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SELF-HOMOTOPY EQUIVALENCES OF

H* ( - Zjp) -LOCAL SPACES

BY JESPER MICHAEL MΘLLER

Abstract

Under certain finiteness conditions, ^-completion commutes with the form-
ation of a certain group of self-homotopy equivalences.

1. Introduction.

Let X be a pointed, 0-connected topological space, Aut(Z) the group of
based homotopy classes of based self-homotopy equivalences of X, and Aut#(Z)
the kernel of the obvious homomorphism

Aut(Z)—> τiAutπi(X)

where we further assume either that X is a Cΐf-complex of dimension d or
that 7r*(Z)=0 for *>d, l^d<oo. The purpose of this paper is to investigate
the behaviour of Aut# under H*(— Z/£)-localization of the space.

To explain the main result, let I be a finite, connected, and nilpotent
CTF-complex and Xz/p its i/*(— Z/£)-localization in the sense of Bousfield [1].
Then Aut#(Z) is nilpotent [3] and

Autt(Xz/p)=Ext(Z/p°°, Aut#(Z))

where Ext (Z/p°°, —) is the Ext—^-completion functor defined for all nilpotent
groups by Bousfield and Kan [2].

This paper can be viewed as a parallel, not only in subject but also in
method, to [7]. I am very grateful to Prof. K. Maruyama for sending me a
preprint of his paper, to Prof. C. U. Jensen who kindly supplied the proof of
Proposition 2.4, and to the topologists at Memorial University for the invitation
to their conference on Spaces of Self-homotopy Equivalences, Montreal, August
1988.

2. Completions of nilpotent groups.

In this section I collect for later reference some fundamental facts about
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^-complete (or Ext—^-complete, in the terminology of [2]) nilpotent groups.
The prime sources of information are [1], [2], and [8].

Let p be a prime number. In the pointed homotopy category of CW-
complexes, Bousfield [1] constructed a #*(— 2Γ/£)-localization functor which
agrees with the Z/^-completion functor of Bousfield and Kan [2] for nilpotent
complexes. This H*(— Z/ p)-loca\ization of a complex X will here be written
as ηx: X->XZ/P

Let TV be a nilpotent group. Define

Ep and Hp are endofunctors of the category of nilpotent groups; HPN is of
course even an abelian group. The induced map

η*: N=πιK(N, 1) — > K(K(N, 1)Z/P)=EPN

is called the completion map.

DEFINITION 2.1. N is p-complete if the following two conditions are satisfied:
(i) HPN=O
(ii) The completion map η: N~>EPN is an isomorphism.

The first condition is satisfied by any finitely generated nilpotent group;
EPN and HPN are ^-complete groups the completion map N-*EPN is universal
for homomorphisms from N into ^-complete nilpotent groups.

PROPOSITION 2.2. ([2], VI. 2.5). Any short exact sequence

1 — > K — > N — > Q — > 1

of nilpotent groups induces an exact sequence

0 — > HpK—> HPN—>HPQ —* EpK—>EpN—> EPQ—*1.

COROLLARY 2.3. (a) // HPK=O=HPQ, also HPN=O
(b) // K and Q are p-complete, so is N
(c) // HPQ~O and N is p-complete, K is p-complete.

For an abelian group A,

EpA=Extz(Z/p~, A)

HpA=Eomz(Z/p°°, A)

and the completion map η: A->EPA equals the boundary map δ of the exact
sequence
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0 —> HPA —> Hom(z|J-], A) —> A —> EPA —> Ext(zβ-j, A)

induced from the short exact sequence

}]0 - ^ Z —>Z\j\—>Z/p~—>0

of abelian groups.
Any ^-complete abelian group is in a canonical way a module over the

vingEpZ=Zp=^\jmZ/pnZ of £-adic integers ([2], VI. 4.3). Conversely,

PROPOSITION 2.4. Any finitely generated module over Zp is p-complete.

Proof. Since Zp is a PID, all finitely generated Zp-modules are finite
direct sums of cyclic Zp-modules. But the only cyclic Z^-modules are Zp itself
and the cyclic groups Z/p3Z, l<j<oof and these groups are ^-complete.

Not all Zp-modules are ^-complete ([2], VI. 4.4).
Let now N be a nilpotent group acting nilpotently on an abelian group H.

If HPN=O the short split exact sequence

0 — > H —

will induce a short split exact sequence

0 — > EpH — > Ep(HxN) 7=1 EPN — > 1

of ^-complete groups. Thus EPN acts on EPH. Also N itself acts on EPH;
this follows from the universal property. All actions are compatible in the
sense that the following diagram of action maps and completion maps

NXH

1
NX EpH

1
EPNXEPH

—• H

1
—»• EpH

II
—»• EpH

commutes.
Consider an element Θ^H and its image ηθ^EpH under completion. The

completion map on N restricts to a homomorphism

of the respective isotropy subgroups determined by θ and ηθ.

THEOREM 2.5. Suppose that HpN=0 and that H is finitely generated. Then
Hp(Nθ)=0, {EVNYΘ is p-complete, and the slanted arrow
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N° »• (EpN)"β

EP(NΘ)

generated by the universal property, is an isomorphism.

Proof. In [4] Hilton proved a theorem like this one for ^-localization
instead of ^-completion. I simply adapt his proof to the present context.

The proof is by induction on c~nilN(H). If c=l, the action is trivial,
and there is nothing to prove. Suppose now that nilN{H)—c and that the
theorem holds for all actions of nilpotency<c. N acts trivially on Γ: =ΓCN\H)
so there is an induced action on H/Γ and nilN(H/Γ)=c—l. As HP(H/Γ)=O,
the short exact sequence

0—>Γ—>H-^H/Γ—>0

of Λf-modules induces a short exact sequence

Epκ

0 — > EVΓ —* EPH > EP(H/Γ) — > 0

of £pAf-modules. Their associated exact orbit sequences ([4], (1.5) p. 189)

1 * Nβ > N*θ 2—> p

i 1 , 1
p ( 9 ? i φ > - ^ EPΓ

are connected by (restrictions of) completion maps. (The homomorphism δ is
defined by δn—θ—nθ). Applying the functor Ep to the upper exact orbit
sequence yields the sequence

E δ
1 — ^ EP(N') — > EP(N*°) —-ίU EPΓ,

easily seen to be exact. By the induction hypothesis, (EpN)Bp'"-7lβ:' is p-
complete and the vertical arrow

1 * Ep(Nβ) * Ep(N<β)

1 — > (.EpN)iβ » (EPN)EP'<I<» » EPΓ,

generated by the universal property, an isomorphism so is then the restriction
Ep(Ns)->(EpN)"β.

Finally, in the short exact sequence
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1 — > MΘ —>Nκθ —> im δ —> 0,

Hp(imδ)=O, so Hp(Nθ)^Hp(Nκθ), and the latter group is trivial by induction
hypothesis.

3. Spaces of self-homotopy equivalences.

In this chapter, I investigate the relation between Aut#(F) and Aut#(Z)
where r: Y-+X is one step on a Postnikov ladder.

The basic situation of this chapter is depicted in the following diagram

K(M} n)

Here, X is a connected and n-anticonnected (i.e. πi(X)=0 for i^n) space, the
square is a pull back, L = L(M, n+l)=EπXπK(M, n+l) where Mis a π-module,
n=πx{X), PL->L is the path fibration [6] over and under B~Bτz—K{πy 1), k
is the zero-section of the fibration k: L^>B, θ0 is a fibration inducing the
identity on πlf and θ is a map over B whose vertical homotopy class also will
be denoted by 0eUP+ 1(Z; M).

The notation for mapping spaces is as in Switzer [10]. Aut#(Z), Z<^{X, Y\,
can be thought of as a set of path-components of Fλ(Z, * Z) write aut#(Z)c
Fι(Z, * Z) for the subspace made up by these path-components such that
7Γ0aut#(Z)=Aut#(Z).

The homotopy sequence for the standard fibration

Π K(Hn-ι(X; M), i) —> aut#(F) —

terminates with the following exact sequence of groups

d
> πχaut#(Z) —> Hn(X; M) —> Aut#(F) —

where K\xt^{X)θ is the isotropy subgroup of θ under the action of Aut#(Z) on
Hn+\X;M). (Write aut#(Z)^Caut#(Z) for the corresponding space such that

t ( Z ) * A t ( Z ) * )
# ( ) # ( ) )

In order to obtain a useful description of 3, I shall now present an alter-
native fibration resulting in the same long exact homotopy sequence. First, I
introduce the spaces
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of self-homotopy equivalences over B.

LEMMA 3.1. The inclusion autf (Z)Caut#(Z) is a weak homotopy equivalence,
ZΪΞ{X,Y}.

Proof. The fibration ΘQ induces a ίibration of mapping spaces

where F%0(X, * B), the identity component of the space of based maps X->B,
is contractible. Hence the fibre θ,o\θQ)=a\xtξ (X) is equivalent to the total
space aut#(X). Similarly for Y.

Consider also autg (X)^autf (X)Γ\n\it*(X)θ.
Let /=[0, 1] denote the unit interval, /={0, 1}, and p2: IxX->X the

projection onto the second factor. There is a fibration [9]

71-1

Π K(H"-\X; M), i) — * FβP2(IX(X, * ) ; L , B ) — * Fθp,(IX(X, *) L, B)

as well as a map of autf (X)β into the base space taking /eautf(Z)* into the
pair (θ, θf).

PROPOSITION 3.2. The pull back of the diagram

FβP2(Ix{X,*);L, B)

\

autf (X)θ —* FΘPt{ix{X, *); L, 5)

is weakly homotopy equivalent to aut#(F).

Proo/. Recall first that

where u: I-+L is a path in the fibre k~ιθQ{x)C.L with uφ)—^kθQ{x).
The pull back, £, of the diagram in the proposition consists of pairs

(/, H) such that /eautf (X) and H: IxX->L is a based vertical homotopy of
θ to θf. Associate to any such pair the self-map [/, # ] : Y->Y given by

[/, #](* , u)=(f(x), u*H(-, x))

where the symbol * stands for multiplication of paths. Note that * is defined
here, the resultant path stays inside the fibre over θo(x) and ends at H(l, x)—
θf(x). Since πn[f, H]=l, we have a fibre map
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E [ ~ ' ~ " ] >aut»(F)

I I
autf(X)* • aut* (X)*

Since the maps between the base spaces and the fibres are weak homotopy
equivalences, so is the map between the total spaces.

COROLLARY 3.3. The map 9: πiaut # (Z)->#: =Hn(X; M) is the composition

πιautάX)—>πιFβpJtIx(X, * ) ; L, B)=HxH—>H

where the second map takes (a, b)^HxH to b—a.

Proof. The second homomorphism is computed in ([9], p. 184).

4. Proof of the main theorem.

After some general remarks concerning the effect of //*(— Z/ί)-localization
on function spaces, the main theorem is formulated and proved by an inductive
argument.

Let I b e a nilpotent connected space which is either a finite CJF-complex
or finitely anticonnected of finite type (i.e. πι(X)=0 for z>0 and finitely
generated for all i).

For each based self-map / of X there exists a based self-map fp of XZ/P,
unique up to homotopy, with fpη = ηf. The completion map η: X-*Xz/p induces
maps of function spaces

ΊL v
F%Xy * X) — > F«ηf{X, * Xzlp) +— F}p(Xz/p, * Xzlp)

where the superscript 0 indicates the path-component containing the function
occuring as subscript.

LEMMA 4.1. (a) F%X9 *; X) is nilpotent of finite type.
(b) F°f(X, * Xzlp) is / / * ( - Z/p)-local.
(c) η induces a homotopy equivalence F}(X, * ; X ) z / p = F°/(X, *; XZ/P).

(d) η is a weak homotopy equivalence.

Proof, (a), (b), and (c) are special cases of ([2], VI. 7.1); in case X is
finitely anticonnected of finite type, replace the source space X by its TV-
skeleton XN for Λ/>0. (d) is a special case of ([1], Proposition 12.2).

Let now M be a finitely generated abelian group on which π acts, π—πx{X).
Then π also acts on EPM and since Hpπ=0, even Epπ=π1(Xzlp) acts on EPM.
Consider the induced homomorphisms
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H\X ;M)^> H\X EPM) -?-> H%Xz/p EPM)

of cohomology groups with local coefficients. As a /)-comρlete abelian group,
EpM is a Z^-module, so also Hi{Z EPM), Z=X, Xz/p> is a Z^-module through
coefficient group homomorphisms.

LEMMA 4.2. (a) H\X\ M) is a finitely generated abelian group.
(b) H%X; EpM) is p-complete
(c) η* induces an isomorphism EPH%X; M)^H%X; EPM) of Zp-modules.
(d) η* is an isomorphism of Zp-modules.

Proof. If either finiteness condition on X is satisfied the cellular co-
homology groups Γ*(X;M) are finitely generated ([5], Theorem II.4.2), so (a)
is obvious. Statements (b) and (c) follow from the observations that
Γ*(X; EpM)=EpΓ*(X; M>) and Ep is an exact functor on the category of
finitely generated abelian groups (Proposition 2.2). To prove (d), consider the
fibration

Lz/p=L(EpM, i + l) —> Bz/p=K(Epπ, 1)

constructed from the £p7τ-action on EPM. Let u: XZ/p->Lz/p be any map.
The completion map η: X—>XZ/P induces a map rj of fibrations

FUη{Xz/py *> Lzipy Bzip) * Γfi\Xf *ί J^ZfPf "zip)

1 . ' ι .
FUη(Xz/py * y ̂ Zlp) < Fu(Xf * Lz/p)

According to ([1], Proposition 12.2), the two lower horizontal maps are weak
homotopy equivalences. So is then the map between the fibres. It follows in
particular, that the induced map of πιFu(Xf * ; Lz/Pf BZιP)—H\X\ EPM) into
πιFU7](X, * Lz/P, Bz/p)=Hi(Xz/p EPM) is an isomorphism of 2^-modules.

The main result of this paper is the following.

THEOREM 4.3. Let X be a based, nil potent, connected space which is either
a finite CW-complex or finitely anticonnected of finite type. Then HpAut#(X)—
0, Aut#(Zz/p) is p-complete, and the slanted arrow

A\xt*(Xztp)
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generated by the universal property, is an isomorphism.

By a standard trick it suffices to prove Theorem 4.3 for finitely anticonnected
nilpotent spaces of finite type in which case induction over the height of a
Postnikov tower for X is a natural approach.

To start the induction, note that the theorem certainly is true in case X—
K(π, 1) for then A u t # ( Z ) = l = A u t # ( Z z / p ) . As to the inductive step, suppose
now further that 7Ci(X)=0 for i^n, that Theorem 4.3 holds for X, and that
Y, as in Chapter 3, is the total space

K(M, n)—>Y—+X

of a nilpotent Eilenberg-MacLane fibration over X with ^-invariant 0 e
Hn+1(X; Af). Then Y is nilpotent, (w+l)-anticonnected of finite type, and I
must show that Theorem 4.3 is true for Y.

According to Lemma 4.2, there is a unique class

with η*θp = η*θ and corresponding to a vertical homotopy class θp: Xzip-^LZιv

of maps over BZ/P=
zK(Epπf 1). Using the characterization of η: Y-*YZ/P of

([8], Theorem 2, Theorem 3) it is easy to see that

LEMMA 4.4. The pull back of the diagram

PLzlp
I

θ,'V

IS ϊ zip-

The fibre

induces a map

τriaut#(Z

I

map

of exact

5

a

K(M, ή)

1
Y

1
X

sequences

Hn(X;M)

I

— > K{EPM, ή)

\
— > Yzip

\
> Xzip

—> Aut,(K) — *

I
Aut,CY)«

I
— > 1

I
EVM)
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The two vertical homomorphisms to the left are of the form {η)*1^* and

( T ? * ) " 1 ^ * , respectively; cf. Lemma 4.1 and 4.2. The two non-trivial homo-

morphisms to the right are of the form / - > / P where fpη=ηf.
The idea is now to apply the functor Ep to the upper exact sequence and

compare the result to the lower exact sequence. But first I make two obser-
vations concerning the lower sequence.

Lemma 4.1 shows that πia.\λt#(XZ/p) is a /^complete abelian group, in
particular a Z^-module ([2], VI. 4.3). Also Hn(Xz/p EPM) is a Z -module
and in fact.

LEMMA 4.5. 3 : π1aut#(XZ/p)—>Hn(Xzίp EPM) is a Z^-module homomorphism.

Proof. Use Corollary 3.3.

LEMMA 4.6. Aut#(F z / p) and A\xt$(XZιv)
θp are nilpotent p-complete groups.

Proof. Surely Aut#(F z / p) is nilpotent ([3], Theorem A) as Yz/p is finitely
anticonnected.

As explained on ([3], p. 189), the nilpotent group Aut#(Z) acts nilpotently
on the finitely generated abelian group Hn+1(X, M). Since HpAut#(X)=0 by
induction hypothesis, Theorem 2.5 can be applied to show that (EpAut#(X))η*°
is ^-complete nilpotent and to yield the first of the isomorphisms

while the second isomorphism is by the induction hypothesis. In particular, all
three groups are nilpotent and ̂ -complete.

Since Hn(Xz/p EPM) is a finitely generated ϋΓp-module and 3 a Z^-module
homomorphism by Lemma 4.5, the cokernel of 3 is also a finitely generated
Zp-module and thus ^-complete by Proposition 2.4.

To conclude the proof, consider the short exact sequence of nilpotent groups

0 — > cok3 — > Aut#(Yz/p) — > Aut#(Xz/p)
θp — > 1

and apply Corollary 2.3. b.
Next follow two remarks on the upper exact sequence.

LEMMA 4.7. HpAut#(Y)=0.

Proof. Apply Corollary 2.3. a to the short exact sequence

0 — > cok3 — > Aut#(F) —

noting that Hp(cokd)=0, since the cokernel of 3 is finitely generated, and that
Hp(A\iU(X)θ)=0 by Theorem 2.5.

LEMMA 4.8. The sequence

EpH
n(X; M) — > Ep Aut#(F) — > Ep(Aut#(X)θ)

Epd
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obtained by applying the functor Ep to the upper exact sequence, is exact.

Proof. Note first that this is not entirely obvious since Ep is not an exact
functor.

Application of Ep to the commutative diagram

0 0

T 1
0 —• im3 —• Hn{X; M) —* cokδ —»• 0r x

1
1

with exact row and columns, results in a similar commutative diagram with
Ep in front of all occuring groups. The exactness is preserved since
Hp(Aat#(X)β)=0=Hp(cokd). An easy diagram chase now finishes the proof.

Since all groups in the lower exact sequence are ^-complete and nilpotent
by Lemma 4.1, 4.2, and 4.6, the universal property will generate a map of
exact sequences

EpH
n(X;M) —>EpAut#(Y)—> Ep(Aut«(X)θ)—>1

The upper sequence is exact by Lemma 4.8, the outer homomorphisms are iso-
morphisms by Lemma 4.1, 4.2, and Theorem 2.5. The Five Lemma now implies
that the middle homomorphism

EpAut»(Y)—>Aut«(Yz/p)

is also an isomorphism. This finishes the inductive step and thus the proof of
Theorem 4.3.

Remark 4.9. For a family of primes P, let NP denote the P-localization [5]
of the nilpotent group or space N. The above method can also be used to
prove that

under the same finiteness assumptions on X as in Theorem 4.3. This is a slight
extension of Maruyama's result ([7], Theorem 0.1).
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