
M. MOTOO
KODAI MATH. J.
12 (1989), 132—209

PERIODIC EXTENSIONS OF TWO-DIMENSIONAL

BROWNIAN MOTION ON THE HALF PLANE, I

BY MINORU MOTOO

DEPARTMENT OF INFORMATION SCIENCES, TOKYO DENKI UNIVERSITY^

Introduction

In the paper and the following one [6], we shall study periodic extensions
of the Brownian motion on the half plane D~{(x, y): y^O}. By an "extension",
we mean a Markov process on D whose laws before paths reach the boundary
dQz={(χ} y); y—Q\ coincide with those of the two-dimensional Brownian motion,
and by a "periodic extension" we mean an extension whose laws are invariant
under translation of length 2π parallel to the %-axis.

First, let us quote an extension as an example. Assume the semigroup of
the extension satisfies the boundary condition

on do, where a and β are smooth periodic functions on the real line and a is
positive. Then, the extension is periodic, has continuous paths and has no
sojourn on the boundary d0. Let functions u and m be harmonic in D={(x, y):
y>0} (in classical sense) and smooth in D, and satisfy

a(x)uxx(x, 0)+β(x)ux(x, 0)+uy(x, 0)=0

u(x+2π, y)-u(x, y)=2π

(α(x)m(x, Q))xx-(β(x)m(x, 0))x+my(x, 0)=0

and

m(x, y)dx—2π.

o

Such smooth functions u and m with ux>0 and m>0 uniquely exist. Define
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σ(dx)=ux(x, Q)dx , μ(dx)=m(x, 0)dx ,

The function u is considered as the "standard" harmonic function and m is the
density of an invariant measure of the extension. The numbers k and p are
considered to represent "mean drift" and "mean fluctuation", respectively, of
the extension on 30. Moreover, a and β are determined by σ, μ> k and p.

In general, starting from two periodic measures α, μ and two constants k,
p, which satisfy certain analytic conditions, we shall define an extension which
we call {σ, μ, k, £}-process. It is, in a sense, a limit of such processes as
given in the above example. Let @f be the class of extensions which are Feller
processes with continuous paths and have no sojourn on the boundary 30. Al-
though a {σ, μ, k, p]-process is not necessarily a process with continuous paths,
we shall show each element of £Bf is contained in the class of all {σ, μ, k, p}-
processes. Thus we can characterize it by σ, μ, k and p. To establish these
facts is the main purpose of our papers.

We can not yet handle more general extensions. Without periodicity, dif-
ficulty arises from noncompactness of the boundary. By conformal mapping,
investigation of periodic extensions is essentially equivalent to that of extensions
of the Brownian motion on the unit disc. As for continuity of paths, it seems
beyond our methods to treat extensions with paths which have jumps at 30.
We can not yet see whether the condition that extensions are of Feller type is
essential or not.

In Chapter I, we shall first give general definitions of extensions which we
shall treat. In our study, we shall exclude in advance extensions with sojourns
at do or jumps from 30 into D. Then, we shall show that the problems to
determine our extensions is equivalent to the problem to find systems of hitting
measures of the lines {(x, y): y = α} from points in {(x, y): 0<y<α} for any
α>0. In the following, we shall concentrate our study mainly on systems of
hitting measures. In the last section, a continuity conditions on semigroups of
extensions will be translated into certain conditions on systems of hitting
measures.

In Chapter II, we shall define {σ, μ, k, £}-process. Let σ and μ be periodic
measures on the real line with <7([0, 2π~])=μ(\βy 2π~])—2π. We shall assume
that they satisfy a certain integrability condition [P] given in [5.11]. Let k
be any constant and p be any constant with p^po(σ, μ, k), where po(σ, μ} k)
is a constant determined by σ, μ and k in (4.14). Starting from σ, μ} k and p,
we shall formulate a boundary condition. A {σ, μ, k, £}-process will be defined
as an extension which induces a class of harmonic functions satisfying this
boundary condition. Proof of uniqueness of a {σ, μ, k, p)-process for given σ,
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μ, k and p is the main contents of the chapter.
In Chapter III, guided by their probabilistic meaning stated in the example,

we shall construct two measures σPy μP and two constants kP, pP from a given
extension P. We shall also show that σP and μP satisfy the condition [P] and
pP^p0(σP, μP, kP). In the last section, we shall give a sufficient condition that
an extension P is a {σP, μP} kP, />/>}-process.

In the next paper [8], we shall prove existence of a {σ, μ, k, £}-process
for given σ, μ, k and p. Then we can show that, for the {σ, μf k, £}-process
P, <Jp> P py kP and pP constructed in Chapter III coinside with the given σ, μ, k
and p. We shall also study how properties of {σ, μ, k, £}-processes can be
transformed into conditions on σ, μ, k and p. Especially, we shall show that
any extension P in the class <?/ can be characterized as a {σ, μ, k, p}-process
with σ and μ being positive on any open interval and σ being a continuous
measure.

In 1952, W. Feller ([2]) determined all possible extensions of one-dimensional
diffusion processes in regular intervals and characterized them by boundary
conditions with analytic forms. Probabilistic construction of these extensions
was given by K. Ito and H. P. Mckean ([5]). For multi-dimensional diffusion
processes, A. D. Wentzell ([15]) gave possible forms of boundary conditions
which smooth extensions of processes should satisfy. Using the idea of the
process on the boundary, T. Ueno and K. Sato ([13], [10]) showed existence
of extensions which satisfy WentzelΓs boundary conditions in general but
smooth cases. Following their idea, M. Motoo ([6]) characterized extensions of
fairly general class of Markov processes by processes on the boundary. In 1979,
S. Watanabe ([14]) gave probabilistic construction of extensions which satisfy
WentzelΓs boundary conditions. For this purpose, he used Poisson point pro-
cesses of Brownian excursions. Research of extensions of Markov processes,
using theory of Dirichlet forms, were introduced by M. Fukushima ([3]) in 1969
and developped by H. Kunita ([4]) and M. L. Silverstein ([11]).

However, it seems that there are few papers which treat multi-dimensional
singular extensions in concrete forms, except the paper of E. B. Dynkin ([1])
and that of M. L. Silverstein ([12]). The former treated extensions with sin-
gular drifts of Brownian motion on the smooth plane domain, while the latter
treated symmetric extensions of certain symmetric process on the half plane.
Our papers treat extensions of one of the simplest multi-dimensional diffusions,
that is, the absorbing Brownian motion on the half plane and our aim is to try
to find the most general extensions of it as concretely as possible. Results of
our papers have already been published in ([7]).

I would like to express my gratitude to K. Sato, T. Shiga and K. Nisioka
for their advice and encouragements, and to Y. Enomoto and M. Kotani for
nice typing of manuscript. Also, I extended my sincere thanks to K. Tsuchi-
kura for his immeasurable support.
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Contents of the paper

§ 0. Notations.
Chapter I. Preliminaries.

§ 1. Definitions of processes in & and SV
§2. Systems of hitting measures.
§ 3. Continuity of Ptf in D.

Chapter II. Formulation and Uniqueness of ^-processes.
§ 4. Formulations of ^-solutions and /^-processes.
§ 5. Explicit representation of the function £/.
§6. Proof of the fundamental lemma.
§7. Uniqueness of BN -solutions and /^-processes.

Chapter III. Construction of Bp.
§8. Construction of μp and kp and condition [V].
§9. Construction of σp and condition [M].
§ 10. Construction of Up> Up(φ) and Pp.
§ 11. Condition [L] and i?p-processes.

Contents of the next paper [6]

Chapter IV. Characterization of the class £PC.
§ 12. Certain recurrence relations.
§ 13. Sufficient conditions for a process to belong to S>c.
§ 14. Necessity of the conditions given in § 13.
§15. Processes which satisfy the condition [H. C].

Chapter V. Construction of ^-processes.
§16. Construction of processes Pa,β.
§ 17. Existence of J5-processes (1): Smooth case.
§ 18. Existence of 2?-processes (2): Case when σ and μ are in Mt{R).
§ 19. Existence of /^-processes (3): General case.

§ 0. Notations.

Throughout the paper, we shall use the following notations.

1°
/?=the set of all real numbers.
Z)=the open upper half plane={z=(x, y): y>0}.

For any real interval /,
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We also write

To the above spaces, we give the ordinary metric

(zj=(x,, y3), ; = 1 , 2).

2° In general, for any metric space X with metric p, we write

B(X)—the (7-field generated by all open sets in X.

B(X)=the set of all 2?(Z)-measurable functions on X.

Bb(X)={fίΞB(X): f is bounded}.

ll/ll=sup,eχ|/(x)| for f*ΞBb(X).

C(X)=the set of all continuous functions on X.

Cb(X)={ftΞC(X):f is bounded} = C(X)ίλBb(X).

Cκ{X)-={f^C{X)\ f has compact support}.

M(X)=the set of all measures on B(X).

For M G I and ε>0,

Uε(u)={v(ΞX: p(u, v)<ε}.

3° If G is an open set in a Euclidean space and G c I c G , we set

C*(Z)=the set of functions on X which are &-times
differentiate in G and whose derivatives of
order ^k are continuous in X.

Ck

b{X)—{f^Ck{X): f and its derivatives up to k are bounded}.

4° We set z+a=(x+a, y) for αei? and z=(x, y).
For X=R or D1 and a positive integer N, set

Bp,N(X)={fς=B(X): f(u+2Nπ)=f(u) for any M G I | ,

; there exists a constant Cf such that

BP(X)=BP)1(X), Bq(X)=Bqιl(X), Cp>N(X)=C(X)ίΛBp,N(X),

Cq>N(X)=C(X)ΓΛBq,N(X), Cp(X)=CPtί(X), Cq(X)=Cq,ί(X).
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For X=R, set

MPtN(R)=^{μ^M(R): locally bounded and μ(du+2Nπ)=μ(du)},

MP(R)=MP>1(R),

^ for

5° We define D* by identifying all points in the set 30— {j>=0} in D, more
precisely, D*=D\J{d} with metric

p*(zi, ^ί)=min{^i+3'2, p(zu z2)}, zu

p*(β,z)=p(z,d)=y, ZΪΞD,

p*(β,d)=O.

Then, it is easily seen that D* is a complete separable metric space.
We define a continuous mapping i from D onto D* by

t{z)—z for

d for

6° W—the set of all continuous functions w—w{t) from ίe[0 , c>o) into D*.

We write w(t)—z(t, w).

^ έ=the (shift) mapping from W into W such that
z(s, θtw)=z(t+s, w) for any se[0, oo).

ft^the σ-field generated by all sets {M/: Z(S, W)ΪΞA}, s£t, A<=B(D*).

B=the σ-field generated by all sets {w: z(s, w)^.A}, s<oo,

A [0, oo)-valued jβ-measurable function τ on W is called Markov time if
t}^Bt for any fe[0, oo).
For any Markov time τ, we set

: <JΓ\{τ<t}E:Bt}.

Replacing J9* by D in the above definitions, we also define

W, W(t)=z(t, w), Bτ, B and BT.

7° PzB>2(') is the 2-dimensional Brownian measure on the space of con-
tinuous paths on R2, starting from

Py

B ι{') is the 1-dimensional Brownian measure on the space of
continuous paths on R, starting from
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P2

Λ>2( ) is the 2-dimensional reflecting Brownian measure on
D starting from z^D.

Py

R'\ ) is the 1-dimensional reflecting Brownian measure on
[0, oo) starting from 3>e[0, oo).

The measures above give Markov processes, whose transition probabilities
are given by

for

for Be=B(R) ,

+exp{-±((ξ-xγ+(V+yf)})dζdη for AeB(R'),

for 5eB([0 , oo)).

8° We shall use the following kernels related to the 2-dimensional Brownian
motion. For 0<c<b<a, XΪΞR and B^B(R),

ίΞBx{a}, σa<σc)

= ( -eπa-\ξ-x)dξ,
JB

}, σc<σa)

where σa and σb are hitting times of da = {y = a} and dc={y=c} respectively,
and

ϊ π o / x sin
x x v ' 2r(cosh (πx/r)-cos (πs/r))

We write

Qa~c(x,
b\c O—C

and, if x£B (B is the closure of B),
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Pa-C(x, B)=lim—*-r°JI?(x, B)=\ p"-c(ξ-x)dξ,
δtα a— 0 JB

where

v κ ' 4r2 (cosh(πx/2r))2 '

4r2 (sinh(^^/2r))2 y

and further

where πr(x) is Poisson kernel, t h a t is

rf , 1 1
7Γ % -t"i

We also w r i t e :

1
π

smh

2π (cosh j - c o s ( * -

The functions kξ(z) and ^(z) are harmonic conjugates of hξ(z) and Λ (̂̂ ) in D,
respectively.

I. Preliminaries

§ 1. Definitions of processes in & and £PC.

Let D*, PF, .B and j&ί be defined as in §0, 6°.

[1.1] DEFINITION OF THE CLASS 5>.

is in class £P if and only if
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(p. 1) PZ(A) is a probability kernel on DxB.

(p. 2) Pt(z(f, W)*ΞD)=1 for any f^O and

(p.3) PMt+s, w)<=A\Bt)=Pzit,wMs, W)ELA) a.s.
for any A<ΞB(D), t, s^O and

(p.4) P2(z(ί, w)Gi4, ί < σ o ) = P f 8(^(Oei4, ί<<r0) for any
and 2GD, where Pf 2 is the Brownian measure defined in §0, 7°.

(p. 5) Pz+2π(z(t, w)£ΞA+2π)=Pz(z(t, W)*ΞA) for any *e;£> and At=B(D).

By (p. 4), we see:

[1.2] PMO, w)=z)=l for any *e=Zλ

[1.3] Remark. If z=3, P2( ) is not defined. However, by (p. 2) the right
side of (p. 3) has a meaning.

By (p.2) and (p.3) together with [1.2], the system of measures {P2( )hez>
on B defines a Markov process on D. Set

(1.1) Ptf{z)=Ez{f{z{t, w))

where E2(-) is the expectation taken by the measure Pz.

[1.4] (1) Pt maps Bb(D) into Bb(D) and Pt Ps=Pt+s for any t, s^O.
(2) Pt maps Bb(D) in Cb(D) and BP,N(D) into CP,N(D) for any f>0.
(3) lim Ptf(ζ)=f(z) for any f(=Cb(D) and

/. (1) is obvious from (p. 1) and (p. 2). For any α>0 and

Pζ(σo<ε)=Pξ'2(σo<ε)<P* \σ[o)£ε)=:φ(ε, a) and

lim φ(ε, α ) = 0 .

For f^Bb{D) and ί>0, take ε such that 0 < ε < ί , and set /.(ζ)=P f -./(ζ). Then,

Since the semi-group of the absorbing Brownian motion maps Bb(D) into Cb(D),
the first term in the right side is continuous. On the other hand, | Eζ(fε(z(ε)):
ε^<τ)| ^\f\φ(ε, a) and ε can be chosen arbitrarily small. Hence Ptf is con-
tinuous in Dίa'°°\ Since α>0 is arbitrary, the first part of (2) is proved. The
second part of (2) is obvious from (p. 5).

For any z<=D and /eC 6 (D), take a so small as zeZ) c a > o o ). Then, for any
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Eξ-\fW)): t<σQ)+Eζ(f(z(t)): feσ).

The first term tends to f(z) as ζ->z and f->0, and the second term tends to
zero uniformly in ζ e l ^ 0 0 as £->0. Therefore (3) is proved.

The process {pz( )}zξΞD has not strong Markov property in general. How-
ever, the following proposition holds. The definition of Markov time is given
in §0, 6°.

[1.5] PROPOSITION (Strong Markov property). For any Markov time τ and
At=B,

on {w:τ{w)<oo and z(τ, W)<ELD} a.s. Pz.

Proof. It is sufficient to prove that for any 0<^i<£ 2< ••• <tn,
and fk>0 (fe=l, 2, •••, n) and AtΞBτ,

\:A,

Set

τ ~~2^ 2m —τ—~2™> ̂ ==^» >̂ '"'>

oo if r^oo .

Then, by ordinary Markov property (p. 3),

):A,

{ } : A, z(τm)tΞD^ ~\ τ<oo]

Since τm I τ as m-*oo and

[
is continuous in z^D by [1.4] (2), we have

Ea[jlfk(z(T+t):A, z(τ)^D'ε'-\ τ<

rm+^)): A, z(
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^JΠ f(z(tk))\ : A, *(Γ")€ΞZ)< ->,

[ [ /U(ί*))] : A z

Similarly, we have

: A, 2

Letting ε tend to zero, we prove the proposition.

[1.6] PROPOSITION. Let P in £B be given. Then, the processes (y(t, w), Pax, „))
and (y(t), Pf1) are identical in law for z=(x, y)^Dy where z(t, w)—(x(t, w),
y(f, w)) for w^W and Pf1 is the one-dimensional reflecting Brownian measure
given in §0, 7°.

Proof. By Markov property of (z(f, w), Pz) and (y(f), Pf1), it is sufficient
to prove

(1.2) Ptf(z)=P?'*f(y)

for any nonnegative / in C6((0, oo)) and z=(x, y)<^D, where P? ιf(y)=
Ey'\f(y(t))) and Ptf(z)=E,(f(y(t))). Choose a positive a and set pΈ=σ+σa(θσ(w)).
Then p is a Markov time and z{p{w)y w)^da if p<°°. For trie indicator func-
tion /[tt)oo) of the interval [a, oo), set

A(t)=Aa(t, w)=\Ίίatoo^y(s, w))dsy

Jo

then A(σ)=A(ρ). For ^>0, set

Gif(z)=E.(£e~λΛ«>f(y(f, w))dA{t)).

Then by strong Markov property given in [1.5] and (p. 4),

(1.3) GJ/W^^V'*"/^^^

, a)

for any ̂ =(Λ:, ^)e/?, where σo=σ{o] and ^((0=1 /cα.oo)(̂ (s))flίs for reflecting
Jo

B r o w n i a n p a t h y(-). Set
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By a similar argument, we have

(1.4) Gf/OO^'^V'*^

Letting z—{xt a) in (1.3) and y — a in (1.4) and subtracting (1.4) from (1.3), we
have

supG?/(x, α ) - G ? / ( α ) ^ ^ 1(^^i^«)XsupG?/(x, α)-GJ/(α)).

Since ££1(e" l i'<<'«))<l, it follows that

supGJ/(x, α)SGJ/(α).

Using (1.3) and (1.4) again, we have for any z=(x, y)

Since

lim Gff(z)=Gλf(z)=[°e-iΨιf(z)dt
a-*o Jo

and

Gχf(z)<LGχf(y) holds for any *=(*, J ) G A nonnegative / in Cδ((0, oo)), and
^>0. On the other hand Gχl(z)=l/λ=Gχl(y) by (p. 2). Hence we finally have
Gχf{z)—Gχf(y) for any z<^D, nonnegative / in C6((0, oo)), and λ>Q. Since
Ptf(z) is continuous in t by (3) in [1.4], (1.2) is proved.(t)

[1.7] COROLLARY.

Pz(σa<oo)=l for any α>0 and

. By [1.6],

Now we shall define the class of continuous processes on D in a way similar
to definition [1.1].

[1.8] DEFINITION OF THE CLASS £p. P={PZ(Ά): Z^D} A^B} is in class
if and only if

(p. 1) PZ(Ά) is a probability kernel on DxB.

(f) The proof of [1.6] is given by T. Shiga.
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(p. 2) Pt(z(f, M/)G=JD)=1 for any t^O and

(p.3) PMt+s, w)eΞA\Bt)=Pzu,ΰ)(z(s, W)<ΞA) a.s. Pz

for any A^B(D), t, s^O and

(p.4) Fz(z(t,
for any f^O, * e £ and A^B(D).

(p. 5) F,+ιMt, w)<ΞA+2π)=PMt, W)EΞA) for any ZGΞ£ and

In the sequel we shall also write z(t) =z(t, w)—w(t). Note that we do not
define P2( ) for

The continuous mapping c from I) into

(1.5) c(z)=,z

induces a measurable mapping from (W, B) into (W, B) by

(1.6) 2<ί, cϊϋ)=c(z(t, w))

for wJeϊF. For any P in fl?, let

(1.7) cPz(A)=Pz(r1A)

for ^4G.B. Noting (p.2), we can easily see:

[1.9] For any P in Sf cP—{ιPz(A): z^D, A^B) is in s>. And the map-
ping c from ίP into 5* is injection.

[1.10] DEFINITION OF THE CLASS S>C. We set ^Bc—c^ and identify elements
in &c with those in ί .

[1.11] PROPOSITION. Let P be in &. If there exists a set Wo in B and a
mapping φ from Wo into W such that PZ(WO)=1 for any z<^D, φ is measurable
and z(t, φ(w))=z(t, w) whenever z(t, w)<^D, then P is in 5*c.

Proof. Set Wr={w: z(γ, w)^D for any rational γ) and W%=W*nWr-
Then by (p. 2) PZ(W%)^1 for any zeZλ If w^W% and z(f, w)=d, there exists
a rational sequence {γn} such that z(γn, w)<^D, γn-±t and z(γn, w)-+d. Since
z(Tn, w)=z(Tn, φ(w))> we see z(t, φ(w))<^d0. Therefore, for any weW$, z(f±w)
GZ> if and only if z(f, φ(w))eD. Hence cφ(w)^w on Wt Set φPz(A)=
Pt(φ-\Ά)) for any z^D and Ά<=B. Then, we can easily check P = { 0 P , ( )}«=D
satisfies condition (p. l)~(ρ.5) in [1.8]. Thus we have P=cφP=cP for Ψ—φP

3



TWO-DIMENSIONAL BROWNIAN MOTION 145

§ 2. System of harmonic measures.

[2.1] DEFINITION. H={Ha(z, A): a>0, z^Da

f A^B(R)} is in class 3ί if
and only if

(h. 1) Ha{z, A) is a probability kernel on DaxB(R) for any fixed α>0.

For φ£ΞCb(R), set

(2.1) H'φ(z)=^H*(z,dξ)φ(ξ).

(h.2) For 0<b<a and z^Db

Haφ(z)=^H%z, dξ)^H«((ξ, b), dη)φ{η).

(h.3) For α>0 and z^Da

> Haφ is harmonic in Da and lim Haφ(z)=φ(x).

(h.4) Haφ(z+2π)=\Ha(zί dξ)φ(ξ+2π) for a>0 and z<=Da .

Here, the meaning of harmonic function is the ordinary one, that is, f{z)
is harmonic in an open set U if and only if

For 0<b<a, we shall also write

(2.2) Hi(x,A)=Ha(ίx,b),A),

HSφ(x)=Haφ(x, b),

where A^B(R) and φ^Cb{R).

[2.2] Definition [2.1] is equivalent to any one of the following two con-
ditions (1) and (2).

(1) (h.l) holds and (h.2), (h.3) and (h.4) holds for any φ^Cκ{R).
(2)

(h.l) Hg(x, A) defined in (2.2) is a probability kernel on RχB(R) for 0<b<a.

(h.2) For

(f)
In the sequel, similar notations are used for products of kernels
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(h.3) For 0<c<b<a,

(h.4) For 0<b<a, x e i ? and ACΞB(R),

Hg(x, A)=Hg(x+2π, Λ+2π).

The kernels α

cΠ? and a

cll
cb are given in §0, 8°.

Combining (h.2) and (h.3), we have

(2.3) Hg=%nt+ϊΊJiHiHg.

[2.3] DEFINITION. Let P in £P be given. We define

(2.4) HRz, A)=Pz{z{σa{w), w)(ΞAx{a})

for any α>0, z£ΞDa and A^B(R), where σa is the hitting time of 9α. And
set

(2.5) H(P)=HP={H$(Z, A): a>0, z^D\ AGB(R)}.

Then, we can easily see H{P) is in class JC. For, H%(z, R)=l follows
from corollary [1.7], (h.2) is a consequence of [1.7] and strong Markov property
given in [1.5]. The conditions (h.3) and (h.4) follow from (p. 4) and (p. 5) in
[1.1], respectively.

The following theorem is fundamental. The proof will be given in [9].

[2.4] THEOREM. The mapping P->H(P) given by (2.4) and (2.5) is bijection

between 9? and M.

[2.5] DEFINITION. Let {nH}^ be a sequence in M and let H&JC. Then
we shall say {nH}n=ι converges to H in Si and write nH->H if and only if
nHaφ(z)-*Haφ(z) (?ι->oo) for any α>0, z^Da and φ^Cκ{R\

Let {nP}n=i be a sequence in £P and let P e ί P . We define nP->P in £P if
and only if nHP-+HP in JC.

[2.6] Remark. If nH-+Hm Λ", then nHaφ(z)-+Haφ(z) for any β>0, ZGΞD"
and φ<ΞCb(R). For, w # α l = / / α l = l holds.

For a fixed φ<^Cb(R), {Haφ}H&Sc is a family of functions uniformly bounded
and harmonic in Z)α with boundary function Haφ(x, a)—φ{x) on 9α, therefore
we have:

[2.7] Let {nH} be in JC, φ be a function in C6(i?) and α be any positive
number. Then, we can select a subsequence {nk} such that {mkHaφ\ con-
verges uniformly on any compact subset of D^ al.
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[2.8] PROPOSITION. Let {nH)n=\ be a sequence in Si such that, for any
fixed α>0 and z<=Da, the set of measures {nHa(z, •)} is tight, that is, for any
ε>0 there exists a number N—N(ε, a, z) such that

(2.6) s u p n H \ z , {y: \y-x\>N})<ε .
n

Then {nH} has a convergent subsequence.

Proof. Notice that, for any φ(=Cκ(R) and a>0, {nHaφ} are uniformly
bounded and harmonic in Da and CK(R) is separable. Then, for any a>0, we
can select a subsequence {nk} such that, for any φ, {nkHaφ} converges to some
harmonic function Haφ uniformly in any compact subset of Da. Moreover
Haφ(z) can be represented by kernel Ha{z, dξ), that is,

The assumption (2.6) assures Ha(z, R)=L Let {αTO} be a set of positive num-
ber which decreases to zero. By taking a subsequence again, we may suppose
{nkHamφ(z)\ converges to Hamφ(z) for any am, z^Dam and φeίCκ(R). Let
the subsequence {nk} be fixed. Now for any fixed α>0, choose am and b so
small that

Q<b<am<a.

Let g be one of limit functions of subsequences of {nkHaφ} in Da for a fixed
φ in CK(R). Then, by (2.3), gm(x)=g(x, am) is a solution of

Since

ΉT6 H?™(x R)=

g(z) is determined on dajn, independently of the subsequence. Noting that
lim g{z)—φ{x) and that g is harmonic in Da, we can see g(z) is determined

in Dcam'a3. Since am can be choosen arbitrarily small, g is determined in Da.
Thus, we have proved that {nkHaφ(z)\ converges for any α>0, z^Da and 0 e
CK{R). Set lim VkHaφ(z)^Haφ{z). Then Haφ{z) is represented as

Haφ(z)=^Ha(z, dξ)φ{ξ) with E\z, R)=L

Set H={Ha(z, A): α>0, z e D α , AeJ5(/?)}. The above arguments show that H
satisfies (h.l) and (h.2) in [2.1]. Noting [2.7], we can easily prove (h.3). The
property (h.4) is obvious. Therefore H^SC and nkH-*H.
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§ 3. Continuity of Ptf in D.

In this section, we shall ήx a process P in £P and set H=HP. We shall
discuss the relation between continuity of functions Ptf(z)=Ez(f(z(t))) in D and
continuity of functions Haψ(z) in Da=DίOalc:D.

[3.1] DEFINITION. For / in Cb(Da), we write /eCδ(25α) if / can be ex-
tended to a continuous function on Da. In this case, we denote the extension
by /.

It is obvious that / is unique if it exists.

[3.2] CONDITION [C] (Continuity Condition). (1) Ptf is in Cb(D) for any
t>0 and feCκ(D).

(2) If {fn} is a nonnegative sequence in CK(D) such that fn T 1 in D, then
Ptfn ΐ 1 in 25 for any *>0.

[3.3] CONDITION [H.C]. (1) Haφ is in Cb{Da) for any α>0 and φ in

CK{R\
(2) If {φn} is a nonnegative sequence in CK(R) such that φn ΐ 1 in i?, then

# α 0 n T 1 in Da.

[3.4] Under _[C] it holds that
(1) Ptf(ΞCb(D) (f>0) for any f<=Cb(D)
(2) P { / n 11 in Z) (ί>0) for any nonnegative sequence {fn} in C6(D) such

that /„ ΐ 1 in D.

Proof. Assume [C] holds. Let \gn} be a nonnegative sequence in CK{D)
such that gn ΐ 1 in D. Then for any ί>0, Ptgn converges to 1 uniformly on
any compact subset of D by Dini's theorem. Let f<=Cb(D). Since

I PtfgnW-PtfgΛz) I £ 11/111 P tgn(z)-P.s»(*) I,

Ptfgn converges uniformly on any compact subset of Zλ Therefore, g{z)~
lim Ptfgn(z) exists and is continuous in D. Noting g(z)-=Mm Ptfgn{z)—Ptf{z)
n-*oo

for z in D, we see that (1) is proved. (2) is obvious, for we can choose a non-
negative sequence {gn} in CK(D) such that gn ΐ 1 and gn£fn.

In a similar way, we can show:

[3.5] Under [H.C], it holds that
(1) Haφ<EΞCb(Da)Ja>0) for φ^Cb(R).
(2) i / α ^ 11 in Z)α for any nonnegative sequence {φn} in Cδ(iv?) such that

φn ΐ 1 in /?.
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[3.6] For α>0 and φ^Cκ(R), let g be a continuous extention of Haφ to
D such that

\\g\\D<\\Haφ\\Da<\\φ\\R.

Here \\f\\Λ denotes sup |/(z) | . Then, for any z<=Da/2 and t>0

\Haφ(z)-Ptg(z)\<\\φ\\εa(t),

where εa(t) is independent of z, φ and g, and lim εα(0=0.
ί l O

Proof. Let σ=σa be the hitting time of da> For z^Da

Ptg(z)=Ez(Haφ(z(t)) t<σ)+Ea(g(z(f)) t^

=Ea(φ(z(σ));t<σ)+E,(g(z(t));feσ)

and Hαφ(z)=Ez(φ(z(σ))). Therefore

Especially, for

)^α for some s^t)

α for some s^O (by [1.6])

α for some s<>t).

Hence eα(0=2P2^(^(s)^fl for some s<Zt) has the desired properties.

[3.7] [C] implies [H.C].

Proof. Let φ be in CK(R). For any α>0, let g be selected as in [3.6].
By [C] and [3.4], Ptg is in Cb0). Therefore, by [3.6], Hαφ(z)\s approxi-
mated uniformly in z<=Dα/2 by continuous functions Ptg (£>0) on Dα/2. Since
Hαφ is continuous in Dία/2'αl in general, we have proved (1) in [H.C]. Let φn

be in CK(R) such that φn T 1. Then Hαφn(z) ΐ 1 for z in D^ α^. We can select
a continuous extension gn of each Hαφn to Z) such that gn T1 and ||^rn||^
H# α ίM^l. Then, by [3.4] P t^ n is in Cb{D) and P t^ n 11 in D. Moreover, by
[3.6]

Since, εα(t) can be taken arbitrarily small, Hαφn(z) 11 holds for any z in Dα/2.
(2) in [H.C] is proved.

[3.8] Let / be in CK(D). Then

lim sup | |P r /-P./ | | i ,=0
ί->0 \r-s\st
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Proof. Since \\Prf-P*f\\ = \\Ptfr-f-f)\\<\\Pr-f-f\\ if r>s, it is suffici-
ent to prove

β /(ί)= sup HP./-/II —> 0 as ί->0 .

Choose α>0 such that / Ξ O in P α . For

sup |Λ/(*)-/(z)| = sup
SS=ί Sύt

where σa is the hitting time of dα. And, in the proof of [3.6], we have seen

(t)P for some )

On the other hand, for z^Dίa/2'^ and for any δ satisfying 0<δ<α/2,

sup \P.f(z)-f(z)\£e(f, δ)+2\\f\\ supPz(\z(s)-z\^δ)

where ε(/, δ)= sup l/(ζ)-/U)|. Let τδ=inf{ί: \z(t)-z(0)\^δ\, and <; be
lζ-z|<δ,ζ,zeZ)

the hitting time of 3. Then τδ<σ if z(Q)(ΞDίa/2>°°\ Therefore we have for

and

^ 0 by (p. 4) in [1.1]

*£t)=i(δ, t)

and lim έ(δ, 0—0 for fixed <5>0. We have thus proved
t0
t->0

sup | |P./-/| |B^Max(|-1|/| |β.(ί), β(/, δ)+2||/||έ(δ, ί))

and ΪTm \\Ptf—f\\^-ε(f, δ). Since δ can be taken arbitrarily small, the proof is

completed.

Combining [3.8] and (2) in [1.4], we can also show:

[3.9] Ptf{z) is continuous in (ί, z)e[0, oo)χD for any f(ΞCκ(D).

[3.10] [H.C] implies P f/ is in Cb{D) for any f^Cκ{D) and f>0.

/. Let / in CK(D) and ί>0 be given. For α>0, set

where σa is the hitting time of Dίaco\ Then,
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Ptfiz) if y^a,
ua(z)=\

Ha(Ptf)(z) if y<a.

Since Ptf( , a) belongs to Cb(R), ua has a continuous extension ύa in D by
[3.5] and (2) in [1.4]. Let 0<s<ί. Then

\Ptf{z)-ua(z)\^\Ez(Pt.σJ(z(σa))-Ptf(z(σa)) ,σa<s)\+2\\f\\Pz(σa^s)

where ε(f, s)= sup | |P r/-P«/l|. By [1.6]
I r-u\US

^s)=PΪ\σa^s)£P%'1(σa^s)=~e(a, s),

where σa is the hitting time of [α, oo) for one-dimensional reflecting Brownian
motion. Therefore, | |P t/—ttα | |p^e(/, s)+2||/||e(α, s). Noting lim έ(α, s)=0 for

α-»o

fixed s>0 and lim s(/, s)=0 by [3.8], we see that Ptf can be approximated
uniformly in D by functions ua (α>0), which are in C&(D). Therefore Pi/ is
in Cbφ).

[3.11] Assume [H.C]. Let {fn\ be a sequence of functions in CK(D) such
that /„ ΐ 1. Then Ptfn T 1 in D for ί>0.

Proof. By [3.10], Ptfn is in Cb(D). We have Pί/»(z) ΐ 1 for (ί, z)e[0, oo)
XZ). For any compact set KaD, P s / n (^)ΐ l uniformly in (s , ί )G[0, ί]xϊ .
Let {φm} be a sequence in CK(R) such that ^ m 11 Let Km be the support of
φm. Then for

where σa is the hitting time of Dίa"°°\ Set

β(n;ί,m)= sup (1—P./n(ar))).

Then lim ε(w t, m)=0, for fixed t and m. In the proof of [3.10] we have shown
71

Therefore, we have

1-Ptf»(z)£*(n;t, m)+ϊ(β, t)+l-H°(φm( , a))(z)

for any z in Z)α. Making n and then w tend to infinity, we have
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\ϊm(l-Ptfn(z))£έ(a, t) for any a>0, and z<=Dί0>al.
n-*oo

Since lim (1—Ptfn(z))=0 holds in general for Z G D , [3.11] is proved.
n-*oo

By [3.7], [3.10] and [3.12], we have proved:

[3.12] THEOREM. The condition [C] is equivalent to the condition [ # . C].

II. Formulation and Uniqueness of ^-processes.

§4. Formulations of 2?-solutions and ^-processes.

We shall prepare several lemmas on periodic harmonic functions on the
upper half plane.

[4.1] Let u and v be in CPtN(Dίb'al) and harmonic in Dcb-ay (b<a), and v
be a harmonic conjugate of u. Then, the values of integrals

2Nπ 1

are independent of y (b<y<a).

Proof. By Green's formula, we can easily show independence of the values
of the integrals.

[4.2] Let u be in CPlN(Dίa-~») and bounded harmonic in D<α °°>, and v be
a harmonic conjugate of u in Dia"°°\ Then, u and v have the following repre-
sentations :

(4.1) u(z) = \ hξ(x, y — a)u(ξ, a)dξ
JR

f, a)dξ,

(4.2) v(z)=\ιm[T kξ(x, y-a)u(ξ, a)dξ+c

} (y-a)/N)u(ξ, a)dξ+c

for z^Dia"°°\ where Λ̂ , kξ, hξ and ^ are the functions defined in §0, 8°, and
c is a constant.

[4.3] Let u in CP,N(D) be harmonic in D and bounded in D10"00^ for each
α>0. Let i; be a harmonic conjugate of u in D. Then v is also in CVtN(D)
and bounded in D10"^ for every α>0. Moreover,
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1 C2Nπ
lim u(z)= ϊrrψΆ u(x, y)dx ,
2/-00 ZJNπjo

(4.3)
c, ;y)ί/x

Note that the right sides in (4.3) are independent of y by [4.1],

Proof. The first half is an immediate consequence of the representation
(4.2). Noting (4.1) and (4.2), and lim hξ(z)=l/2π and lim kξ(z)=0 (uniformly in

x), we can easily get the latter half.

[4.4] Let u and / in CP>N{D) be harmonic in D and bounded in Dίa"^ for
each α>0. Let v and g be harmonic conjugates of u and /, respectively. Set

1 Γ2Nπ I Γ2Nπ

2Nπ

which are independent of y by [4.1] and [4.3], Then, we have

(4.4) ^ J o (ug+vf)(x,y)dx=aδ+βr.

Proof. Set w=w£+ι>/=Im(w+/t'X/-}-z<g). Then it; is harmonic in D, bounded
in D10"00^ for each α>0 and in CP,N{D). Therefore by (4.3) in [4.3]

1 Γ2Nπ

ZJyπjo

and

lim u —a> lim v=β, lim f=ΐ, lim g=δ,
y-*oo y-*oo y-*oo y-*co

which proves (4.4).

[4.5] For α>0, let u and / in CP)N(Da) be harmonic in Da, and i; and ̂
be harmonic conjugates of u and /, respectively. Assume v and g be also in
Cp,N(Da) and

(4.5) P W + z /X*, jθd*=θ ( 0 < ^ < G ) .
Jo

Then we can show:

(1) There is a solution U(z) (z^Da) of

(4.6)
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such that U is in Cp,N(Da) and harmonic in Da. Such a U is unique up to an
additive constant.

(2) For 0<c<b<a,

ί
2Nπ Γ2Nπ

f(x,b)U(x,b)dx-\ f(x,c)U(x,c)dx
0 JO

= (( u(f*+g*)dxdy.

Proof. Since

ug+vf—i(uf—vg)=—i(u+iv)(f+ig)

is analytic in Da, we can easily show (1), using (4.5). Let F be a harmonic
function in Da such that Fx—g and Fy=f. Applying Green's formula, we have

!

2Nπ Γ2Nπ Γ2Nπ

fU(x, b)dx-\ fU(x, c)dx=\ FyU(x, b)dx
o Jo Jo

+ [CFxU(2Nπ, y)dy+['> FyU(x, c)dx+(V,/7(0, y)dy

(FxUx+FvUv)dxdy
x<2Nπ
y<b

= [[ u(f+g*)dxdy.

The proof is thus completed.

Now, we shall give the definitions of β-solutions and β-processes. Let σ
and μ be in MP(R) and

-~μ(ίθ, 2JΓ))=1,

and /fe be any real constant. Set, for

s{z)=\ h((z)σ(dξ)=\ L(z)σ(dξ),

(4.8)
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kξ(z)σ(dζ)+k,
-.[0,2τO

(4.9)

Jco,2π)

Then, we can easily see that

(4.10)

1 f2« 1 pπ

— I m(x, y)dx=l, — I l(x, y)dx~-k,
Δ7Z JO Δ7ϋ JO

for any ^ > 0 and that t and /are harmonic conjugates of s and m, respectively.
Therefore by [4.4](4.11) l

Zπ Jo

for any ;y>0. By (1) in [4.5] the equation,

Ux=mt+ls
(4.12)

Uy—ms—lt

has a solution 0, which is in CP(D) and harmonic in D. Hencefoce, when we
say 0 is a solution of (4.12), we mean that 0 is in CP(D) and harmonic in D
and satisfies (4.12).

[4.6] CONDITION [P*] (Condition on Existence of Positive Solution). Any
solution 0 of (4.12) satisfies

(4.13) inf # ( * ) > - c o .

Since the solution of (4.12) is unique up to an additive constant, we have:

[4.7] If some solution of (4.12) satisfies (4.13), then every solution of
(4.12) satisfies (4.13). If the condition [P*] is satisfied, then there exists a
unique minimum nonnegative solution U° of (4.12).

Condition [P*] is a restriction on σ, μ and k. In theorem [5.11], we shall
show that [P*] is equivalent to a condition [P], which is a certain integrability
condition on μ and σ, and, in fact, which depends only on σ and μ.

Assume [P*] and let U° be the minimum nonnegative solution of (4.12).
Set

(4.14) Po=Po(σ, μ, k)= inf ^ - ( V ( x , y)s(x, y)dx.
2/>o Zπ Jo
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By (2) in [4.5], for 0<b<a

[**U°s(x, a)dx-[2πU°s(x, b)dx = [[ m
JO JO J J θ < z < 2 τ r

Therefore, we have:

[4.8] po= lim -^-(V(x, y)s(x,
y-*o Zπ Jo

[4.9] DEFINITION OF CLASS B. B={σ, μ, k, p} is in class B if and only if

(b. 1) a and μ is in MP(R) and [σ] = [ μ ] = l .

(b. 2) k is a real constant.

(b. 3)* a, μ and k satisfy the condition [P*].

(b.4) p is a nonnegative constant such that p^po(σ, μ, k).

[4.10] Remark, We shall see in §5 c t ) that (b.3)* can be replaced by

(b. 3) a and μ satisfy the condition [P].

Since any solution 0 of (4.12) is given by U=U°+c, we have

1 Γ2π „

lim— \ U(x, y)s(x, y)dx=po+c.
2/-0 Z7Γ Jo

[4.11] For any p^p0, there exists a unique nonnegative solution U of
(4.12) such that

(4.15) lim-^-Γί/Cx, 3θs(x, 3θ<**=ί .
y-*o Lit Jo

[4.12] DEFINITION. Let 2?={<τ, μ, k, p} in ^ be given. For z in D, set

[0,2π)

hξ(z)μ(dξ),
C0,2π)

kξ(z)μ(dξ)-k.
C0,2x)

The function U(z)—U(B)(z) on Z) is defined as the unique solution of (4.12) such
that

(t) See theorem [5.11].



TWO-DIMENSIONAL BROWNIAN MOTION 157

lim—ΓV(x, y)s(x, y)dx=p.
v-*o Zπ Jo

[4.13] DEFINITION OF D%,N. For B—{σ} μ, k, p] in & and α>0, a func-
tion φ belongs to D%N^Da

q,N(B) if and only if the following are satisfied:

(1) φ is harmonic in Da and in Cq,N{Da)Γ\C(D^'a^).

{ 2Nπ
(mφy-lφx)(x, y)dx=0 for 0<y<a.

(3) For any b (0<b<a), there exists a constant K—K(b, φ) such that

in £ δ .

We also write

Dq,N— Γ\ D%N, Da

q—Da

qΛ and Dq—DqΛ.
α>o

Let u—u{z) be the harmonic function in D that satisfies

[ ux=s, Uy ——t in D
(4.16)

1 M ( 0 , 1 ) = 0 .

Noting (4.11) and

u(z+2π)-u(z) = [2ΐ:s(x+ξ, y)dξ=2π ,
Jo

we can easily show:

[4.14] u is in Dq. We shall write u{z)~u{B){z).

From (1) and (3) in [4.13], we can easily have:

[4.15] Let φ be in D%N. Then, there exists a periodic signed measure σψ
of period 2Nπ on R, which is of bounded variation in each finite interval and

{2iVπ Γ2iVπ

g(χ)ΦΛχ, y)dχ=\ g(χ)σφ(dx)
0 JO

for any g in CP,N(R). Moreover, σφ is absolutely continuous with respect to
σ and dσφ/dσ has a bounded periodic version. Especially au—σ.

[4.16] DEFINITION OF J^-SOLUTION. Let TV be a positive integer and let

B={σ, μ, k, p} in $ be given. For any / in Cq,N(R) and any α>0, we say
a function φ on Z)c0 α ] is a ^-solution for / in Da if and only if the following
are satisfied:

(1) φ is in D%N.
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(2) φ=f on da = {y = a}.

(3)

(4.18) \\m^Nπg(xXUφx-U(φ)s)(x, y)dx=0

for any g in CP)N(R), where U(φ) satisfies

(4.19) U(φ)x = -mφy+lφx, U(φ)y=mφx+lφy in

[4.17] Remark. By (2) of [4.13] and [4.5], the function U(φ) in [4.16] is
in Cp>N(Da). Since U{φ) is determined up to an additive constant by (4.19) and
since

S 2Nπ
(Uφx-U(φ)s)(x, y)dx=0

0 Γ

by (4.18), we see that U(φ) is uniquely determined by a /^-solution φ.

In definition [4.16], suppose that U, U(φ), φ, I, m and s can be extended to
smooth functions on Dί0>a> and that s>0 on do={y=O}. Then by (4.18)

Uφx-U(φ)s=0 on do,

or

(4.20) U(φ)=—φx on 3 0 .

Combining (4.20) with (4.19), we have

(4.21) (^jφx)+mφy-lφx=0 on3o,

which gives a boundary condition for φ. We can show (4.20) actually holds if
s and m can be extended to smooth functions on D and if they are positive
on d0.

[4.18] Let u be the function defined by (4.16). Then u{z) restricted on
Da is a ^-solution for f=u(-, a) in Da. Moreover U(u)=U(B) in Da.

Proof, u is in DJ by [4.14]. Note that t/=£7(JB) is a solution of (4.19)
for φ=u and (4.18) holds trivially for U(u)=U.

[4.19] DEFINITION OF 2?-PROCESS. Let B={σf μ, k, p} in & be given.
Then we say a process P in ^ is a Z?-process, if and only if, for any N,
Hpf(z) is a ^-solution for / in Da for any α>0 and any / in CPtN(R). In
this case, we shall also say P is in class £P$.
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§ 5. Explicit representation of the function U.

Let p and v be periodic signed measures with period 2π and of bounded
variation in each finite interval. Define

(5.1) p(z)=[ k
J[0,2τr)

J [ 0 , 2 π )

and hv, kv> [y] similarly. Let a and b be any constants. In this section we
shall obtain concrete representations of the solution V=V(z; p, v, a, b) of the
equation

f Vx=hv(kp+a)+(kv+b)hp,
(5.2) „ / „ „

[ Vy=hvhp-(kv+bXkp+a)

in D. Especially, we shall obtain a representation of the function U defined in
[4.12]. As a corollary we can reformulate the condition [P*] in [4.6] in a
more concrete form.

1°. For x and ξ in R, set

(5.3) F{x, ί ) =
~ if x=ξ+2nπ,

n if x<=(£+2(n-l)7C,ξ+2nπ),

and for z~{x} y) in D and ξ in R} set

(5.4)

[5.1] The function G(z, ξ) is harmonic in D and belongs to Cq(D) with
respect to z, and belongs to Cp(i?) with respect to ξ. Moreover

(5.5)

and

(5.6)

for

YimG(z,ξ)=F(x,ξ).
2 / 4 0

Proof. The first part is obvious. Since
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we have Gx—ίlζ by easy calculation. Therefore Gy——kξ(z)-\-c. Since G is
bounded in y for fixed xy we have c=0. Noting hζ(x, y)dζ-^δx(dζ) weakly as
3>->0 and h£xy y)—h_ζ(—χy y\ We see (5.6) from the definition of F.

For any periodic signed measure p with period 2π and of bounded variation
in each finite interval, set

F(X> P ) = \ 0 2 F{X> ξ ) p m

(5.7) - C0>27°
G(z,p)=\ G(zyξ)p(dξ)

Then by [5.1], we can easily see:

[5.2] G(zy p) is harmonic in D and belongs to Cq(D). It belongs to CP(D)
if and only if [jθ]=0. Moreover,

f Gx(zyp)=hp(z)y

(5.8)

I Gy(Z, p)=-kp(z)

and

(5.9) KmG(z,p)=F(x,p).
y-o

2°. We shall give a solution W=W(z, ξ, η) of

(5.10)

Since

z z—η

and

we have

(5.11) W = ~ ^ 1

a) The case ξ=η (mod2π). Noting
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we set

(5.12)

which is a solution of (5.10) for ξ=η(2π).
b) The case f^(mod2π). Since

(5.13) W=;r4<

is a solution of (5.10). However, for further analysis, it is convenient to select
a suitable constant C=C(ξ, η).

We shall define a function S=S(z, ξ, η) for ξ^η{2π) in the following way.
(i) If 0<cot((£—7)/2)<oo, that is, if there exists a ξQ such that ξo^ξ(2π)

and τ)<ξ<><η+π, then set

S(z, ξ, η)= ^ Arg sin(5.14)

where the branch of the right side in (5.14) is given as Figure(t).

Figure.

A branch ί Argsinz'=-s-j of u = S(z,ξ, η)= — ίArgsin—= Args in—γ^j when

-π, where z=x + iy and jy>0 is fixed. The broken line is the limit curve
when y j 0. Arrows represent domains of increase of S as y decreases.

(f) In the left side, the branch with Argsinz = -̂ - have to be adopted.
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(ii) If 0>cot((£-7)/2)>-oo, set

(5.15) S(z,ξ,η)=S(z,η,ξ).

(iii) If cot((£—7)/2)=0 or η^ξ-\-π(2π), then set

(5.16) S(z,ξ,η)=0.

We can easily see:

[5.3] Let ζΈfΞη (mod2π).

(1) S(z, ξy η) is harmonic in z&D, and 0<;S^l.
(2) S(z, ξ, η) is periodic with period 2π in x, ξ and η, and S(z, ξ,

S(z, η, f).
(3) There exists

(5.17) S0(x,ξ,η)=timS(z,ξ,η)

for all xy ξ and ^ (z=x+iy, ξ^η (mod2π)).
(4) S(Zy ξ, η) increases to S0(x, ξ, η) as ̂  decreases to zero on the set

More precisely, So is given by

/undefined if ζ=

Sθ(X,ξy 9) =
1 X> ' V » . m

± if (x, f , ΐ )eU β βM,

k 0 otherwise,

where

>ln.m = {(Λ:,f, η): \ξ-η-2(m-n)π\<πy (ξ-x-2mπ)(η-x-2nπ)>0}

and n and m run over all integers.

For ξφη(2π), define

(5.18) T(*, ξy η)= -£- cot Zy ξ, ? ) ,
2

(5.19) ΪΓU, f, ? ) = - T ( s , f,

for 2GD and x, ^e/?. Then, by (5.13) and definition of S, we have:

[5.4] For ζ^(mod 2π), W{z, ξ, η) is a solution of (5.10).
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We also note:

[5.5] Let ξΞfΞT) (mod2π).
(1) T(z, ξ, η) is positive harmonic in ^ G D .
(2) T{z, ξ, η) is periodic with period 2π in x, ξ and η, and T(z, ξ, η)=

T(z, V, ξ).

1
(3) 0£

(4) Q<T(z,ξ, η)<^r

cot-

(5) To(%, f, 17)= lim T(z, f, η) exists for all x, ξ and 17, and

T0(x, ξ, V)=-2^ cot- S0(x, ξ, -η) -

Proof. (1), (2), (3) and (5) are easily shown by using [5.3]. For y>0 and
\ξ—η\<π we have (4), since

1 ^ π
cot Ίsin(f- ? /2) |

and

Arg sin — ^ — Arg sin. z—i
Ί-χ

ArSUn 2

^•9- sup Imcot
1 sinh y
2 cosh y — l

Noting T is periodic in ξ and 7, we can show (4) in general.

[5.6]

a) s(z,e,?)

(2) τ(z, ξ, 7)

Proof. Since So is a boundary function of the bounded harmonic function
S by (5.17), we have (1). By definition of T and To, (2) is a consequence of (1).

In conclusion, we have defined W=W(z, ξ, η) by

(5.20) W(z, ξ, η)=
£p iΐξφη(2π),



164 MINORU MOTOO

which is a solution of (5.10).

3° Let p and v be periodic signed measures with period 2π and of bounded
variation in each finite interval. Set hp, kp> hv, £„, [p] and [v] as in (5.1).
Integrating both sides of (5.18) by p and v, we have:

[5.7] Set

(5.21) W(z, p, v)=\\ W(z, f, η)p(dξMdη)

= -([ T(z, $, η)p(dξMdη)

- (
JC0.27Γ)

where

(5.22) (ρ
x A

= Σ |0({ft}M{fJ) for

Then W(z, p, v) is a solution of the equation

(5.23) I '~*S+ 1 I' .
[ Wy=hvhp—kvkp in D .

Let a and ft be any constants. Since

h»(kp+a)+(kv+b)hp=hvkp+kj'

We have, combining [5.2] and [5.7]:

[5.8]

(5.24) V(z, p, v, a, b)=W(z, p, v)+G(z, av+bp)-aby

is a solution of the equation (5.2).

4° Now, let a and μ be in MP(R) and M = [j«]=l, and & be any con-
stant. Set

s=hσ, m—hμy t=kσ + k, l—kμ—k,

as in [4.12]. Then, by [5.7] and [5.8], we immediately have:

[5.9] PROPOSITION.
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(5.25) U=Ό{z, σ, μ, « = - ( ( T(z, ξ, η)σ{dξ)μ(dη)

is a solution of the equation,

Ox=mt+ls,
(5.26) „

{ Uy=ms-lt in D.

[5.10] Remark. Any solution of (5.26) is given by ί/+constant.

[5.11] THEOREM. Lei σ and μ be in MP(R) such that [ff] = [ μ ] = l , α w ^ *
be any constant. Then {σ, μ, k) satisfies the condition [P*] // and only if the
following condition is fulfilled:

Condition [P]
the measures σ and μ have no common having positive mass and

t o (x , σ, μ)=\\ c o t — ^ σ(dξ)μ(dη)

is bounded in x, where

A(x)={(ξ, η):ξΦη, \ξ-η\<π, (ξ-x)(η-x)<Q}.

Proof. By definition of So, we can easily see that condition [P] is equi-
valent to boundedness of the function

(5.27) TQ(x ay μ)= ^-[\ cot ^ _ So(x, ξ, rj)σ{dξ)μ{dη)

in x. On the other hand, by (5.25), a solution 0 of (5.26) is bounded below in
D if and only if

T(z, σ, jκ)=J{τ(s, f, η)σ{dξ)μ{dη)

is bounded and

is bounded.

Since (σ-μ) is a discrete measure, hCσ.μ^(z) is bounded if and only if (σ μ)
=0 or a and μ have no common point having positive mass. By (2) in [5.6]
and Fubini's theorem
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T(z, σy μ)=\hζ>(z)T0(ζ, σ, μ)dζ

and T(z, σ, μ) is bounded in z if T0(x, σ> μ) is bounded in x. On the other
hand, by (5) in [5.5]

T0(x, σ, / ι )=j j lim T(z, ξ, η)σ{dξ)μ{dη)

< lim T{z, σ, μ),

and T0(x, σ, μ) is bounded in x if T(z, σ, μ) is bounded in z. [5.11] is proved.

[5.12] COROLLARY. Let B={σ, μ, k, p} in &. Then U=U(B) defined in
[4.11] can be given by

(5.28) # ( * ) = - j j ^ . ξ vξΞί0 χT(z> ϊ> ηMdξ)μ(dη)+kG(z, μ-σ)+(l+k*)y+C

where C is a constant determined by (4.15). Especially, U(z) is bounded in Da

for any α>0.

[5.13] DEFINITION. For B={σ, μ, k, ρ}y we set

(5.29) £/o(x)Ξ-[( T0(x, f, η)a{dζ)μ{dη)+kF(x, μ-σ)+C

where C is the constant given in (5.28) and F is defined in (5.7). This func-
tion Uo is a version of boundary function of U in the following sense.

[5.14] Uo is bounded and in BP(R). Moreover

(5.30) t/*(s)

where UB=U(B) is defined in [4.12].

5°. Let B={σ, μ, k, p) be in &. For φ in Dξ(B), we shall investigate a
representation of a solution U(φ) of

ί
(5.31)

I U{φ)y=mφx+lφy .

First, we shall prepare two simple lemmas.

[5.15] Let φ in C5(Dα) be harmonic in Da. If ψx(x, y)dx->0 as ^->0 in
weak sense as measures on torus [0, 2ττ), then, ψ is in Cp(Da) and there exists
a constant c and a periodic function 0° in C^iR) such that
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φy(z)-φ\x)=O(y) ( y-0).

Proof. Note that φx and φy are in Cp(Da), for φ is in Cq(Da). Since

φx(Xy y)dx is independent of y by [4.1], we can immediately see φ is in

Cp(Da) by assumption. For any b<a, z^Db and ε<y,

where rπ\x)= Σ rπ\x+2nπ) and rπs is given in §0, 8°. Letting ε tend to
n=—oo

0, we have by assumption

which can be extended to a periodic harmonic function ψx in Rx(—b, b) and
^.(x, 0 ) Ξ 0 . Therefore, ψ can be also extended to a periodic harmonic function
ψ in Rx(-b, b) with ^(x, 0)=c. Setting φ\x)=φy(xf 0) we can get [5.15].

[5.16] Set m=hμ(z)=\ hζ{z)μ(dξ) and /=f kξ{z)μ{dξ)-k for // in

Aip(i?) with M = l , and hφ.μ(z)=^ Q h£z)φ<£)μ(dξ) for a function ^ in

C°°(i?)πCp(/?). Then

(1) Γymix, y)dx=o(1),
Jo

(2) Γ > 1 / ( x , y ) l ^ = o(1),
Jo

(3) ζ\φ(x)m(x, y)-hφ.μ(x,

Proof. (1) is obvious. Since

eco,2π) COSh 3; — COS(f~

and r̂  / > — r tends to 0 boundedly as y-*0, (2) is proved. Since
cosh y - cos ( f -x)

\*\φ(x)m(x, y)~hφ.μ(x, y)\dx

I sinh y |

cosh y—cos(f— x)
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(3) is obtained.

Let B—{a) μ, k, p} in & be given, and φ be in D%(B). Let σφ be the
periodic signed measure defined in [4.15]. Set φ*(z)=G(z, σφ)f where G(z, σφ)
is the function defined by (5.7), and set φ—φ—φ*. Then, by [5.2],

Φyφy φ

Noting

ΓV(x)λ,/x, y)dx —> \ g{ζ)σφ{dξ)
JO r J[0,2π)

for any g in CP(R), we see φxdx-^0 (y->0) in weak sense. Set

W(z)=W(z, σφ, μ)=§W(z, ξ, η)σφ(dξ)μ(dη),

where W(z, ξ, η) is given by (5.20). Then W is a solution of

Wx = -mφf+lι>φi,

Wy=mφ*+l4*
and

Let U(φ) be any solution of (5.31). Then

(U(φ)-W)x = -mφy+l$x-kφ* mDa.

Therefore, since φxdx-*0 (y-*Q) in weak sense, it follows from [5.15] and [5.16]
that there exists a function φ° in CP(R), and we have

{U(φ)-W+G{z, kσφ+φ°-μ)}xdx

= -($y-φ°)mdx-(φ°m-hφo.μ)dx+lφxdx —> 0 (y->0)

in weak sense, where φ°-μ is the measure defined by φ° - μ(dξ)=$°(ξ)μ(dξ).
Applying [5.15] again, we have

U(φ)-W+G(z, kσφ+φ°'μ)=const+Θ(y) (y-+0),

and U(φ)-W+G(z, kσφ+φ0-μ) is in Cv(Da). By (2) in [4.13] U(φ) is in Cp(Da)
and W is also in CP(D) by definition. Therefore G(z, kσφ+φ°-μ) is in Cp(Da)
or

f (kdσφ+φ°dμ)=0.
Jcθ,2π)

By [4.15] d(σφ-μ)=0 follows from d(σ-μ)—0; the latter is a consequence of the
condition [P]. Using the representation of W given in [5.11], we finally have:
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[5.17] THEOREM. Let B—{σ, μ, k, p] in & be given. Then, for any φ in
=D«{B), a solution O(φ) of (5.31) can be expressed by

(5.32) # W ( * ) = - ( [ T(z;ξ, η)σΦ(dξ)μ{dη)

-G{z, kσφ+φ0-μ)+C+O(y)

for small y. Here T and G are given by (5.18) and (5.7), respectively, φ\x)
is the boundary function of φy+kσφ on d0 which is in C°°(R)Γ\CP(R),

ί (k'dσφ+3>0'dμ)=0, and C is a constant.
C0.27O

Since 1 (kdσώ-hΦ°'dn)=O, the function G(z, kσφ-\-φ°-μ) is bounded in D.
J[0,2π) γ Y

And by [4.15]

J j z , ξ, η)σφ{dζ)μ{dη)\^K^T{z, ξ, η)σ{dξ)μ{dη).

Therefore, as a consequence of condition [P], we have:

[5.18] The solution U(φ) of (5.31) is bounded in Db for each b<a.

[5.19] DEFINITION. Let B={σ, μ, k, p} in m be given. For φ in DJ(B)
and a solution U{φ) of (5.31) given by (5.32), we define

(5.33) U0(φXx)=-[[ TV*, f, η)σφ(dξ)μ(dη)-F(x, kσφ+φ° μ)+,

where To is defined by (5) of [5.5] and F by (5.7), and φ° and C are the same
as given in (5.32).

By Fubini's theorem, we can easily have:

[5.20] The function U0(φ) defined in (5.33) is a version of boundary func-
tion on d0 of the function O(φ) given by (5.32), that is,

[5.21] Remark. U=U(B) defined in [4.12] is a solution of (5.31) for φ = u
by [4.14]. We can easily see UQ defined in [5.13] is a version of boundary
function of U—U(u) in the sense stated in [5.20]. Note that uy =—t=—kσ — k
and φQ— — k in this case.

§ 6. Proof of the fundamental lemma.

The purpose of this section is to prove the following lemma, which is
essential in the proof of uniqueness of ^-solutions.



170 MINORU MOTOO

[6.1] LEMMA. Let B={σ, μf k, p] in & and φ in D%(B) be given, and U{φ)

be any solution of (5.31) in §5, 5°. Then,

(6.1) lim[2πg(x)U(φ)(x, y)φ(x, y)dx=\ g(x)U0(φ)(x)σφ(dx)
2/-»0 JO J[0,27θ

for any g in CP(R) and any ψ in Dζ(B). Here U0(φ) is defined in [5.19] and
σψ in [4.15].

Let p be in MP(R) η in [0, 2ττ). Set

Ta(p, p, V)=\\zo 2 π ) χ [ 0 2πT((ζ, a), ξ, η)p(dζ)p(dξ),

(6.2) { T0(p, p,η) = [\ T0(ζ, ξ, η)p{dζ)p{dξ),
JJ[0,2^)X[0,2π)

Qa(p, p, V^W hp(x, a)W{(x, a), ξ, η)dxp(dξ),
J J C 0 ) 2 π ) x [ 0 I 2 7 r )

where T is defined in (5.18), To in (5) [5.5] and W in (5.20).

[6.2]
(1) Qa(p, p, η) decreases as a decreases.
(2) Qa{p, p, η)=-Tta(p, P, V)+a[p7, if p({y})=0.
(3) lim Qa(p, p, η)=-Tt(p, p, η), if p({η))=O.

α-»0

Proof. W{z, p, η)=[ W(z, ξ, η)ρ(dξ) is a solution of
J[0,2π)

Wx=hηiϊp+kηhp,

W —h h —b b

Therefore by (2) [4.5],

Qa(p, p, y)—Qb(p, p, v)—\ dy\ hΛhZ-\-kl)dx^O,
Jδ J[0,2π)

for b<a and (1) is proved. Assume p({η})=0. By (2) [5.6]

2 τ ) χ [ o 2 π ) χ [ o 2j{dζ)p{dξ)dζrT0(ζf, ξ, η)^hζ{x, a)hζ,(x, a)dx

= (( p{dζ)p{dξ)dζ'hζ {ζ, 2α)T0(ζ', f, 5 )
j J [ 0 ) 2 π ) x [ 0 ) 2 π ) x [ 0 ) 2 , τ ) '

= T2a(p, p, η).

Since, by (5.20)
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W((x, a), ξ, fl)=-T((*, a), ξ, rj)Λ-~^2

for ξφη, we have proved (2).
Since T α ^0 and lim T(z, ξ, η)=T0(x, ξ, η) by (5) [5.5], it follows from

y-*o

Fatou's lemma that
\jm Ta(ρ, p, η)^T0(p, py η),
α-»o

and by (2) we have

(6.3) ΠS Qa(p, p, η)<-T0{p, p, η).
a-*0

Set Λn = {ξ: \cot(ξ-η/2)\^n}czR and define dpn=IAn'dρ. Then ρn is in MP(R)
and 0£T(z, ξ, η)^n/2π for ξξ=An by (3) [5.5]. Therefore lim Ta{pn> pn> η)=

α-»o

To(pn, pn> 7)) by the bounded convergence theorem. Therefore, by (1) and (2),

Qaipn, Pn, η)^lίm Qb(pn, Pn, η)^~TQ{pni pn, 7]).
δ-»o

Since p({η})=0 and IAn t Iίξφηuπ)), the monotone convergence theorem establishes

lim T0(/On, Pn, η)=TQ(p, p, η),
7l-»oo

and
lim Qa(pn, pn, y) = Qa(p, p, η)
n-χχ>

by (2). Therefore

(6.4) Qa(p, p, η)^-T0(p, p, η).

Combining (6.4) with (6.3), we finish the proof of (3).

Let B={σ, μ, k, p] in $ be given, and set

Tα(σ, σ, μ)=[\\ σ(dζ)σ(dξ)μ(dη)T((ζf a), ξ, η).

Tie, a, μ) = \\[ σ(dζ)σ(dζ)μ(dη)T0(ζ, ξ, η).

[6.3] lim Ta(σ, σ, μ)=T0(σ, σ, μ).
α-*o

Proof. By condition [P] in [5.11],

(6.6) μ{η:σ({r)})>0}=0,

and by (2) [6.2]

T2a(σ, σ, μ)=-\ Qa(σ, σ, η)μ(dη)+2πa .
J [ 0 2 x ) Γ
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By (2) [6.2], Qa(σ, a> η) is bounded above in a for 0 < α ^ α 0 < c o , and by (6.6)
and (1) and (3) in [6.2], Qa(σ, <?, η) converges to — T0(σ, σ, η) decreasingly as
β->0. Therefore [6.3] is proved by the monotone convergence theorem.

[6.4] Let <Γi and σ2 be periodic signed measures with period 2π. Assume
that aj O'=l, 2) are absolutely continuous with respect to σ and \dσj/dσ\^K.
Then,

lim Ta(σu σ2, μ)=T0(σu σ2y μ),
a-*o

where Ta(σu σ2, μ) and T0(σu σ2, μ) are defined in the way similary to (6.5).

Proof. By (4) [5.3], S((ζ, a), ξ, η) increases to S0(ζ, ξ, η) on the set S+=
{(C ξ, η): SQ(ζ, f, η)>0, 0£ζ, ξ, η<2π) as α->0. Noting (5.18), we have by the
monotone convergence theorem

(6.7) ljmjjj T((ζ, α), ξ, η)σ(dζ)σ(dξ)μ(dη)

To(ζ, f, η)σ{dζ)σ{dξ)μ{dη)

=T 0(σ, σ, μ).

Combining (6.7) with [6.3], we have

(6.8) lim ((Lτ((ζ , α), ξ, η)σ(dζ)σ(dξ)μ(dη)=O ,
α-*0 JJJ5 +

where Sc

+={O£ξ, η, ζ<2π}-S+. Therefore,

\Ta(<Ti, <J*> μ)-T0(σu σ2, μ)\

-\\\§+

{To{ζt ξ' ^ } ~ T ( ( C α ) ' ^ V)}K2σ{dζ)

), f, η)K*σ(dζ)σ(dξ)μ(dη).

By (6.7) and (6.8), the right hand side tends to zero as a tends to zero. This
proves [6.4].

Proof of lemma [6.1], Set

(6.9) Iϋ)=Ky g> Φ, φ)=\2*gWU(φXx, y)φx{χ, y)dx .

Since U{φ)(z) is bounded near 30 by [5.18] and φx{x, y)dx — hσφ(x, y)dx->0 in
weak sense, we have

σφ{dQdxg{x)ϋ{φ){x, y)hζ(x,
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\g(x)—g(O\hζ(x, y)dζ=o(l) (y-+0) uniformly in x,

0

I(y) = \\ σφ{dQdxg(QU(φ){x, y)hζ(x, y)+,

And by [5.20]

<yφ(dζ)dxdζg(ζ)hζ{x, y)hζ(x, y

= \\ σφ{dζ)dξg(ζ)Hζ,2y)U,(φ){ξ)+o{l) (y-*0).

Therefore, by definition of U0(φ) in [5.19],

Ky)=-T2y(g σφ, σφ, μ)-^Q 2χσψ(dζ)g(ζ)G((ζ, 2y), kσφ+φ° μ)

173

Since by [4.15]

[6.4] that

dg-σφ

dσ 11*11~da
and

dσd

dσ
is bounded, it follows from

σφ, μ)=T0(g'σφ> σφ, μ).

52π

(kdσφ+ψ°dμ)=0, G((ζ, 2y), kσφ

Jrφo-μ) converges

to F(ζ, kσφ+φ°-μ) boundedly by virtue of [5.2]. Therefore,

σφ, μ)- , kσφ+φ° μ)

Using [5.19] again, we finally have

[ 0 ( 2 π )

g(ζ)σφ(dQ.

g(ζ)σφ(dζ)UQ(φXQ,

which proves lemma [6.1].

[6.5] Let B-{σ} μ, k, p} in & be given. Then

(1) g(x)UQ(x)σφ(dx)g ( ) ( ) ψ x ( ) [
y-*0 J o T JC0,2π )

for any g in CP(R) and any φ in J9J. Here U=UP is defined in [4.12] and Uo



174 MINORU MOTOO

in [5.13].

(2) Uo^O.

(3) f U0(x)σ(dx)=p.
J[0,2π)

Proof. By remark [5.21], (1) is an immediate consequence of lemma [6.1].
By Fatou's lemma lim T(z, σ, μ)^T0(x, σ, μ). Therefore, by [5.12],

y-*o

0^ fim U(z)=- lim T(z, ay μ)+k lim G{z, σ-μ)+C
y~*0 y-»0 y-»0

£-T0(x, σ, μ)+kF(x, σ-μ)+C=U0(x),

which proves (2). Let u be the function defined in (4.15) and let g=l and φ—u
in (1). Then, noting [4.12], we have

f U0(x)σ(dx)= lim [2*U(z)s(z)dx=p ,
JC0,2π) y-*0 JO

which proves (3).

§7. Uniqueness of ^-solutions and jB-processes.

Thoughout this section, B={σ, μ, k, p) in & is fixed. The functions s, t,
m, I and U are defined in [4.12], u in (4.16) and the class D%tN in [4.13].

Let φ be a ^-solution for / in Da. Then, by lemma [6.1] and (1) [6.5],
we see that (4.18) in definition [4.16] is equivalent to

(7.1) U0(x)dσφ=U*(φXx)dσ,

where U0(φ) is the boundary version of a solution U(φ) of (4.19) which is de-
fined as in [5.20], and Uo is defined in [5.13],

[7.1] PROPOSITION. For f in Cq(R) and α>0, a B^soίution for f in Da

is unique, if it exists.

Proof. Let φx and φ2 be 2?i-solutions for / in Da. Then, by definition it
is easy to see φ—φi—φ2 is a ^-solution for 0 in Da. Since φ3 are in Cq(Di0-α]),

Therefore φ is in C p(D c 0 'α ]). Moreover φ is in C°°(Z?CO α ]), for φ is harmonic
in Da and 0 = 0 on da = {y = a}. Therefore, φ is smooth on da and

lim [2nU(φ)φxdx = -\\m [2πU(φ)xφdx
y^ajo y-+ajo
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(—mφy+lφx)φdx=Q.
o

On the other hand, by (2) [4.5]

y-*a Jo

, b)φx(x, b)dx+\^x tm(φ%+φ\)dxdy ,
b<y<a

for any b<a. By (7.1), lemma [6.1] and (2) of [6.5], we have

lim [**U(φXx, b)φx(xt b)dx=[ U0(φ)dσφ

δ-0 JO r r J[0,2π) τ γ

= f U#
J[0,2τr) r

=f Uo(ίμγdσ^o.
J[0,2π ) \ aO /

Therefore, \ m(φ%+φl)dxdy^S). Since ra>0 in Da and φ=Q on 3α, we
Jθ^x<2π

0<y<a

have φ=φ1—φ2=
10 in Z)α.

Now, we shall prove uniqueness of ^-solution for / in Cq>N(R). First,
we note:

[7.2] Let p be in MP>N{R). Define pN in M(Λ) by

(7.2)

for any / in CK(R) Then ^ ^ is in MP(R) and

(7 3)

[7.3] Let B={σ, μ, k, p} be in $. Then B*—{σN, μN, k, p/N} is also in
, and

lN(z)=l(B*)(z)=l(Nz)

(z) = ±
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Proof. We shall check the conditions in [4.9] for J5T*. The condition (b. 1)
is obvious by (7.2), while (b. 2) is trivial. We have

because (1/N)hζ/N(z/N)=hξ(z). In the same way, we have tN(z)=t(Nz), mN{z)
=m(Nz) and lN(z)=ί(Nz). Set U(z)=(l/N)U(Nz). Then Ox=Ux(Nz) and 0y=
Uy(Nz). Therefore, it is easy to see that 0 is a solution of

Since 0 is nonnegative, (b. 3)* in [4.9] holds. Finally,

7(x, y)sN(x, y)dx = 2Fk\yW*> Ny)s(Nxf Ny)dx

= 2 M o U{x> Ny)s(x> Ny)dx = 2Ni\o U(Xf Ny)s(x> Ny)dx

and
1 f 2 π ~ 1

lim-rr-l U(x, y)sN(x, y)dx-1-p ,
y-o Zπ Jo TV

which proves (b. 4) and U=UN.

[7.4] Let B and # * be as in [7.3]. Then φ is in DlN(B) if and only if
φN(z)=(l/N)φ(Nz) is in D%'N{B*).

Proof. Noting (ΦN)X(Z)=Φ(NZ) and (φN)y=φ(Nz), we can easily check the
conditions in [4.13].

[7.5] Let B and B* be as in [7.3] and let / be in Cq,N(R). Then, 0Iis
a ^-solution for / in Da if and only if φN{z)=(l/N)φ(Nz) is a #?-solution
for fN(x)=(l/N)f(Nx) in Z)α/ΛΓ.

Proof. First, we note /# is in Cq(R). Let 0 be a ^-solution for / in Da.
Then, by [7.4], φN is in DZ/N(B*). It is obvious that φN(x, a/N)=fN(x). Set
VN(φNXz)=(l/N)U(φXNz) {z^Da'N). Then W(0) is a solution of

VN(φN)y=mN(φN)x+lN(φN)y,

for U(φ) is a solution of (4.19) in [4.16]. Let g be in CP(R). Since φ is a
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solution and g(x/N) is in CPtN(R), we have

lim \2πg(xXUN (φN)x-VN(φN) s)(x, y)dx
y->o Jo

=lim jj^g(xXUφx-U{φ)sXNx, Ny)dx

w ^ ^ ^ Ny)dx

= o .
Therefore φN is a 2??-solution for fN in DalN. In a similar manner the con-
verse is also proved.

Combining [7.5] with proposition [7.1], we have:

[7.6] THEOREM. Let B in $ be given. Then, for any N, any f in Cq,N(R)
and any a>0, a BN-solution for f in Da is unique, if it exists.

[7.7] THEOREM. Let B in B be given. Then a B-process is unique, if it
exists.

Proof. Let P be a 5-process. By theorem [7.6] and the definition of B-
process, Hpf is uniquely determined for any / in CPtN{R) and a>0. Let / be
any function in CK(R), and set

/*(*)= Σ f(x+2kNπ) (N=l, 2, .»).

Then fN is in CP)N(R) and Mm fN(x)=f(x) boundedly for any x^R. There-

fore, H%f{x)— lim HafN(x) is uniquely determined. By theorem [2.4], we can

see uniquess of a ^-process.

III. Construction of BP.

§8. Construction of μP and kP and condition [V].

In this section, we shall construct, for a given process P in £P, a nonnega-
tive periodic harmonic function mP in D and its supporting measure μP on do-
In the last part of the section, we shall also show that mP(z) is the density
function of an invariant measure of the process P. Given a process P in P,
we write the harmonic measures HP(z, A) induced by P as Ha(z, A).

[8.1] Let rπ\x) (0<s<r , xt=R) be defined as in §0.8°. Then, rπ\x)
00

and rπs(x)= Σ rπs(x+2nπ) are C°° functions with bounded derivatives in x,
n=-oo

and
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Γ- dx<oo,

Proof. By definition, we can see

dn

 r Pn(cosh(πx/r), s'mh(πx/r))
dxn π (cosh (πx/r)—cos (τrs/r))n+1

where Pn(x, y) is a polynomial of degree n. Hence [8.1] is proved easily.

[8.2] The kernel Hξ(x, A)=H%((x, b) (b<a) defined in [2.3] has a density
function hffrx, ξ) in C%(RxR). Define

ίfU,f)=nΣβ βAfU,f+2nττ).

It is also in C°°(RxR) and periodic in x and ξ.

f. Let c<b<a. Set Λ= Σ (#? SIK)n#?. Since " ~

i? is a bounded positive kernel and /?(*, i4)=/?(x+2ττ, ̂ 4+2π ). By (Έ.2) and
(Έ.3) in [2.2]

HS=m Hg=Hi(%ΠS+ϊΠS Hi).

Therefore Hξ=R α

cII?, and

m=a

cm+a

cm H?=a

cm+a

cm R ? I B .

The kernel Hg(x, A) has a density

Noting [8.1], we can get [8.2].

[8.3] DEFINITIONS. Let K(x, A) be a kernel defined for xei? and
^ ) . Here Ά is the closure of A. We use notation

(* K(x, dζ)F{x, f)=limf

for F in C(RxR), if the limit exists. Set

(8.1) Γ P
Jίxl

for r>0 and /eC|(/?), and

(8.2) <

for r>0 and f^Bb{R)y where ίr(x) and #r(x) are defined in §0, 8°.
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Using explicit forms of each kernel, we can easily see:

[8.4]

(8.3) B m - M eIB(*,

bra a — υJ

for 0<c<α and / in Cl(R).

(8.4) l i m - \ ( α

c I E ( *

for 0<c<α and f(ΞBb(R).

[8.5] For / in Cl(R)

(8.5) fl /(*)=lim-Mff?(*, dξKf{ξ)-f(x))
δtα a — DJ

exists, and Baf is expressed by a kernels Ba(x, dξ) as

(8.6) B'f(x)=[* B\x, dξ)(f(ξ)-f(x)).

The kernel Ba(x, Λ) (x^R, Λ^B(R) and xφ.Ά) satisfies for any c<a

(8.7) Ba{x, A)=Pa~c(x, A)+Qa-cH?(x, A).

Proof. For c<b<a, we have

by (h. 2) and [2.2]. By [8.4], we can immediately show

, dξ)(f(ξ)-f(x))l i m M
bra a—O

exists and is equal to

Pa-cf+^Qa-cH?)(x, dξ)(f(ξ)-f(x))

for any / in d(R).

[8.6]
(1) Ba(x, A)=Ba(x+2π, A+2π) if x£A.

(2) Ba(x, A) has a density ba(x, ξ) in C°°(RxR) off diagonal, which satisfies

(8.8) b*(x, ξ)=pa-%ξ-x)+\ qa-c(y-x)h«(y, ξ)dη.
J R

Proof. (1) is obvious by (8.7). (8.8) follows from (8.7), [8.2] and explicit
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forms of pr(x) and qr{x) in §0, 8°.

[8.7] For / in Cb(R), set φ=Haf. Then

(8.9) φy(xf b)+Bbφ(x, b)=Q

holds for any b<a, where

Bbφ(x, b)=[* B\x, dξ)(φ(ξ, b)-φ{xf b)).

If / belongs to CftR), (8.9) holds for any b^a.

Proof. If / belongs to C\(R\ then by [8.5]

φy(x, a)=lim^~(Hb

af(x)-f(x))=-B«f(x).

Noting φ(x, α)=/(x), we have proved (8.8) for b=a. For b<a, φ^H\Hb

af) in
Db and Hb

af is in C2

b(R) for any / in Cb(R). Therefore [8.7] is proved.

[8.8] For / in Cft/?), set

(8.10)

Then for α>0, there exists a function ma{%) in CP(R) such that

(8.11) \Uma(x)(Pf(x)+Baf(x))dx=0
JO

for any / in C%(R)} and

(8.12) [2πma(x)dx=2π.
Jo

Moreover, mα(x) is uniquely determined by (8.11) and (8.12).

Proof. By (8.7), for any c<a

for / in CftR). As an operator in CV{R), P+Pa~c with domain C%(R) is a
core of the generator of an additive process (process with stationary independent
increment) on the torus T—R/(2π), whose transition probability has a positive
smooth density. Since Qa~cH? is bounded on CP(R) and maps Cj(J?) into C;(Λ),
usual argument on smooth bounded perturbation proves that P+Ba is a core of
the generator of a Markov process on the compact space T, and its semigroup
maps Cp(J?) into C%(R), and its transition probability has a positive smooth
density. Therefore the Markov process corresponding to P+Ba has a unique
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invariant measure ma(x)dx which is characterized by (8.11) and (8.12).

[8.9] Let u be in C%(R) and v be the Hubert transform of u, that is,

l i m ί * ^(8.13)

Then

(8.14)

for any / in C|(Λ).

Proof. For ^ E D set

lim—ί ^

1 Γ* sin(g-x)

Then β, v and / are in C£(Z)C0>oo)) and harmonic in D. v is a harmonic con-
jugate of ΰ. Noting lim/y(x, y)—Pf{x)} lim/ y(x, ^)=0 and l im/^x, 3;):=0, we

2/-»0 2/-»oo 2/-»oo

have by [4.4]

=lim\2\ΰfy-vfx)(x,
2/-»ooJθ

Therefore (8.14) is proved.

[8.10] Let ma(x) in Cp(R) be the function given in [8.8]. Define m(z)=
my(x) for any z=(x, y)^D. Then m(^) is a positive harmonic function in CV(D).

Proof. It has been already shown in [8.8] that m is positive and periodic
with period 2π. To show m is harmonic in D, it is sufficient to prove

(8.15) m α (x)=( 2 %(x, a-b)mb(ξ)dξ
Jo

for any 0<b<a. Let /6 be the Hubert transform of mb and set
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for z^D<b °°\ For any / G C J ( Λ ) , set φ(z)=Haf(z) for z^Da. Noting /(x, α)
is the Hubert transform of m(x, a), we have by (8.14), (8.9) and [4.1]

, a)f\x)+m(x, a)Baf(x))dx

β (/(*, α)0*(*, a)—m(x, a)φy(x, a))dx

x, b)φx(x, b)-m(x, b)φv(x, b))dx

(x)φx(x, b)+mb{x)B"φ{x, b))dx

= ?πmb{x){Pφ{x, b)+B"φ{x, b))dx
Jo

where Pφ(x, b)=(Pφ( , b))(x) and Bbφ(x, b)^(Bbφ( , b))(x). By definition of
mδ(x), the last member of the above equalities is zero. Therefore

m(x, a)(Pf(x)+Baf(x))dx=O
Jo

for any / in Cl(R). Noting

m(x, a)i/x=\ mb(x)dx=2π,

o Jo

and using uniqueness of maf we can see m(x, a)—ma{x). Therefore (8.15) is
proved.

Combining [8.8] with [8.10], we have:

[8.11] PROPOSITION. Let P in & be given. Then there exists a unique
positive harmonic function m(z) in CP(D) such that

(8.16) Γm(x, a)(Pf(x)+Baf(x))dx=0
Jo

for any α>0 and any f in Cp(R), and

(8.17) [2πm(x, a)dx=2π,
Jo

where Baf is defined in [8.5].

[8.12] DEFINITION. Let P in & be given.
(1) For α>0 and / in C|(i?), B%f is defined by (8.5) in [8.5]. For α>0
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A(Ξ$(R) and x£A, Ba

P(x, A) is defined by (8.7) in [8.5].
(2) mP is defined as the positive harmonic function in D which is in CP(D)

and satisfies (8.16) and (8.17) in [8.11].
(3) μP in MP(R) denotes the supporting measure of mP on d0, that is,

(8.18) mP{z)=\ hξ{z)μP{dξ).

[8.13] Remark.
(1) The measure μP in MP{R) is uniquely determined for the given P in

<P, and [AIP]=(1/2Λ)/IP([0, 2JΓ))=1.

(2) Let / be a harmonic conjugate of mP. Then, for any α>0, /(*, α)
differs from the Hubert transform of mP(x, a) only by an additive constant.
Therefore it follows from [8.9] that (8.16) in [8.11] is equivalent to

(8.19) [2\mP(x, a)Baf(x)+l(x, a)f'(x))dx=0
Jo

for any / in C|(Λ).

[8.14] Conditions [ F r ] and [ F ] (Conditions for variance and Moment)
Let r be a positive integer. A process P in & satisfies condition [ F r ] if

and only if for any b<a

supf HUx,dξXξ-x)*rdξ<oo.
x JR

Condition [VΊ] is called condition [ 7 ] .

[8.15] Under condition [ F r ] , (8.5) and (8.6) in [8.5] and (8.9) in [8.7]
remain to be true for all / in C\R) satisfying

(8.20) l/(*

with a constant K.

Proof. First, we note the following estimates.

)£K(c, a)e-πN<a~c,1 f
fl-fc Jι

a-b Ji

and



184 MINORU MOTOO

for 0<c<b<a and Λ/^l. Here K(c, a) and K(c, a) are constants depending on
c and a. Then, (8.5) and (8.6) for / satisfying (8.20) follow from the equation

(8.9) is a consequence of (8.5).

[8.16] Under condition [ 7 r ] ,

sup[Ba(x, dξ){ξ-x)2r<oo.
X J

Proof. For 0<c<a,

[* pa-c(x)x2rdx=cr<oo, [qa-c(x)χ2rdx=c'r<

and

Noting (8.7), we have [8.16].

[8.17] PROPOSITION. Let P in & be given and assume that P satisfies [ 7 ] .

(1)

(8.21) kp=-^-\2πmP(x, a)dx[ B%{x,dξ){ξ-x) (α>0)
In Jo JΛ

zs independent of α.
(2) Lei /p(>ε) ?̂e ίΛe harmonic conjugate of mP satisfying

(8.22) - ^ - ( \ ( ^ , α)dx = - A F .
ΔTZ Jo

(8.23)

/ in C\(R).
m(x, a)dx—2π,

0

Let I be a harmonic conjugate of m in D. If

(8.24) [**(m(x, a)Btf(x)+l(x, a)f'(x))dx=0
Jo

for any f in C\{R)y then m—mP and l—lP.

Proof, First we note that, under [ 7 ] , B%f(x) is well defined for / in C\(R)
and belongs to CP(R). Let ka be the right hand side of (8.21) and let



TWO-DIMENSIONAL BROWNIAN MOTION 185

/.(*)=( kξ(z)μP(dξ),
J[0,2τr)

which is a harmonic conjugate of mP(z) such that \ lo(x, a)dx—0. By (8.19)
Jo

(8.25) Γ W * , a)B%g{x)+h{x, a)g'(x))dx=0
JO

for any g in Cl(R), since lo(x, a) is the Hubert transform of mP(x, a). For
any / in C\(R), set Cf=(l/2π)(f(x+2π)-f(x)) and φ(z)=Hϊf(z) for
Then, by (h.4) in [2.1],

^^f(z, dξXf(ξ+2π)-f(ξ))=Cf,

and f-C/x is in C|(/?) and φ~Cfx is in C2(Dα). Therefore by (8.25)

(8.26) ^ r Γ ( m p ( x

and similarly, for any b<a>

1
2π jo

On the other hand by [8.7] and [4.1]

x, a)ί\x))dx

(—wP(x, a)φy(x, a)+lo(x, a)φx(x, a))dx

J2π

o (-mP(x, b)φy(x, b)+lo(x, b)φx(x, b))dx

, b)BPφ{x, b)+Ux, b)φx{x, b))dx.

Therefore Cfka = Cfkb. Choosing f=x, we have Cf=l and ka — kh which
shows kp—ka is independent of a. Set l—lQ—kP. Then for any / in C£(i?)

x, a)Ba

Pf(x)+Kx, a)f'(x))dx

x, a)Bϊf(x)+lo(x, a)ff(x))dx-2πCfkP=b

by (8.26). The assertion (1) and (2) have been proved.
Assume (8.24). Then, for / in C$(R),
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\m(x, a)B}f(x)+lt(x, a)f'(x))dx=0.
JO

Therefore for any / in C2

P(R) and α>0

Γm(x, a)(B%f(x)+Pf(x))dx=Q
Jo

by [8.9] and we have m—mP by [8.11]. Setting f~x in (8.24), we have

2πkp+[2Ί(x, a)dx=0,
Jo

which shows l=lP.

[8.18] DEFINITION. Let P in £P satisfying condition [V] be given. Define

and

« * ) = ( kξ(z)μP(dξ)+kP,
J[0,2π)

where μP, mP and B% are defined in [8.12].

In the remainder of this section we shall proved that mP{z) in [8.12] is the
density of a periodic invariant measure of the process P. Note that P need
not satisfy the condition [ F ] ,

[8.19] For α>0, let σ—σa be the hitting time of da.
(1) For a positive λ,

(8.27) cosh\/2Λ;y
if

(2) Let / be in Cb(R) and λ be a positive number and set

Then φ, φx and ̂ 4y tend to zero uniformly in x as y->oo. We have

(8.28) \φy(x, b)+Bb

Pφ(x, b)\<V2λ tanh(V236)||/||

for any b<a.

Proof. By [1.6], Et{e'λσ)=Ef\e~λd"<) where σa is the hitting time of
{a}. And by (p.4) [1.1], φ(z)=Ef>2(e-

λσf(z(σ))) for y>a. Therefore (1) and
the first part of (2) are obvious by properties of Brownian motions. To prove
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(8.28), let ρ=σb be the hitting time of db and let z be in D\b>a). Then φ(z)=
Ez(e-λpφ(x(ρ), b)) for y<b, and φ is in C°° in Da. Therefore,

<φ(x, b)-φ{x, y))
b-y

By [8.5]

, b))-φ(x, b))+-r Et(Q.—e-χP)φ(x(p), b)).
o—y

, b))-φ(x, b))=(BPφ( , b))(x, b)

and by (1)

lim—!— lE^l-e-'ηφix, b)\
ytδ o—y

^Yιmϊ^Elle
yϊb b—y

Since φy(x, b)=\im , 1 (φ(x, b)-φ(x, y)), (8.28) is obtained.
yΐδ o—y

[8.20] PROPOSITION. Let PΊn & be given. Set D={z:0^x<2π,0<y<co}t

and let f be a function in CP(D) such that

(8.29)

Then, for λ>0

ί r
Gχf(z)mP(z)dz=\ f(z)mP(z)dz,

(8.31)

where Gif(z)=Ez(^e-itf(z(t))dt) and Ptf(z)=E2(f(z(t)).

Proof. Set m=mP. We may assume that / is in C|(Z>), nonnegative and
zero outside D0 a\O<b<a). By (p.4) [1.1]

Ke-χ"GχMσ.)),

where σt is the hitting time of ds for any s>0. Therefore Gχf(z) is in C2(D)
and in CP(D) by (p.5) [1.1], and {λ-Δ)Gχf=f in ΰ. Hence for 0<ε<b<a<N

(8.32) Γdxf^^W-^Gi/WmU)
JO Jε
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^*dx\N dy f{z)m(z)=[j{z)m{z)dz.
JO Jε JD

By Green's theorem

(8.33) \2ndx[NdyAGλf(z)m(z)=\2\m(Gλ(f)y-my(Gif)Xx, N)dx
JO Jε JO

+ \\m(Gλf)y-mυ(Gif))(x, ε)dx.
Jo

Since
f Ez(e-λσ«Gλf(z{σa)) if y>a,

I Ea(e-λ*>Gλf(z(σb)) if y<b,

the first term in the right side in (8.33) tends to zero as ΛΓ->oo by (2) [8.19].
On the other hand, noting remark (2) [8.13], we see that for any harmonic
conjugate / of m,

Jo

Therefore, by (8.28),

(GxfXx9 ε)dx

, ε)dx=-\UmB°r{Gχf)(x, ε)dx.
Jo

\^\m(Gλf)y-my(Gλf)Xxy e)dx

))(x, ε)dx

Finally, it holds that

dx\

0 Jε

Letting ε—>0 and Λ̂ ->oo in (8.32), we obtain (8.30). Since Ptf(x) is continuous
in t by (3) [1.4], (8.31) follows from (8.30).

[8.21] COROLLARY. Using the notations in [8.20], let f be in C(D) such

that [ \f\mP(z)dz<oo. Then
JD

(8.34) χ[ Gλf{z)mP{z)dz= [ f(z)mP{z)dz}

JD JD

(8.35) \)Ptf(z)mp(z)dz=^J
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Proof. We can assume that / is in CK(D). Then /(*)= f] f{z+2nπ) is

in CP(D), and by (p. 5) [1.1]

f f(z)mP(z)dz=\j(z)mP(z)dz,
JD JD

\ Gχf{z)mP{z)dz=\Gιf{z)mP{z)dz,
JD JD

Therefore (8.34) and (8.35) are immediate consequence of (8.30) and (8.31).

§9. Construction of σP and condition [ M ] .

In this section we shall construct, for a given process P in 5>, a nonnegative
harmonic function sP in D and its supporting measure σP on 30 The function

ί z
<Tp(dξ) plays a role of harmonic scale on 30. In order to guarantee

o

existence of σP or sP, we need condition [Λf] and [V]. Later in part II, we
shall discuss necessity of conditions [M] and [V].

[9.1] Condition [M] (Monotonicity Condition). If / is a non-decreasing
function in Cb(R), then HPbf(x) is non-decreasing in * for any α and b with

[9.2] Remark. Under [M1], it is easily seen that, if / is measurable and
non-decreasing on R and H%bf{x)> — &> for any x, then H%bf(x) is non-decreas-
ing in x.

We define classes of harmonic functions related to the process P.

[9.3] DEFINITION. For 0<α<oo, set

ιco α ] ) : φ=H$f for some / in Cb(R)}.

Λ)y rip — tlp,i> • " — I \Jrl >
α>o

α>o * c α>o

If condition [V] is satisfied, set

: φ=H%f for some / in Cq,N(R)}.
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Hq,N, Hq

a and Hq are defined similarly.

[9.4] Remark. If φ belongs to Ha, then φ is harmonic in Z)<° α> and

#*)={//&*, dξ)φ(ξ, b)

for any &<α and

[9.5] THEOREM. 4̂sswra£ P in £E> satisfies [ 7 ] and [M]. TTî re ^ asίs a
function u in Hq such that

(9.1)

κ(0,l)=0,

u(x, y) is increasing in x,

u(z+2π)-u(z)=2π.

Moreover, such a u in Hq is unique. The derivatives s=ux and t= — uy of u have
the following properties.

(1) s is positive harmonic in D and belongs to CP(D).
(2) t is a harmonic conjugate of s in D and also belongs to CP(D).

(3)

(9.2) ~έ~ί/ (*' y)dx=kp>
where kP is the constant defined in [8.18].

Proof of (1), (2) and (3). Let u in Hq satisfy (9.1). Then (1) and (2) are
obvious, for u is harmonic and in Cq(D). Set

which is independent of y by [4.1]. Noting u(z)=(Hau(-, a)){z) for any α>0
and z in Da, we can see uy(x, a)+{Bau(-, a))(x, a)=0 by [8.15]. Let mP and
IP be functions defined in [8.12] and [8.18], respectively. Then, since

-^\yP(x, a)dx=ί, - U « * , a)dx = -kP, -^-\**s(x, a)dx=l,

we have

[ 2 \ x , a)dx

x, a)dx

(x, a)dx,
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by [4.4] and the last member is zero by (8.23) in [8.17], for u(x, a) is in C\(R).
Thus (9.2) is proved.

Proof of uniqueness. Let u and u be both functions in Hq satisfying (9.1).
Set v—u — u. Then v is in Hp. Especially v is a harmonic function in GP(D),
which is represented by

(9.3) v(*)=jβ%(*, y-a)v& a)dξ+Cy

for any α>0 and z<ΞDca'°°\ By (3) in the theorem,

vy(x, y)dx — \ (Uy — Uy)(x, y)dx=0

0 JO

and

^ \ 2 π ( ξ , a)dξ.

For any α>0, v is harmonic in D^^ and vy+B%v{-9 α)=0 on 3α by [8.7].
Therefore, by the maximum principle, v can not attain strict maximum nor
strict minimum in Dίa"°°\ Thus υ=K in Dίaoo\ Since a is arbitrary and
v(0, l )=0, v=u-u=Q in D.

Proof of existence.

1° Set 0αC*)=f#α(2, rff)f for any α>0 and z e D α , which is well defined

by condition [V]. By definition, ua is in iff with wα(z-f-27r)—ua(z)—2π.
Moreover by condition [MG (see also [9.2]), wα(#, ^) is increasing in x. Set
ua{z)-Ua{z)-ua{0Λ)y sa-{ua)x and ta=-(ua)y.

2° Obviously sα(z) is a positive harmonic function in Cp(Da) with

I 5α(x, 3^)ίίx=2π. Therefore, for αo>O, the integrals of sa(z) on each fixed

compact set in Z)α° are bounded with respect to a^a0. Hence we can choose
a sequence {an} with limαn=oo such that s n = s α n ( n = l , 2, •••) and their deri-
vatives converge uniformly on each compact set in D.

3° Set un—Uan and tn=tan=—(un)y. Since

Unix, D=(%»(e, Wf=2&;r+[X sn(ί,
JO J2feτr

for 2^π^%<2(/^+l)π and un{z)~\H\z, dξ)un(ξ, 1), {wn} converges uniformly

on 3χ and therefore on D^Λ\
4° Let tn be a harmonic conjugate of sn such that ίn(0, 1)—0. Then
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and {in} converges uniformly in each compact set in D. On the other hand>
by 3°{in} converges in D1 and tn^in+kn Therefore {kn} converges, and thus
{tn} converges uniformly in each compact set in D. Noting un(l, 0)=0, we
finally see {un} converges uniformly on each compact set in D.

5° Set w=limwn. For any &>0, {un} converges uniformly on db. There-

fore, it follows from un(z)=(Hbun( , b)){z) that u(z)=(Hbu( , b)){z) and we see

that u belongs to Hq. Since un satisfies (9.1) in Dan, u also satisfies (9.1) in

D. Thus, u is the function just wanted. The proof of the theorem is complete.

[9.6] DEFINITION. Let P in £P be given and assume that P satisfies the
conditions [ F ] and [ M ] .

(1) up is the harmonic function in Hq(P) determined by (9.1).
(2) sP=(up)x and tP=-(uP)y.
(3) Op is the measure in M

P
(R) such that

(9.4)

[9.7] Remark.
(1) Since sP is positive harmonic in D and lim sp=ί, existence and uniqueness

of Op is obvious. Therefore σP is uniquely determined for a given P in £P, and

(2) tP is the harmonic conjugate of sP that satisfies

c, y)dx = kP.

(3) Since \im(uP)x(z)=l and \\m(up)y(z)— — kP, it is easy to see that
y -*oo y ->oo

(9.5) w—Up

is a bounded harmonic function in CP(D).

[9.8] Assume P in & satisfies [ F ] and [ M ] . Let / be in C\R) and
| / ( * ) | < £ U L " ( 1 + \X\2) with a constant K. Let α be a positive number and set
φ{z)=H%f{z). Then we have:

(1) If f'(x)£CsP(x, a) for some real C, then φx(z)^CsP(z) for * in Da.
(2) If | / ' ( * ) | ^ C s P ( x , o) for some positive C, then

\φx(z)\<CsP(z) for * in £ α .

Proof. If f'(x)^Csp(x, a), then CW^ΛΓ, a)—f(x) is nondecreasing. There-
fore, by condition [ M ] , CuP{xy y)—φ(x, y) is non-decreasing in x, which proves
(1). If \f'(x)\£CsP(x, a), then ±f'(x)^CsP(x, a) and (2) is obvious from (1).

[9.9] Assume P in & satisfies [ F ] and [M1]. For any / in Cq,N and a>
0, set Cf=l/2Nκ(f(x+2Nπ)-f(x)) and φ(z)-H}f(z). Then it holds that, for
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any b<a,

( 2Nπ

(mPψy-lPφx)(x, b)dx=0,

and
(3) there exists K=K(φ, b)>0 such that \φx(z)\£KsP(z) for all z in D\

Proof. By (p.5) in [1.1], (1) is obvious. Set φ(z)= ϊ]φ(z+2kπ), then φ is

in Cq(Da). Therefore, by [8.15] and (8.23) in [8.17],

5 2Nπ Γ2π

(mPφy—lPφx)(x, b)dx = \ (mPφy—lPφx)(x, b)dx
0 JO

(i, b)dx=0.

Hence (2) is proved. Since sP is positive harmonic in D, Set

K= SUP i ^ 4 J

Then \φx(x, b)\^KsP(x, b). Since φ(z)=(Hbφ{ , b)){z) for z^Ώ\ (3) is a con-
sequence of (2) in [9.8].

§ 10, Construction of UP, UP(φ) and pP.

Throughout this section, we shall ύx a process I* in £P and assume [V]
and [M] for P. First, in order to apply (8.23) in [8.17] to this section, we
rewrite it in a slightly more general form.

[10.1] For any / in C\,N(R) and α>0,

S 2Nπ
(mP(x, a)B%f{x)+lP{x, a)f'(x))dx=0.

0

Proof. Let f(x)=NJ]f(x-\-2nπ). Then / is in C2

q(R) and satisfies (8.23).
71 = 0

Noting that mP and lP are in CP(R), we can easily show [10.1].

[10.2] Notations. For / and g in C\,N(R) and α>0, set

(10.1) pf,g(x, ξ)=\ζgVXf(t)-f(x))dt
J X

= \\g(Θ-g(t))f'(t)dt,
Jx



194 MINORU MOTOO

J2iVπ C

mP(x, a)dxψ%{x,dξ)pf,g{x,ξ)

and

(10.3) m,N{f, g)=j(Bϊ,N(f, g)+B%.N{g, /)).

For / and g in C\{R) and α>0, set

(10.4) B%{f, g)=B%M, g)

and

(10.5) Ba

P(f,g)=mΛ(f,g).

[10.3] Remark. It holds that

(10.6) j(Pf,e( \

and especially

(10.7) γ

[10.4] LEMMA. For any f in C2

P>N(R), g in Cl,N(R) and α>0,

S 2Nπ
f(x)(mP(x, a)Bί.g(x)+lP(x, a)g'{x))dx.

0

Proof. Set F(x)=[XJ(t)g'(t)dtf then F is in C\,N{R) and by [10.1] it

holds that

$ 2Nπ
(mP(x, a)Ba

PF{x)+lP(x, a)F\x))dx
0

S 2Nπ C C2Nπ

mP{x,a)dx\B«P{x,dξ){F{ξ)-F{x))+^ lP(x, a)f{x)g\x)dx.

Add the right side to the right side of (10.8). Then the right side of (10.8)

mP(x, a)dx\B&x, dξ)\\χf(t)g'(t)dt-f(Xχg(ξ)-g(x))\

=B%.N{f,g).

For any g in Cl,N(R), set

(10.9) Va(g)(x)=^(mP(t, a)Ba

Pg(t)+lP(t, a)g\x))dt.
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Then, by [10.1], Va(g) is in C *.*(/?). If / is in C2

P>N(R) and g is in C|,*(/?),
then we have, by [10.4] and by integration by part,

(10.10) B%.N(f, g)A
J

[10.5] For any g in Cl,N(R), there exists a unique function Va(g) in
Cl,N(R) such that

(10.11) Va(g)Xx)=mP{x, a)B%g{x)+lP{x, a)g\x)

and

(10.12) B%,N{f, g)=
J

for any / in C\.N(R).

Proof. It is sufficient to prove that there exists a unique constant c—c{af g)

such that (10.12) holds with Va(g)=Ϋa(g)+c for all / in C2

q>N(R). Set

Vag(x)dx.
0

J 2Nπ
f'(x)dx, f-CfX belongs in Cl N(R).

o

Therefore by (10.10)

Bt.Nif, g)=B%.N(J-CfX9 g)+cfB«P,N(xt g)

Ϊ
ZNπ „

(f'(x)-CfW•a{g)dx+cfB
a

P,N{x, g)

0

f'(x)Va(g)dx+cf[Ba

P,N(x, ί )-J

ί2iVπ
/'(

0

which shows that Va(g) satisfies (10.12). On the other hand, c is uniquely
determined by the equality

B%,N{x, g)=

Let Nu N2 and M be positive integers with N2=NiM and let g be a func-
tion in Cq,Nl(R). Then, # is also in Cq,N2(R). Set FU^X/^l , 2) be functions
satisfying (10.11) and (10.12) for N=NjU=l,2). Then by (10.11) Vi(g)'=
Vl(g)', or Vl(g)=Vl(g)+c. Since

n,N2(x, g)=MBa

P,Nί(x, g)=M^Niπ
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and
Vl(gXx)dx=\ (Vί(g)(x)+c)dx

0 JO

V1

a(g)(x)dx+2N2πc,
0

we have c=0, that is, Vι

a(g)—Vl(g). Therefore we have the following remark:

[10. β] Remark. In the above sense, Va(g) is independent of the positive
integer N used in its definition.

[10.7] Let g and h be in Cl,N(R) and a be positive.
(1) The mapping g^Va(g) from C\,N(R) into Cι

v>N(R) is linear.
(2) Va(g) is nonnegative if g is nondecreasing.
(3) If h is nondecreasing and \g'\£ch', then

\Va(g)\^cVa(h).

Proof. Since Va(g) is uniquely determined by (10.11) and (10.12), (1) is
obvious. Let g be nondecreasing. For any nonnegative / in Cl,N{R)> set

F(x)=[*f(t)dt. Then F is in ClN{R) and nondecreasing, and ρF.β(x,ξ)^0.
Jo

Therefore

which proves F a ( ^ ) ^ 0 and (2) is verified, (3) is an immediate consequence of (2).

Let φ be in the class H£N=H£N(P) defined in [9.3]. In the following we
shall fix a solution O(φ) of the equation

ί
(10.13) \ J

[ U(φ)y=mPφx+ίPφy in Da.

For any b<a

U(φ)x(x, b)=(-mPφy+lPφxXx, b)

*, b)φx(x, b

by£[8.15]. Therefore we can see:

[10.8] For any 0<b<a and φ in H£N

Vb{φ{-> b))(x)=U(φ)(x, b)+cb(φ),
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where V6( ) is defined in [10.5] and cb{φ) is a constant depending on b and φ.
In the following, we shall show that cb(φ) is independent of b.

[10.9] Let / be in CQ,N(R). Then, for 0 < 6 < α , the function Hb

af2-(Hb

af)2

is in CPtN(R).

Proof. Since \f(x)\<LK+L\x\ with constants k and L, Hb

af2 is well de-
fined by [V~]. Noting f—Hb

af is in CPlN{R)t we can easily show

is in CP,N(R).

[10.10] For 0<c<b<a and φ in H£N,

BΪ,N{φ(-, b\ φ(-, b))-B£,N(φ( , c), φ( , c))

Γ2Nπ Γb

Proof. By definition, φ=Haf with some / in Cq,N(R). Set ψ=Haf\
Then by [10.9] φ-φ% is in CP,N(R) and by [10.1]

j 2 Λ W(x, b)BP(φ\ , b))(x)dx

t, b)BP(φ( , b)){x)dx

t.bXφΛx.n-ψ'Ux.bVdx.
By [8.15]

BP(ψ( ,b))(x)=-φy(x,b) and BP(φ( , b))(x)=-φy(x, b).

Therefore, noting (mP)v=—(lP)x, we have

2BlN{φ{-,b),φ{-,b))

S ZNπ C

mP{x, b)dx\BP{x, dξ)(φ(ξ, b)-φ(x, b)f

5 2Nn
mP(x, b)(BP(φ\ , b))(x)-2φ(x, b)BP{φ{ , b)){x))dx

J 2Nn
mP(x, b)(BP(ψi , b))(x)-2φ(x, b)BP{φ{ , b)){x))dx

lP(x, b)(φ-φ\(x, b)dx
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!
2Nπ

mP(x, b)(ψυ-2φφvXx, b)dx
0

-φ'Xx, b)dx

Ϊ
2Nπ

{mp(ψ-φ*)y-(mP)y(ψ-φ*)}(x, b)dx.

The preceeding equalities also hold for b—c. Therefore Green's theorem proves
that

2B£,N(φ( , b), φ( , b))-2B'P,y{φ{ , c), φ{ , c))

dx\mPJ(ψ-φηdy=2\ΰ dx\mP(φx+φ>)dy.

[10.11] the constant cb{φ) in [10.8] is independent of b.

Proof. For any 0<c<b<a, by (10.12) and [10.8] we have

(10.14) Bb

P,N{φ{ , b), φ( , b))-Bβ,N(φ( , c), φ( , c))

ί 2Nπ Γ2Nπ

φx(x,b)Vb(φ(-,b))dx-^ φx{x,c)Vc{φ(-,c))dx

φxU(φ)(x,b)dx-^ φxU(φXx,c)dx

+2Nπcφ(c»(φ)-cc(φ)).
Here 2Nπcψ=φ(x+2Nπ, y)—φ(x, y), which is independent of (x, y), for φ is
in H£ι, Setting f=φx, g——φv and u=mP in (4.7) of [4.5], we have
(10.15) ?NπφxU{φ)(x, b)dx-?NπφxO{φ){x, c)dx

Jo Jo

By [10.10], (10.14) and (10.15), it holds that

cΦ(cb(φ)-cc(φ))=0.

Therefore cb(φ)=cc(φ) if cφφ0. If cφ-0, choose u—uP defined in [9.6]. Then
cu=cφ+u^=2π. Noting U(φ+u)-U(φ)-U(u) is constant in Da and g->Vb(g) is
linear, we can see by [10.7]

cb(φ+u)-cb(φ)-cb(u)=(U(φ+u)-U(φ)--U(u)Xx>b)

=(U(φ+u)-U(φ)-U(u))(x, c)

= cc(φ+u)-cc(φ)-cc(u).
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Since cb(φ+u)=cc(φ+u) and cb{u)—cc{u)y it is shown that cb(φ)~cc(φ).

[10.12] THEOREM. For any φ in H£N(0<a^oo\ there exists a unique
U(φ)(z)(ztΞDa) such that U(φ) satisfies (10.13) and

(10.16) B$.N(f, φ( , b))^πf'{x)U{φ){x, b)dx

for any f in C\,N(R) and 0<b<a.

Proof. Set U(φXx, b)=Vb(φ( , b)). Then, by [10.8], and [10.11], U(φ)
satisfies (10.13), for ϋ(φ) satisfies (10.13). This proves existence of U(φ), since
Vb(φ( ,b)) satisfies (10.16). On the other hand, if U{φ) satisfies (10.13) and
(10.16), set Ϋb(φ)(x)=U(φ)(x, b). Then Ϋb(φ) satisfies (10.11) and (10.12) and
ybiφ)—Vb{φ{*f b)). Therefore, uniqueness of U{φ) follows.

In the proof of theorem [10.12], we have seen that U(φ)(x, b)^Vb{φ{-y b)).
Therefore, by [10.5] and [10.7], it is easy to show:

[10.13] PROPOSITION. Let φ and φ be in

(1) The mapping φ*->U(φ) from H£N into the set of periodic harmonic func-
tions with period 2Nπ in Da is linear.

(2) // φx^0, then U(φ)^0. Especially t/(c)=O for a constant function c.
(3) // \φx\<cφx for a nonnegative constant c, then \U(φ)\<*cU(φ).

[10.14] DEFINITION.

(1) For φ in H£N(PX0<a£oo), UP{φ)-U{φ) is the function which is uni-
quely determined by theorem [10.12].

(2) Especially we set UP=U(uP), where uP is the function given in [9.6].

Up(x, a)sP(xy a)dx and pP—\impP{a), where sP is given
0 α-o

in [9.6].

[10.15] Remark.
(1) By [10.13] UP is a nonnegative periodic harmonic function with period

2π in D.
(2) UP(φ) is the solution of (10.13) determined by

ί
ZNπ

UP{φ){x,b)dx^Bt'P,N{x,φ{ ,b)),
0

if φ is in HqtN.
For

by (4.7) of [4.5]. Therefore pP{a) is nonincreasing in a and nonnegative, and
pP always exists.
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Since UP is nonnegative solution of (10.13) for φx=sP and φy ——tP, we see
that \μPt σP> kP) defined in [8.12], [8.18] and [9.6] satisfies the condition [P*]
and therefore {μPf σP) satisfies the condition [P] by theorem [5.11]. By the
construction in § 8, § 9 and § 10, we can easily show:

[10.16] THEOREM. Let P in & satisfying [ F ] and [Af] be given. Then
BP—{μP, σP, kPi pP] is in the class <B. Moreover sP=s(BP), tP=t(BP), mP—m(BP),
lP=l(BP), μP=μ(BP) and UP=U(BP)«\

For later use we note:

[10.17] For φ in H%tN and 0<b<a, there exists a constant K=K(φ, b)
such that

(10.18) \UP(φ)\^KUP in D\

Proof. By (3) in [9.9] there exists a constant K=K(φf b) such that
\φx(z)\^K(uP)x. (10.18) is an immediate consequence of (3) in proposition
[10.13].

[10.18]

(1) For / and g in ClN(R), Bftf, g) and ft%(f, g) are well defined.
(2) For / in C\tN(R), φ in HlN and b<ay (10.16) still holds.

Proof. By the explicit form of B%(x9 dξ) in (8.7) of [8.5] and condition
[ F ] , (1) is obvious. To prove (2), approximate / uniformly together with its
first derivative by a sequence in Cl,N(R). (10.16) for / follows from (10.16)
for each element of the approximating sequence by virtue of the bounded con-
vergence theorem.

§ 11. Condition [L] and /?P-processes.

In this section, we shall also fix a process P in £E>, which satisfies [ F ] and
[M]. In §10, we have seen BP={σPf μPi kP, pP} is in the class &. Noting
[9.9], we can easily see:

[11.1] PROPOSITION.

(11.1) HlN{P)cDlN{BP)}

where D%tχ is defined in [4.13],

In general P is not a Z?P-process. In this section, however, we shall prove

(ΐ) See definition [4.12].
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that P is a ^-process under the condition [L] defined below. Later we shall
see, [L] is the condition which implies continuity of the process P on the
boundary dQ={y=Q}. In the following, for simplicity, we shall suppress the
suffix P for quantities in §8, §9 and §10. That is, we shall write σ—σP,
μ=μp, k^kPy p=pP, u=uP, Ba(x, dξ)=B$(xf dξ), U=UP etc.

[11.2] For any α>0 and z in Da, there exists a constant Ma such that

(1) 0^U(z)<^Ma,
(2) Bb(x, u( , b))£2πMa for 0<b<a.

Proof. (1) is a special case of [5.18]. Since B\x, u(>, b))=[**U(x, b)dx

by (10.16), (2) is obvious.

[11.3] For / and g in CiN(R) and a>0, \BUf> g)\ and 2\6%(f, g)\ are
bounded by

Kl s{ , a)
8'

s( , a)

n C2Nπ \l/2

\f'\dx\9 \g'\dx) ||

Proof. Set ?(x)=[*\f'(t)\dt and g(x)=[X\g'(t)\dt. Then / and g are in
Jo Jo

Cι

q>N(R) and nondecreasing. Since

we have

(11.2)

Since, by (10.1)

%(f, g)\, \B%{f, , f)B%{g,

Pf,f(x,ξ)=\\f(ξ)-f(t))\Γ(t)\dt

s( , a)

f

it follows from [10.18] that

B%(J, f)=B%(f, mB%{f, κ( ,
s( , a)]

J ZNπ
\f'(x)\U(x, a)dx

0 s( , α)

s( , α)
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A similar inequality holds for B%(£> S) Therefore, [11.3] is proved.

[11.4] Condition [L] (Locality condition). For positive ε, set

Ba(u ε)=Ba

P(u e ) = Γ m F ( x l a)dx\ B%{x, dξ)(uP(ξ, a)-uP{x, a))\

JO J | £ - X | £ g

Then P satisfies the condition [L] if and only if

\\mBa(u e)=0 for any positive ε.
α-*0

For any h in CP>N(R), set

(11.3) B%ίh2 = j \ t m(x, a)dxψ%x, dξ)h(x){u(ξ, a)-u{x, a))\

[11.5] For any / and g in CP,N(R) and z—{x, y), set

F(z)=[Xf(t)s(t, y)dt and
JO

Then, under condition [L],

F( , α), G( , α))-Λ^

/. By definition (10.1)

B%(F(; α), G( , a))

m(x, α)dxjβ«(x, dξ)\χg(a)s(a, a)da\χf(β)s(β, a)dβ.

Therefore

|β^(F( , a),G(',a))-B%U8l\

m{x, a)dx(^Baix, dξ)\jgia)-gix)\sia, a)da\j fiβ)\siβ, a)dβ

+ \j

ίJgix)\sia, a)da\a

χ\fiβ)-fix)\siβ, a)dβ).

Set ε(/)= sup |/(£)—/(x)| and s(g)= sup |^(f)—g(x)| for any positive s. Then

\B%(F{',a),G(',a))-B%Ug]\

m\f\\\\g\\NBaiu;t)+i\\f\\εig)+\\g\W))B%iui , a), u( , α)).

Since B%iui , a), u( , a)) is bounded for α ^ l by [10.10], we get [11.15] by
uniform continuity of / and g and the condition [£,].
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[11.6] Let a be positive and z=(x, y). Let φ be in H$ίN and g be in
CPtN(R). Set

bχ(t, y)dt and G(z)=\ g(t)s(t, y)dt.

Then, under the condition [L],

(11.4) lim{J?UG( , ft), rf( , b))-Bb

N(H{ , b)f u(>, ft))}=0
δ-*o

and

(11.5) Hi
δ-

For / in Cq,N(R), set φ=Haf. Then, by [11.1] 0 is in £>£#. Therefore,
if we obtain [11.6], then, by definitions [4.16] and [4.19], we conclude that P
is a /?p-ρrocess.

[11.7] THEOREM. // P satisfies [V], [Af] <m<i [L], then Pis a BP-process.

Proof of [11.6]. By (10.16) in [10.12], equivalence of (11.4) and (11.5) is
obvious. We shall prove (11.4). First, for any fixed aQ<a andzeD α ° , \φx(z)\
<LKs(z) holds for some positive K and φx can be represented in form

and d\ύφ\^Kdσ.
1° Set

and !!&)=[*g(ί)φix(t, y)dt. Then it holds that
Jo

limB"N(G( , b), φά , b)-φ( ,

(11.6)
\imBb

N(Hi( , b)—H{ , b), u{ ,

S, y)dt

of 1° First we note;

£11*11 and j]**"|
s( , fc)

For b<a0

s( ,b)
Sίsup
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Φ*(;b)

Further we have for b<a0

Wφixi't b)—φx\

with some positive Klf since φix—φx is a periodic harmonic function in Da and
has null boundary value on 30 Therefore by [11.3]

\Bh

N(G{',b), 0i( , « - # ,6))|

s( ,b)

{ 2Nπ Γ

|G,(x,6)|rf*
0 J

s( , b)

S 2Nπ

0

where Mao is given in (1) [11.2]. Letting b tend to 0, we get the first part of
(11.6). Noting ux(x, b)=s(x, b),

?NXux(t,b)dt=2Nπ,
Jo

Hιx(-,b)

and

s( , b)

\\H1X{ , b)-Hx{ , b)m

Hx( ,b)\
s{ , b)

, b)-φx{ , b)\\

we obtain the second part of (11.6) in the similar way.
2° For any e>0, there exists a function / in CP,N(R) such that

(11.7)

for b<aQ, where

and

\B"N{G{ ,b), φt(;b)-φx{>,b))\<*.

\Bb

N{Hi( ,b)-H1{-,b),u{ ,b))\<&

f, y)dt

=\'gWφlx(t, y)dt,
JO

Proof of 2° Since d\σφ\^Kdσ, there exists a bounded periodic measurable
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function /(#) with period 2Nπ such that dσφ=fdσ. For any positive εu choose

ί
ttfn

\f{x)-f(x)\dσ(x)<ε1. We can assume ||/|| and ||/||
0

are less than or equal to K. Then

φtxi; , b)
s( , b)

£K\\g\\,

x, b)-φlx(x,

0

and

2Nπ
\

π

\φ*x(χ,b)-φlx(x,b)\dx

Therefore, by [11.3] we have

\B»N{G{ , b), φl , b)-φl , ft)

\Wfll-, V)-Hl , b), u{ , b))\<2(2K-\\g\\-2Nπ-\\g\\-εiy'1Ma(>.

Since Si can be arbitrarily small, we have (11.7).

3* For / in 2°, set φ3(z)=ζf(t)s(t, y)dt and H3(z)=ζf(t)g(t)s(t, y)dt.

Then

(Π.8)

, b), φt( , b)-φt( , « ) = 0 ,

, b)-H2{ , b), u( , b))=0.

Proof of 3°. First, we note

MfW^K and
ŝ  , o)

Since

s(-,b)

\ \φsx(x, b)—

Hsx( ,

s( , b)
^\\fg\\<K\\g\\.

2Nπ f

dxγXξ-x)\f{x)-f{ξ)\dσ{ξ)

J 2Nπ r

dσ{ξ)yχξ-x)\f{x)-f{ξ)\dx

and \π\ζ—x)\f(x)—f(ξ)\dx tens to zero uniformly in x as £->0 for / in

CP,N(R), we have
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522Vπ

\φ*x(x, b)-φlx{x, b)\dx=0.
0

Similarly, we have

lim[\H,x{x, b)-Htx{x, b)\dx^\\m\\g\\[\φix{x, b)-φZx(x, b)\dx
b-*0 J δ-»0 J

= 0 .

Using [11.3], we get (11.8).
4° Since / and g are in CP,N(R), we have

lim|SUG( , b), φ3( , b))-B%lfgl\=0,
6-»0

(11.9)
\im \BUHS( , b), u{ , &))-£&[/£] 1=0,
6-0

by [11.5]. Combining (11.6), (11.7), (11.8) and (11.9), we see

ΪΪ5Ϊ|2&(G( , b), φ( , b))-B"N(H{ , b), u( ,b))\^ε.
δ-»0

Since ε can be taken arbitrarily small, (11.4) is now proved.

In the remainder of this section, we shall give sufficient conditions for the
condition [ L ] .

[11.8] Condition [L*]. For positive ε, set

Ba(ε)=B«P(ε)=\2nm(x, a)dx\ B«P(X> dξXξ~x)2.
Jo J\ζ-x\£ε

Then P satisfies the condition [L*] if and only if

lim 2?£(ε)=0 for every ε.
a-+0

[11.9] LEMMA. Let p be in MP,N(R) and positive on any open set. Then,
for any ε>0, inf p((x — ε, x+ε))>0.

Proof. If there is a sequence {xn} such that lim ρ((xn—ε, # n + ε ) ) = 0 , we
n-oo

may assume that xn's are in [0, 2JVτr] and limx n—x. Then

which contradicts the assumption.

[11.10]
(1) The condition [L*] implies the condition [L] .
(2) If σP is positive on any open set, then [L] implies [Z,*].
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Proof. Since u(x, a) is nondecreasing and in Cq,N(R), we have

\u(ξ, a)-u(x, a)\£

if \ξ—x\^ε. Hence (1) is obvious. If σ is positive on any open set, then
δ(ε)=inf σ((x—e/2, x+ε/2)) is positive by [11.9]. For ξ-x^ε we have

u(ξ, a)-u(x, α)=

Therefore, if | £ - x | ^ ε , then

M(6, α)-κ(x, a)\

Now (2) is obvious by definitions of Ba(u ε) and Ba(ε).

[11.11] PROPOSITION. //

(11.10) lim sup — [ Ht(x, dξ)(ξ-x)2=Q
α-o x d J I 5 - Λ I > 8

for any positive ε, then the conditions [L*] αn<i [L] Ao/rf.

Proo/. By (8.7) in [8.5]

B2a(x, dξ)=pa(ξ-x)dξ+fr(η-x)ma(η, dξ)dη.

By explicit forms of functions pa and qa in §0, 8° we have

(11.11)

where K, Lu L2 and £ 3 are absolute positive constants. Set

A(ε, α)=sup \ Hla(x,
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Then

(11.12) lim —Λ(e, α)=0
a-*o Q,

by the assumption and we have

α

2α(x, dξ)(ξ-x)2^ez+Hε, a).

Noting HZa(x, R)=l, we have

B2a(x, dξ)(ξ-x)2

ίa(η, dξ){{ξ-ηγ+{η-xf}d-η

£P(a)+2q2(a)+2\ qa(η-x)ma(7,

By (11.11) and (11.12), the last member of the above inequalities goes to 0

uniformly in x as α-*0. Therefore, the condition [L*] is satisfied.
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