22) and (5.29)). From Lemma 2.3, we have

that exp(—\£/)<2^ for all real β over F(θ0—ε5, Θ0+ε5) and so from (5.18), we

see that

(5.31) Wo(reiθ)-^Q as r-H-oo for Θ0-ε5<θ<θ0.

However, by (5.26) we have,

(5.32) H^=01(λm/zβ'*)(l+£) on
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and in view of (5.23), (5.24), (5.28) and Lemma 2.2, we have Wϋ(reiθ)-^K,Φθ
as r-»+oo for θύ<θ<θQ+ε5. This fact, together with (5.31), again provides a
contradiction to the same Phragmen-Lindelof principle as in Case I.

This contradiction establishes the theorem.
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