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Introduction

In the paper and the following one [6], we shall study periodic extensions
of the Brownian motion on the half plane D={(x, y): y=0}. By an “extension”,
we mean a Markov process on D whose laws before paths reach the boundary
do={(x, ¥): y=0} coincide with those of the two-dimensional Brownian motion,
and by a “periodic extension” we mean an extension whose laws are invariant
under translation of length 2z parallel to the x-axis.

First, let us quote an extension as an example. Assume the semigroup of
the extension satisfies the boundary condition

0* ad 0
a(x)z 5 +Ax) 5+ ] =0

on d,, where & and f are smooth periodic functions on the real line and a is
positive. Then, the extension is periodic, has continuous paths and has no
sojourn on the boundary d,. Let functions « and m be harmonic in D={(x, y):
>0} (in classical sense) and smooth in D, and satisfy

a(X)uz(x, 0)+B(x)u-(x, 0)+u,(x, 0)=0
u(x+2x, y)—ul(x, y)=2r

(a(x)m(x, 0))z-—(B(x)m(x, 0))+m,(x, 0)=0
and

ﬁam(x, ydx=2x.

Such smooth functions » and m with »,>0 and m>0 uniquely exist. Define
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a(dx)=u,(x, 0)dx, pldx)=m(x, 0)dx,

1 2n
k=5l Bx, Opdn),

p= %S:ux(x 0)u(dx).

The function u is considered as the “standard” harmonic function and m is the
density of an invariant measure of the extension. The numbers 2 and p are
considered to represent “mean drift” and “mean fluctuation”, respectively, of
the extension on d,. Moreover, @ and 8 are determined by o, g, & and p.

In general, starting from two periodic measures ¢, ¢ and two constants &,
p, which satisfy certain analytic conditions, we shall define an extension which
we call {o, g, k, p}-process. It is, in a sense, a limit of such processes as
given in the above example. Let @, be the class of extensions which are Feller
processes with continuous paths and have no sojourn on the boundary 0,. Al-
though a {e, g, %, p}-process is not necessarily a process with continuous paths,
we shall show each element of @, is contained in the class of all {o, g, &, p}-
processes. Thus we can characterize it by ¢, g, 2 and p. To establish these
facts is the main purpose of our papers.

We can not yet handle more general extensions. Without periodicity, dif-
ficulty arises from mnoncompactness of the boundary. By conformal mapping,
investigation of periodic extensions is essentially equivalent to that of extensions
of the Brownian motion on the unit disc. As for continuity of paths, it seems
beyond our methods to treat extensions with paths which have jumps at d,.
We can not yet see whether the condition that extensions are of Feller type is
essential or not.

In Chapter I, we shall first give general definitions of extensions which we
shall treat. In our study, we shall exclude in advance extensions with sojourns
at d, or jumps from d, into D. Then, we shall show that the problems to
determine our extensions is equivalent to the problem to find systems of hitting
measures of the lines {(x, ¥): y=a} from points in {(x, ¥): 0<y<a} for any
a>0. In the following, we shall concentrate our study mainly on systems of
hitting measures. In the last section, a continuity conditions on semigroups of
extensions will be translated into certain conditions on systems of hitting
measures.

In Chapter II, we shall define {g, g, k, p}-process. Let ¢ and g be periodic
measures on the real line with ¢([0, 2z])=p([0, 27])=2n. We shall assume
that they satisfy a certain integrability condition [P] given in [5.11]. Let %
be any constant and p be any constant with p=p.(a, g, k), where po(a, p, k)
is a constant determined by ¢, g and % in (4.14). Starting from o, g, £ and p,
we shall formulate a boundary condition. A {c, g, k, p}-process will be defined
as an extension which induces a class of harmonic functions satisfying this
boundary condition. Proof of uniqueness of a {g, g, &, p}-process for given g,
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u, k and p is the main contents of the chapter.

In Chapter III, guided by their probabilistic meaning stated in the example,
we shall construct two measures gp, pp and two constants kp, pp from a given
extension P. We shall also show that ¢p and yp satisfy the condition [P] and
pep=po(op, tp, kp). In the last section, we shall give a sufficient condition that
an extension P is a {gp, pp, kp, pp}-process.

In the next paper [8], we shall prove existence of a {g, g, k, p}-process
for given g, p, # and p. Then we can show that, for the {g, g, &, p}-process
P, gp, pp, kp and pp constructed in Chapter III coinside with the given o, g, &
and p. We shall also study how properties of {a, g, k, p}-processes can be
transformed into conditions on ¢, g, 2 and p. Especially, we shall show that
any extension P in the class @, can be characterized as a {o, g, &, p}-process
with ¢ and g being positive on any open interval and ¢ being a continuous
measure.

In 1952, W. Feller ([2]) determined all possible extensions of one-dimensional
diffusion processes in regular intervals and characterized them by boundary
conditions with analytic forms. Probabilistic construction of these extensions
was given by K. Ito and H.P. Mckean ([5]). For multi-dimensional diffusion
processes, A.D. Wentzell ([15]) gave possible forms of boundary conditions
which smooth extensions of processes should satisfy. Using the idea of the
process on the boundary, T. Ueno and K. Sato ([13], [10]) showed existence
of extensions which satisfy Wentzell’s boundary conditions in general but
smooth cases. Following their idea, M. Motoo ([6]) characterized extensions of
fairly general class of Markov processes by processes on the boundary. In 1979,
S. Watanabe ([14]) gave probabilistic construction of extensions which satisfy
Wentzell’s boundary conditions. For this purpose, he used Poisson point pro-
cesses of Brownian excursions. Research of extensions of Markov processes,
using theory of Dirichlet forms, were introduced by M. Fukushima ([3]) in 1969
and developped by H. Kunita ([4]) and M. L. Silverstein ([11]).

However, it seems that there are few papers which treat multi-dimensional
singular extensions in concrete forms, except the paper of E.B. Dynkin ([1])
and that of M.L. Silverstein ([12]). The former treated extensions with sin-
gular drifts of Brownian motion on the smooth plane domain, while the latter
treated symmetric extensions of certain symmetric process on the half plane.
Our papers treat extensions of one of the simplest multi-dimensional diffusions,
that is, the absorbing Brownian motion on the half plane and our aim is to try
to find the most general extensions of it as concretely as possible. Results of
our papers have already been published in ([7]).

I would like to express my gratitude to K. Sato, T. Shiga and K. Nisioka
for their advice and encouragements, and to Y. Enomoto and M. Kotani for
nice typing of manuscript. Also, I extended my sincere thanks to K. Tsuchi-
kura for his immeasurable support.
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Contents of the paper
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§1. Definitions of processes in ¢ and @,.
§2. Systems of hitting measures.
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§0. Notations.

Throughout the paper, we shall use the following notations.

10
R=the set of all real numbers.
D=the open upper half plane={z=(x, y): y>0}.
D={z=(x, y): y=0}.

For any real interval I,

D'={z=(x, y): yEl}
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D=D®= D=Dpto.=,
We also write

De=pDcoa>
0.=D'""={z=(x, y); y=a}.

To the above spaces, we give the ordinary metric

(21, 2)=V(x,— 21 +(y:— 1)
(ZJ:(x.h yj)’ ]:1: 2)'
2° In general, for any metric space X with metric p, we write

B(X)=the o-field generated by all open sets in X.
B(X)=the set of all B(X)-measurable functions on X.
By(X)={feB(X): f is bounded}.

[fll=supzex|f(x)| for f& By(X).

C(X)=the set of all continuous functions on X.
CyX)={feC(X): f is bounded}=C(X)N By X).
Cx(X)={f=C(X): f has compact support}.
M(X)=the set of all measures on B(X).

For ue X and ¢>0,
Uu)={veX: p(u, v)<e}.
3° If G is an open set in a Euclidean space and GC XCG, we set

C*(X)=the set of functions on X which are k-times
differentiable in G and whose derivatives of
order <k are continuous in X.

CHX)={feCHX): f and its derivatives up to . are bounded}.

4° We set z+a=(x+a, y) for aeR and z=(x, ).
For X=R or D’ and a positive integer N, set

By v(X)={feB(X): f(u+2Nr)=f(u) for any ucX},

B, y(X)={f=B(X); there exists a constant C, such that
2NzC,=f(u+2Nn)— f(u)},

Bp(X)=Bp.1(X), BX)=Bgy:(X), Cp n(X)=C(X)NB)p,n(X),
Con(X)=C(X)NBy n(X), Cp(X)=Cps(X), Co(X)=Cq:(X).
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For X=R, set
M, y(R)={p=M(R): locally bounded and p(du+2Nz)=pu(duw)},
My(R)=M,.(R),
[;1]——-2-117”—;1([0, 2Nz)) for peM,, x(R).
5° We define D* by identifying all points in the set d,={y=0} in D, more
precisely, D¥*=D\U {0} with metric
0¥z, zo)=min{y,+y., p(z1, 22)}, 21, €D,
o*0, 2)=p(z, )=y, z&D,
0*(@, 0)=0.

Then, it is easily seen that D* is a complete separable metric space.
We define a continuous mapping ¢ from D onto D* by

W(z)=z for z&€D
0 for z€0,+{v=0}.
6° W=the set of all continuous functions w=w(¢) from t<[0, oo) into D*,
We write w(t)=z(t, w).

6.=the (shift) mapping from W into W such that
z(s, O, w)=z(+s, w) for any s[0, o).

B.=the o¢-field generated by all sets {w: z(s, w)E A}, s<t, A= B(D*).
B=the o¢-field generated by all sets {w: z(s, w)€ A}, s<oo, ASB(D¥).

A [0, «)-valued B-measurable function =z on W is called Markov time if
{r<t}EB; for any t<[0, o).
For any Markov time 7, we set

B.={A€B: AN{t<t}=B,}.
Replacing D* by D in the above definitions, we also define
W, W(t)=z(t, w), B., B and B..

7° P/2?%.) is the 2-dimensional Brownian measure on the space of con-
tinuous paths on R?, starting from z< R2.

P,B1(.) is the 1-dimensional Brownian measure on the space of
continuous paths on R, starting from yER.
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P.2%(.) is the 2-dimensional reflecting Brownian measure on

D starting from z€D.

P,R1(.) is the 1-dimensional reflecting Brownian measure on
[0, ) starting from ye[0, o).

The measures above give Markov processes, whose transition probabilities
are given by

Priae M= exp{ o (@—nr+—yP)dedy for AcBR),
PR B)=—g=| exp{—5(1—3)f}dy for BEB®R),
Praee A= (exp (=0t +(r—0)

texp{— s (E—x+ ()0} )dédn for A<B(RY,
PR B==| (exp{—a (1=} +exp {5 (rt37} )iy

for BeB([0, «)).

8° We shall use the following kernels related to the 2-dimensional Brownian
motion. For 0<¢<b<a, xR and B B(R),

I8 (x, B)=Pt:in(z(6)EBX{a}, 0.<a)
= eemere—nde,
ch(x B) P(r b)(Z((TC)EBX{C}, oc<0u)

={ e-enr-ee—nae,

where ¢, and ¢, are hitting times of d,={y=a} and d,={y=c} respectively,
and
sin (zs/7r)

2r(cosh (z x/r)—cos (xs/r)) (r>s>0).

TI(x)=

We write

—ATIs(x, B)= S *-“(E—x)dE,

and, if x¢ B (B is the closure of B),
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a-c — 1 1 a a —_ a-c(&__
Pe=i(x, By=lim ——4TI§ (x, B)=| _p-€—nde,

where
I AN S
T 4#? (cosh(mwx/2r))? ’

pix " 4® (sinh(mwx/2r))® ’

q"(x)

and further
TIs(x, B=4IT5(x, B)=Plin(l0)e Bx (ch=] m-E—x)d¢,

where n#7(x) is Poisson kernel, that is

1 1

m =T e

We also write:

SRS SR SN 1 S S S
hf(z)“‘”y(x E)_ P (x_s)z_'_yz - T Im(x—5+ly)’

1 x—& __1_ 1
kD= ey~ = R ey)

sinh y
27 (cosh y—cos (x —¢&))

fe@= 2 hesans(a)=

1 (x—8+iy
_—~2—7E-Im<C0t —2—) »

sin(x—&)
2n(cosh y—cos (x—&))

_ L (oo G,

~ . N
ke(z)=1im 33 kerona(2)=
Now n=-N

The functions k¢(z) and 155(2) are harmonic conjugates of h.(z) and h}(z) in D,
respectively.

I. Preliminaries
§1. Definitions of processes in ¢ and ..
Let D*, W, B and B, be defined as in §0, 6°.

[1.1] DEFINITION OF THE CLASS 2.

P={P,(A): zD, A= B} is in class @ if and only if
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(p. 1) P,(A) is a probability kernel on DX B.
(p.2) P,(z(t, w)eD)=1 for any t=0 and z&D.

(p.3) P(z(t+s, w)€ A|B)=P,u, v»(2(s, w)EA) a.s. P,
for any A=B(D), t, s=0 and zD.

(p.4) P,(z(t, w)EA, t<o,)=PE*z(t)eA, t<a,) for any A=B(D), t=0
and zeD, where PZ? is the Brownian measure defined in §0, 7°.

(p.5) P, (2(t, wyEA+2r)=P,(2(t, w)=A) for any z€D and A= B(D).

By (p.4), we see:
[1.2] P,(z(0, w)y=z)=1 for any zD.

[1.3] Remark. If z=0d, P,(-) is not defined. However, by (p.2) the right
side of (p.3) has a meaning.

By (p.2) and (p.3) together with [1.2], the system of measures {P,(-)}.ep
on B defines a Markov process on D. Set

(LD P f(2)=E.(f(z@t, w))

where E,(-) is the expectation taken by the measure P,.

[1.4] (1) P, maps By(D) into By(D) and P,-P;=P,,; for any ¢, s=0.
(2) P, maps By(D) in Cy(D) and By, y(D) into C,, 4(D) for any ¢>0.
3) 11[‘(1)‘1 P.fQ)=f(z) for any feCyD) and z=D.

{~z

Proof. (1) is obvious from (p.1) and (p.2). For any a¢>0 and {&Dr*=
Po,<e)=Pf*0,<e)< P50 <€)=¢(¢, a) and
lsulrz (e, a)=0.
For feBy(D) and t>0, take ¢ such that 0<e<t, and set f({)=P,..f(). Then,
PfQ=Efe(a(e, w)=EE*(fo(2(e)): e<ao)+E(fe(2(e)): e20).

Since the semi-group of the absorbing Brownian motion maps B,(D) into Cy(D),
the first term in the right side is continuous. On the other hand, |E/(f.(z(¢)):
e=0)|<|fld(e, a) and e can be chosen arbitrarily small. Hence P;f is con-
tinuous in Dt*=, Since a>0 is arbitrary, the first part of (2) is proved. The
second part of (2) is obvious from (p.5).

For any zeD and f=C4(D), take a so small as z& D=, Then, for any
feDre=,
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P.fQ=EE¥f(z®): t<oo)+ELf(2(t): t=0).

The first term tends to f(z) as {—z and {—0, and the second term tends to
zero uniformly in {&Dt®= as t—0. Therefore (3) is proved.

The process {p.(-)}.ep has not strong Markov property in general. How-
ever, the following proposition holds. The definition of Markov time is given
in §0, 6°.

[1.5] PROPOSITION (Strong Markov property). For any Markov time t and

AeB,
Pz(arweA | B)=P, ¢, w(4)

on {w:rt(w)<co and z(r, w)D} a.s. P,.

Proof. It is sufficient to prove that for any 0t <ty < <tn, [ ECHD)
and f,20 (k=1,2, -, n) and A=B,,

Ez[ illfk(z‘(rﬂk)): A, z(t)e D, r<°°]

:Ezl:Ez(r)[f__Ilfk(Z(tk))]: A, z(r)eD, 1'<°0] .

Set

o if r=00.
Then, by ordinary Markov property (p.3),

B[ [Lf1e@m+t0): 4, 2z D, r<eo]

=E,[Ez(,m, [ ruGa)}: 4, 2meDes, r<e |,
Since 7™ | ¢ as m—oo and
Ef T £ | =P fPts(fo v FamiPryetyonf) = D)
is continuous in z&D by [1.4] (2), we have

E,[kli e+ A, z(r)eDE=, < oo]

<1 E[ kr_[ Flalem™+1): A, 2le™ye D, z'<oo]

n—co
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n—-0

< lim E,[E,(,m){kI:Il ft)}: A, deme e, z'<00]

<E Buo| I £ |: 4, 202D, <o)
Similarly, we have

E,

Lo

I Fe@tta): A, 20)e D, 1<o0]

2B Buo| JT 1t |: 4, 2002 D=, £<oo].
Letting ¢ tend to zero, we prove the proposition.

[1.6] PROPOSITION. Let Pin @ be given. Then, the processes (y(t, w), Pcz,y>)
and (y(t), PE') are identical in law for z=(x, y)ED, where z(t, w)=(x(, w),
y(t, w)) for weW and PE' is the one-dimensional reflecting Brownian measure
given in §0, 7°.

Proof. By Markov property of (z(¢, w), P,) and (y(@), P%?"), it is sufficient
to prove

1.2) P.f(2)=P{*f(3)
for any nonnegative f in C,(0, «)) and z=(x, y)€D, where PF'f(y)=
EZYf(y(t)) and P, f(2)=E.(f(»())). Choose a positive a and set p=0+04(0,(w)).
Then p is a Markov time and z(p(w), w)€d, if p<co. For the indicator func-
tion 4,y Of the interval [a, o), set
t

A=Adlt, )= Ita. (305, w)ds,
then A(e)=A(p). For 2>0, set

G3f@=E.(| e f(5(t, w)d A).
Then by strong Markov property given in [1.5] and (p.4),

0

(1.3) G%f(z)zE’;’"(S °e-”(”f(y(t))dﬁ(t))JrE,(e-“mGgf(z(p)); p<0)
<5 ([ o140 f(y0)a At)) + B H(e-14o0) sup G3(x, a)

for any z=(x, y)€D, where ¢,=0 and ﬁ(t):S:I[a,oo)(y(s))ds for reflecting

Brownian path y(-). Set
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Gif=E([ e e randAw).

By a similar argument, we have
(1.4) G~j‘{f(y):E§"(S:oe‘”“’f(y(t))d;l(t))-{— E‘;"(e’“("o))éﬁ‘f(a) .

Letting z=(x, a) in (1.3) and y=a in (1.4) and subtracting (1.4) from (1.3), we
have
sup G$/(x, a)—G4f(a)SEFX(e-*40)sup G4/ (x, a)~Gf(a).

Since ER!(e~40)<1, it follows that

sup G$f(x, a)<Gif(a).

Using (1.3) and (1.4) again, we have for any z=(x, y)

G3f(D<GLf().
Since

lim G$/(2)=G.f()={ e **P.f ()t
and
lim G3/(0)=Gaf ()= e 4PE f(x)dt,

G;f(z)géxf(y) holds for any z=(x, y)€D, nonnegative f in C,((0, ), and
A>0. On~ the other hand G,;1(z)=1/A=G;1(y) by (p.2). Hence we finally have
G1f(2)=G,f(y) for any z€D, nonnegative f in Cy(0, «)), and A2>0. Since
P, f(z) is continuous in ¢ by (3) in [1.4], (1.2) is proved.?

[1.7] COROLLARY.

P(0,<)=1 for any a>0 and z€D.
P7’00f. By [1.6], Pz(0a<oo):Piyz’l(0'(a)<°0)=l.

Now we shall define the class of continuous processes on D in a way similar
to definition [1.1].

[1.8] DEFINITION OF THE CLASS @. P={P,(A):z=D, A=B)} isin class &
if and only if

(3.1)  P,(A) is a probability kernel on DXB.

(t) The proof of [1.6] is given by T. Shiga.
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®.2) Pz, weD)=1 for any t=0 and z&D.
0.3)  PeCt+s, w)EA|B)=P.w.w2(s, W)EA) a.s. P,
for any A€B(D), t, s=0 and z=D.

(0.4 P, W)EA, t<o)=PE¥ )€ A, t<o,)
for any t=0, z€D and A= B(D).

3.5 Pafz(t, W) A+2m)=P,(2(t, W)= A) for any z&D and A= B(D).

In ‘Ehe sequel we shall also write zZ(#)==z(f, @)=w(). Note that we do not
define P,(.) for z<0,.

The continuous mapping ¢ from D into D*,

(1.5) (2)= 2z zeD,
{3 z€0,,

induces a measurable mapping from (W, B) into (W, B) by
(1.6) 2(t, i)=1¢(z(t, W))
for weW. For any P in &, let
.7 tP,(A)=P,(: 1 A)
for A=B. Noting (p.2), we can easily see:

[1.9] For any P in &, (P={cP,(A): zeD, AcB} is in . And the map-
ping ¢ from & into @ is injection.

[1.10] DEFINITION OF THE CLASS @.. We set @,=¢P and identify elements
in @, with those in 2.

[1.11] PROPOSITION. Let P be in <. If there exists a set W, in B and a
mapping ¢ from W, into W such that P,W,)=1 for any zED, ¢ is measurable
and Z(t, p(w))==z(t, w) whenever z(t, w)ED, then P is in P,.

Proof. Set W,={w: z(y, w)D for any rational 7y} and W¥=W,NW,.
Then by (p.2) P, W%¥)=1 for any z€D. If weW?% and z(¢, w)=0, there exists
a rational sequence {r.} such that z(y., w)eD, r,—t and z(7., w)—9. Since
2(Tn, w)=Z(7n, P(w)), we see Z(¢, P(w))=d,. Therefore, for any weW$, 2, w)
€D if and only if 2@, ¢(w))eD. Hence ¢-p(w)=w on W% Set ng,(Z):
P(¢~'(A)) for any zeD and AcB. Then, we can easily check P={¢P,(-)}.cp
satisfies condition (p.1)~(p.5) in [1.8]. Thus we have P=:pP=:P for P=¢P
=P,
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§2. System of harmonic measures.

[2.1] DerINITION. H={H%z, A): a>0, z&D*, A< B(R)} is in class 4 if
and only if

(h.1) H%(z, A) is a probability kernel on D*X B(R) for any fixed a>0.
For ¢=Cy(R), set
@1 Heg(@)=He(z, dE)9(E)
(h.2) For 0<b<a and z&D?
Heg@)=H'z, d9)|H (&, b), dn)pin).

(h.3) For a>0 and zD*, H%¢ is harmonic in D* and , 1<im )H“¢(z):¢(x).

(h.4) Ha¢<z+2n>=§Ha(z, dE)p(E+2m) for a>0 and z€D? .

Here, the meaning of harmonic function is the ordinary one, that is, f(z)
is harmonic in an open set U if and only if

45=21 %y o

ax® " ayr
For 0<b<a, we shall also write
(2.2) H§(x, A)=H*((x, b), A),

Higd(x)=H*¢(x, b),
where A= B(R) and ¢=Cy(R).
[2.2] Definition [2.1] is equivalent to any one of the following two con-
ditions (1) and (2).

(1) (h.1) holds and (h.2), (h.3) and (h.4) holds for any ¢=Cx(R).
2)

(h.1) Hg(x, A) defined in (2.2) is a probability kernel on RxB(R) for 0<b<a.

(h.2) For 0<c<b<a,
H¢=HHZW

(1) HRH§(x, A>=§Hz<x, deYHE(E, A).

In the sequel, similar notations are used for products of kernels
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(h.3) For 0<c<b<a,
Hg =15+ ST HE .

(h.4) For 0<b<a, xR and A= B(R),
Hi(x, A)=H{(x+2r, A+2x).

The kernels ¢JT¢ and %J1§ are given in §0, 8°.

Combining (h.2) and (h.3), we have
(2.3) Hy =415+ ¢TI HH .

[2.3] DEerFINITION. Let P in & be given. We define
2.4 Hy(z, A)=P,(z(0.(w), w)EAX{a})
for any ¢>0, z&D® and A= B(R), where ¢, is the hitting time of d,. And
set
(2.5) H(P)=Hp={H}(z, A): a>0, zeD*, AcB(R)}.

Then, we can easily see H(P) is in class 4. For, Hi(z, R)=1 follows
from corollary [1.7], (h.2) is a consequence of [1.7] and strong Markov property
given in [1.5]. The conditions (h.3) and (h.4) follow from (p.4) and (p.5) in

[1.1], respectively.
The following theorem is fundamental. The proof will be given in [9].

[2.4] THEOREM. The mapping P—H(P) given by (2.4) and (2.5) is bijection
between @ and K.

[2.5] DEerINITION. Let {"H}3., be a sequence in 4 and let H=.4%. Then
we shall say {"H}%., converges to H in 4 and write "H—H if and only if
"Heg(z)—»H@(z) (n—o0) for any a>0, z&D* and g=Cx(R).

Let {"P}2_, be a sequence in @ and let P=®. We define "P—P in @ if
and only if "Hp—Hp in 4.

[2.6] Remark. If "H—Hin 4, then "H*¢(z)—H*@(z) for any a>0, zeD*
and ¢=Cy(R). For, "H*1=H*1=1 holds.

For a fixed ¢=Cy(R), {H*P} pes is a family of functions uniformly bounded
and harmonic in D® with boundary function H°@(x, a)=¢(x) on d,, therefore

we have:

[2.7] Let {"H} be in 4, ¢ be a function in C,(R) and a be any positive
number. Then, we can select a subsequence {n,} such that {"*H°¢} con-
verges uniformly on any compact subset of D¢ 3,
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[2.8] PROPOSITION. Let {"H}3_, be a sequence in K such that, for any
fixed a>0 and z€D*®, the set of measures {"H%z, -)} is tight, that is, for any
e>0 there exists a number N=N(g, a, z) such that

(2.6) sup "H%z, {y: |y—x|>N}<e.
Then {"H} has a convergent subsequence.

Proof. Notice that, for any ¢=Cx(R) and a>0, {"H°®} are uniformly
bounded and harmonic in D® and Cx(R) is separable. Then, for any a>0, we
can select a subsequence {n.} such that, for any ¢, {"*H®@} converges to some
harmonic function H®@ uniformly in any compact subset of D® Moreover
H°¢(z) can be represented by kernel H%(z, d§), that is,

Ha¢<z>=§Ha<z, dE)P(E).

The assumption (2.6) assures H%(z, R)=1. Let {an,} be a set of positive num-
ber which decreases to zero. By taking a subsequence again, we may suppose
{"*H"™@(z)} converges to H"™@g(z) for any an, z€D°™ and g=Cx(R). Let
the subsequence {n,} be fixed. Now for any fixed a>0, choose a, and b so
small that

0<b<an<a.

Let g be one of limit functions of subsequences of {"*H®¢} in D@ for a fixed
¢ in Cg(R). Then, by (2.3), gn(x)=g(x, an) is a solution of

gn(x)=%11% ,,¢(x)+ 4114, Himgn(x) .
Since
a—an,

aTTb am —
bHame (x) R) a—b <11

g(z) is determined on d.,, independently of the subsequence. Noting that
l(im )g(z)=¢(x) and that g is harmonic in D% we can see g(z) is determined
2-(Z,a

in D@m= %1 Since a, can be choosen arbitrarily small, g is determined in D®.
Thus, we have proved that {"*H®¢(z)} converges for any a>0, z&D*® and ¢&
Ck(R). Set }eim PrHeg(z)=H"¢(z). Then H°¢(z) is represented as

Heg(@)=H Gz, d8)p©) with H(z, R)=1.

Set H={H%(z, A): a>0, zeD*, AcB(R)}. The above arguments show that H
satisfies (h.1) and (h.2) in [2.1]. Noting [2.7], we can easily prove (h.3). The
property (h.4) is obvious. Therefore H= 4 and "*H—H.
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§3. Continuity of P,f in D.

In this section, we shall fix a process P in ¢ and set H=H,. We shall
discuss the relation between continuity of functions P, f(2)=E,(f(z(®)) in D and
continuity of functions H%J(z) in D*=Dt>*IcD.

[3.1] DErFINITION. For f in C,(D%), we write f€CyD® if f can be ex-
tended to a continuous function on D% In this case, we denote the extension
by f.

It is obvious that f is unique if it exists.

[3.2] ConpITION [C] (Continuity Condition). (1) P.f is in Cu(D) for any
t>0 and feCxg(D).

(2) If {f.} is a nonnegative sequence in Cx(D) such that f, 71 in D, then
P,f.11in D for any t>0.

[3.3] ConprTioN [H.C]. (1) H%p is in C,(D% for any a>0 and ¢ in
Cx(R).

2) If {¢n} is a nonnegative sequence in Cg(R) such that ¢, 11 in R, then
He$, 11 in D°

[3.4] Under [C] it holds that

(1) P.feCyD) (t>0) for any feCyD)

(2) P.f.11in D (¢t>0) for any nonnegative sequence {f,} in Cy(D) such
that f, 11 in D.

Proof. Assume [C] holds. Let {g,} be a nonnegative sequence in Cg(D)
such that g, 11 in D. ;l‘hen for any >0, P,g, converges to 1 uniformly on
any compact subset of D by Dini’s theorem. Let fCyD). Since

| Pifgn(z)—Pifgm(2)| || fII| Pgn(2)— Pgm(2)1,

P.fg, converges uniformly on any compact subset of D. Therefore, §(z)=

lim P,fg.(z) exists and is continuous in D. Noting g(z)=lim P,fg.(2)=P.f(z)
for z in D, we see that (1) is proved. (2) is obvious, for we can choose a non-
negative sequence {g,} in Cx(D) such that g, 71 and g,<fn.

In a similar way, we can show:

[3.5] Under [H.C], it holds that

(1) Hep=CyD® (a>0) for g=Cy(R).

(2) H%®,11in D@ for any nonnegative sequence {¢,} in C,(R) such that
6,11 in R.
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[3.6] For a>0 and ¢=Cx(R), let g be a continuous extention of H%p to
D such that

lglo=lH*¢lpe<|Pl-
Here || f|l4 denotes glél‘%) |f(x)]. Then, for any z&D%* and t>0
|H¢(z2)— P g(2)| Z|dllea(d),

where &,(¢) is independent of z, ¢ and g, and ltl?;l e.(1)=0.

Proof. Let g=a, be the hitting time of 9,. For zeD®
Pig(2)=E (H*¢(z(1)) ; t<a)+E(g(z(1); t=0)
=E($(z(0)); t<a)+E.(8(z(1); t=z0)
and H%p(z)=FE,(§(2(¢))). Therefore
|H¢(z)—Pig(2)| <l + 18Ptz 0)<2[ B P(t=0) .
Especially, for ze D%/,
P(tza)=P,(y(s)za for some s=f)
=P21(y(s)=a for some s<f) (by [1.6])
<PB(y(s)=a for some s<t).

Hence ¢,(1)=2P%i(y(s)=a for some s<t) has the desired properties.
[3.7] [C] implies [H.C].

Proof. Let ¢ be in Cx(R). For any a>0, let g be selected as in [3.6].
By [C] and [3.4], P.g is in Cy(D). Therefore, by [3.6], H°@(z) is approxi-
mated uniformly in z&D®? by continuous functions P,g (:>0) on D% Since
H*¢ is continuous in Dr%/*41 in general, we have proved (1) in [H.C]. Let ¢,
be in Cx(R) such that ¢, 11. Then H%@,(z) 1 1for z in D%, We can select
a continuous extension g, of each H%@p, to D such that g, 11 and ||g,||<
|H®@,|<1. Then, by [3.4] P,g, isin CyD) and P,g, 11 in D. Moreover, by

[3.6]
”Ha¢n—Ptgn ”Ija/zé eq(?).

Since, &,(f) can be taken arbitrarily small, H%¢,(z) 11 holds for any z in Dar,
(2) in [H.C] is proved.

[3.8] Let f be in Cx(D). Then
lim Sugt”Prf~Psf“D:0

t—0 |T-8]|
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Proof. Since |P,f—Psf|=Ps(Pr_sf — NS Pr-sf —fl if r>s, it is suffici-
ent to prove
esO)=sup | Pf—fll —> 0 as t=0.

Choose a>0 such that f=0 in D% For z&D*/?,
sup | Psf(2)—f(2)| = sup [P f ()] S fIIPoa=t)
where ¢, is the hitting time of d,. And, in the proof of [3.6], we have seen
Pz(aaét)§—%—ea(t)EPff;%(y(s);a for some s<?).
On the other hand, for zeDt*/®=> and for any 9 satisfying 0<d<a/2,
sup | P f(2)— f(2)| <e(f, O)+2I| |l sup P] 2(s)—z] 20)

where e(f, 0)= sup |fQ)—f(2)]. Let rs=inf{t: |2(t)—=z(0)| =4}, and ¢ be

1§-21<0,§,2&D
the hitting time of 0. Then r;<¢ if z(0)Dt%?*, Therefore we have for

zeD[‘llz.w)
P(|z(t)—z| 20)<P,(r;<t and 75<0)

=PZ¥r;<t) by (p.4) in [1.1]
=P5¥r;<0)=8(0, 1)

and 1‘irr01 &, )=0 for fixed 0>0. We have thus proved

sup | Pof ~flo=Max (5 I lealt), (f, +21 £15, )

and Fx} |P.f—fl|<e(f, 0). Since d can be taken arbitrarily small, the proof is
completed.

Combining [3.8] and (2) in [1.4], we can also show:

[3.9] P.f(z) is continuous in (f, 2)&[0, o)X D for any f&Cg(D).
[3.10] [H.C] implies P.f is in C,(D) for any f&Cx(D) and ¢>0.
Proof. Let f in Cg(D) and >0 be given. For a>0, set

ua(z)zEz(f(z(oa+t)))=Ez(Pif(z(aa))) ’

where ¢, is the hitting time of D'®=, Then,
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{ P, f(2) if yza,
uUqg(2)=
H*P.f)z) if y<a.

Since P;f(-, a) belongs to C,(R), u, has a continuous extension i, in D by
[3.5] and (2) in [1.4]. Let 0<s<t. Then

[P f(2)—ua(| S| ELPi-g, f(2(0))—Pif(2(04)); 0a<S)| 42| fIIP0a=5)
=&/, 9)+2|flIPo.zs),
where &(f, s)=|r§ggssllPrf —P,f|l. By [1.6]

Plo.zs)=P] (3.25)sPf(G.25)=4(a, ),

where &, is the hitting time of [a, o) for one-dimensional reflecting Brownian
motion. Therefore, |P.f—uqllp=e(f, s)+2|fllé(a, s). Noting l'mg é(a, s)=0 for

fixed s>0 and lirrol e(f, s)=0 by [3.8], we see that P.f can be approximated

unifor@ly in D by functions u, (a>0), which are in C,(D). Therefore P,f is
in Cy(D).

[3.111 Assume [H.C]. Let {f.} be a sequence of functions in C (D) such
that f,11. Then P,f,11 in D for t>0.

Proof. By [3.10], P.f. is in Cy(D). We have P.f.(2)11 for (¢, 2)€[0, =)
X D. For any compact set KCD, P,f,(z)T1 uniformly in (s, 2)e[0, t]XK.
Let {¢n} be a sequence in Cx(R) such that ¢, 1. Let K, be the support of
¢n. Then for zeD*®

1=Pfu(2)SE.(1=Pi-s,f2(2(04)); 0.<t, 2(0.)EKn)
+P(0.20)+P(2(0)EKn),
where o, is the hitting time of Dt®*, Set
g(n;t, m)z(s,z)eS[ll;I,Ft)]me(l_Psfn(Z))) .

Then 1;112 e(n; t, m)=0, for fixed ¢t and m. In the proof of [3.10] we have shown

Po.zt)<&(a, H=Pf'(5.21),

P2(0)E Kn) S E(1—¢n(2(0.)=1—H*$u(-, a))2).
Therefore, we have

1=Pfa(2)<e(n; t, m)+&(a, D+1—H*u(-, a))2)

for any z in D® Making n and then m tend to infinity, we have
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lim (1—P,f.(z))<&a, t) for any a>0, and ze D1,
Since lim (1— P, f,(2))=0 holds in general for z&D, [3.11] is proved.

By [3.7], [3.10] and [3.12], we have proved:

[3.12] THEOREM. The condition [C] is equivalent to the condition [H. C].

II. Formulation and Uniqueness of B-processes.
§4. Formulations of B-solutions and B-processes.

We shall prepare several lemmas on periodic harmonic functions on the
upper half plane.

[4.1] Let u and v be in C,, 4(D**?) and harmonic in D®® (b<a), and v
be a harmonic conjugate of u. Then, the values of integrals

1 (2Na d 1 (2Nz d
mgo u(x, y)dx, zﬂgo v(x, y)dx
are independent of y (b<y<a).

Proof. By Green’s formula, we can easily show independence of the values
of the integrals.

[4.2] Let u be in C,, y(Dt**) and bounded harmonic in D=, and v be
a harmonic conjugate of » in D=, Then, u and v have the following repre-
sentations :

@.1) u@) ={ he(x, y—ayu, a)de
1 r2Nz .
:Ngo eiw(x/N, (9—a)/N)u, a)d€,
“.2) v@)=lim [ ketx, y—ayu(e, a)de+e
1

ZNS:NnEe(x/N, (y—a)/N)u(¢, a)dé+c

for z& D>, where he, ke, he and E; are the functions defined in §0, 8°, and
¢ is a constant.

[4.3] Let u in C,, x(D) be harmonic in D and bounded in Dt** for each
a>0. Let v be a harmonic conjugate of » in D, Then v is also in C,, ¥(D)
and bounded in Dt* for every a>0. Moreover,
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1‘ _ ]_ 2N=n d

yl_I.?o u(Z)—mSO u(x, y)dzx,

“4.3)
lim v(z):-LSwnv(x Yz (y>0)
Yoroo 2N Jo ’ '

Note that the right sides in (4.3) are independent of y by [4.17.

Proof. The first half is an imr{lediate consequence of the representation
(4.2). Noting (4.1) and (4.2), and lim he(z)=1/2z and lim k.(2)=0 (uniformly in
Y0 Y0

x), we can easily get the latter half.

[4.4] Let u and f in C,, y(D) be harmonic in D and bounded in Dt® = for
each ¢>0. Let v and g be harmonic conjugates of u and f, respectively. Set

1

2Nn 1 2Nz
:Z_NES.) u(x, y)dx, ﬁ=m§0 v(x, y)dx,

a

. 1 (2nz d 5= 1 c2nz d
r=gnml, £ dx, =g g, ndx,

which are independent of y by [4.1] and [4.3]. Then, we have
1
2Nr
Proof. Set w=ug-+vf=Im(u4iv)(f+ig). Then w is harmonic in D, bounded
in D% for each a>0 and in C,, »(D). Therefore by (4.3) in [4.3]

4.4) S:N"(ug+v F)x, y)dx=ad+pr.

. 1 2Nn
lylg’lo(ug—l—vf) :ZWﬁSo (ug+vf)x, y)dx
and

limu=ea, limv=pF, limf=y, limg=4,
Yoo Yoo

Yoo Yoo

which proves (4.4).

[4.5] For a>0, let » and f in C,, (D% be harmonic in D% and v and g
be harmonic conjugates of u and f, respectively. Assume v and g be also in
Cp. x(D*) and

*5) [\ weronx pdx=0 0<y<a.

Then we can show:
(1) There is a solution U(z) (z&D%) of

{ Ux:ug+vf ’
Uy=uf—vg

(4.6)
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such that U is in Cp, x(D*) and harmonic in D% Sucha U is unique up to an
additive constant.
(2) For 0<c<b<a,

2N=n

@7 S:an(x, nU(x, b)dx—go f(x, OU(x, c)dx

:Sgc<y<b u<f2+g2)dxdy :
0<zr<2

Nz

Proof. Since
ug+vf—i(uf—vg)=—i(u+iw)f+ig)

is analytic in D% we can easily show (1), using (4.5). Let F be a harmonic
function in D* such that F,=g and F,=f. Applying Green’s formula, we have

2Nz 2Nz 2Nz
§0 1U(x, b)dx—So 1Ux, c)dx:SO F,U(x, b)dx

+S°FxU<2Nn, y)dy-l—go F,U(x, c)dx+SzF,U(O, 2y

b 2N=z

(FU+F,U,)dxdy

SS%:&N"
=§§ u(f*+g%dxdy.
0<zx<2Nr
c<y<b

The proof is thus completed.

Now, we shall give the definitions of B-solutions and B-processes. Let ¢
and g be in M,(R) and

[o]=0(0, 22)=1,

1
[#]——2—;#([0, 2m)=1,
and k be any real constant. Set, for zeD,

s@)= he@road={ hawe),

(4.8)
m@={ n@uad= imae),

ro,2
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1a=( , F@o@e+e,
(4.9) ’
1= F@ude)—k.

o

Then, we can easily see that

1 (2= 1 2
——S s(x, ydx=1, ESO Hx, v)dx=F,

2

(4.10) e
1 dx=1, ("ix, p)dx=—r
anom(x’ y) x=1, ZﬁSO X, y)ax= ’

for any y>0 and that ¢ and / are harmonic conjugates of s and m, respectively.
Therefore by [4.4]

4.11) Z—I”—Sjﬂ(mt+sl)(x, 9)dx=0
for any y>0. By (1) in [4.5] the equation,
U,=mt+ls
(4.12) { .
Uy=ms—It

has a solution L7, which is in C,(D) and harmonic in D. Hencefoce, when we
say U is a solution of (4.12), we mean that U is in C,(D) and harmonic in D
and satisfies (4.12).

[4.6] ConpiTION [P*] (Condition on Existence of Positive Solution). Any
solution J of (4.12) satisfies

(4.13) inf U(z)>—oco .
zeD
Since the solution of (4.12) is unique up to an additive constant, we have:

[4.7] If some solution of (4.12) satisfies (4.13), then every solution of
(4.12) satisfies (4.13). If the condition [P*] is satisfied, then there exists a
unique minimum nonnegative solution U° of (4.12).

Condition [P*] is a restriction on ¢, ¢ and %2. In theorem [5.11], we shall
show that [P*] is equivalent to a condition [P], which is a certain integrability
condition on g and ¢, and, in fact, which depends only on ¢ and p.

Assume [P*] and let U° be the minimum nonnegative solution of (4.12).
Set

L. 1 (e
(4.14) bo=poo, u, k):;‘;f, E?So U'(x, y)s(x, y)dx.
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By (2) in [4.5], for 0<b<a
S2“U°s(x, a)dx-g2ﬂU°s(x, b)dx:“ m(s*+t)dxdy=0.
: : s

Therefore, we have:

EERTI G S
[4.8] po=lim 5 S U(x, y)s(x, y)dx=0.

[4.9] DEFINITION OF CLASS 8. B={o, p, k, p} isin class 4 if and only if
(b.1) o and p is in Mp(R) and [o]=[p]=1.
(b.2) k is a real constant.
(b.3)* o, ¢ and k satisfy the condition [P*].
(b.4) p is a nonnegative constant such that p=p.(a, g, k).

[4.10] Remark. We shall see in §5 that (b.3)* can be replaced by
(b.3) ¢ and p satisfy the condition [P].

Since any solution U of (4.12) is given by U=U"4c¢, we have
1
2n

[4.11] For any p=p,, there exists a unique nonnegative solution U of
(4.12) such that

lim f"mx, 9)s(x, Y)dx=potc.
y-0 0

1 (e B
(4.15) L‘E‘&‘z?go Ulx, 9)s(x, v)dx=p.

[4.12] DEFINITION. Let B={a, p, k, p} in & be given. For z in D, set

s(z)=s(B)(2)

[, f2ade),
£o,2m)

(=HBa)=( E(2o(de)+E,

[o,2
m@=mB) )=\ h{2)p(de),

C
z<z)51(3)<z)=gm . Fonde k.

The function U(z)=U(B)(z) on D is defined as the unique solution of (4.12) such
that

(1) See theorem [5.11].
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l' 1 ZnU d _
ylgxéﬂo (x, y)s(x, y)dx=p.

[4.13] DEFINITION OF D% y. For B={g, p, k, p} in 8 and a>0, a func-
tion ¢ belongs to D% y=D% y(B) if and only if the following are satisfied:

(1) ¢ is harmonic in D® and in Cy y(D%)NC(D%3),
2Nz
@) So (mé,—1g,)x, »)dx=0 for 0<y<a.

(3) For any b (0<b<a), there exists a constant K=K(b, ¢) such that

l6:(2)| £Ks(z) in D°.
We also write
Dq,N:ﬂQOD?z,N, D%=D%, and D,=D,,.

Let u=u(z) be the harmonic function in D that satisfies
Ue=S, Uy=-—1t in D
(4.16)

u(0, 1)=0.
Noting (4.11) and

ue+2m—u(@) = s(x+¢, y)dé=2x,
we can easily show:
[4.14] wu is in D,, We shall write u(z)=u(B)(2).
From (1) and (3) in [4.13], we can easily have:

[4.15] Let ¢ be in D% y. Then, there exists a periodic signed measure og4
of period 2Nx on R, which is of bounded variation in each finite interval and

2Nn 2Nn
4.17) hmg 2(0)¢(x, W":So 2(x)a4(dx)

for any g in Cp, ~(R). Moreover, o4 is absolutely continuous with respect to
o and dog/do has a bounded periodic version. Especially o,=¢.

[4.16] DEFINITION OF By-SOLUTION. Let N be a positive integer and let
B={o, p, k, p} in B be given. For any f in C,n(R) and any a>0, we say
a function ¢ on D1 is a By-solution for f in D* if and only if the following
are satisfied:

(1) ¢ is in D% .
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(2) g=1 on du={y=a).

®)

(4.18) tim|" (U g ~U@))x, »dx=0

for any g in C,, y(R), where U(¢) satisfies

(4.19) U(@)e=—mp,+Ip., U@, =mp.+ig, in D*.

[4.17] Remark. By (2) of [4.13] and [4.5], the function U(¢) in [4.16] is
in Cp, x(D%). Since U(g) is determined up to an additive constant by (4.19) and
since

. 2Nz
lim "™ W g.—~U(@s)x, y)dx=0
by (4.18), we see that U(¢) is uniquely determined by a By-solution ¢.

In definition [4.16], suppose that U, U(¢), ¢, /, m and s can be extended to
smooth functions on D! % and that s>0 on d,={y=0}. Then by (4.18)

Ug.—U($)s=0 on d,,
or

(4.20) U(¢):%¢, on d,.

Combining (4.20) with (4.19), we have
(4.21) (%¢z)z+m¢y-z¢x=o on 4,

which gives a boundary condition for ¢. We can show (4.20) actually holds if
s and m can be extended to smooth functions on D and if they are positive
on 0,.

[4.18] Let u be the function defined by (4.16). Then wu(z) restricted on
D® is a By-solution for f=u(-, a) in D% Moreover U(u)=U(B) in D°.

Proof. wu is in D by [4.14]. Note that U=U(B) is a solution of (4.19)
for ¢=u and (4.18) holds trivially for U(u)=U.

[4.19] DEFINITION OF B-PROCESS. Let B={o, y, k, p} in B be given.
Then we say a process P in @ is a B-process, if and only if, for any N,
H4f(z) is a By-solution for f in D% for any a>0 and any f in C, »(R). In
this case, we shall also say P is in class 2.
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§5. Explicit representation of the function U.

Let p and v be periodic signed measures with period 2z and of bounded
variation in each finite interval. Define

Fo@=( (s,

ro
.1) E@=( . E@pe),

1
[pj—ggw)dp ,

and &, k, [v] similarly. Let a and b be any constants. In this section we
shall obtain concrete representations of the solution V=V(z; p, v, a, b) of the
equation

Ve=hE,+a)+E,+bh,,
(5.2)

Vy=h,h,—(k,+b)k,+a)

in D. Especially, we shall obtain a representation of the function U defined in
[4.12]. As a corollary we can reformulate the condition [P*] in [4.6] in a
more concrete form.

1°. For x and & in R, set

n—}-l if x=&+2nx,
5.3) F(x,0={ 2
n if xe(¢+2(n—Dzx, E+2nx),

and for z=(x, y) in D and & in R, set
. 2n C ~ X
(5.4) Gz, O=|"(FEC, &= 5 )T+

[5.1] The function G(z, §) is harmonic in D and belongs to C,(D) with
respect to z, and belongs to C,(R) with respect to & Moreover

{ Ga(z, §)=hyz),

(5.5) .

G,(z, E)=—k(z) for z€D,
and

(5.6) E}f{,‘ G(z, §)=F(x, §).

Proof. The first part is obvious. Since
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GGz, O={" Fedl— o TRt +2-,

we have G,=ﬁe by easy calculation. T herefore~ G,,:—}'e}(z)+c. Since G is
bounded in~ y for ﬁ)ied x, we have ¢=0. Noting h¢(x, y)d{—0d.(d{) weakly as
y—0 and hdx, y)=h_(—x, ). We see (5.6) from the definition of F.

For any periodic signed measure p with period 2z and of bounded variation
in each finite interval, set

Fx, )=, Fx,0p(d8) xR,

5.7
G, p)=( , G pe) zeD.

£o,2

Then by [5.1], we can easily see:

[5.2] G(z, p) is harmonic in D and belongs to C,(D). It belongs to C,(D)
if and only if [p]=0. Moreover,

Gz, p)=h,(2),
(5.8) { prhe
Gy(z, p)=—Fk,(2)
and
(5.9) lim G(z, p)=F(x, p).
2°. We shall give a solution W=W(z, §, 3) of
We=h,be+E he,
(5.10) { ks Nr;Ne
Wy=hyhe—k k¢
Since
Fetibe=-—cot 25
§TIRg=5 ~COL—5—,
po e 12—
h,,—l—zk,,—zn_cot 5
and
o= ot 2 ot 22
W . zWy—4n2cot 5 cot 5
we have
__ 1 z—¢ z—7
(5.11) W= 4nzlmgcot( 5 )cot( 5 )dz.

a) The case é=7 (mod2x). Noting
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cor(7)= & (-2en(59)-2)

we set

(5.12) W(z) E’ E)—__——hé(z)+4 2

which is a solution of (5.10) for §=9(2x).
b) The case £y (mod 2x). Since

cot (i;;s) cot (—Z—g—i);- g-z—{z cot (SE 7 )(log sin z—;§ —log sin z; 7 —z}» ,

PO S/} z—§ —7
(5.13) W= o 2cot (Argsm 5 Argsin > 5 )+4R2+c

is a solution of (5.10). However, for further analysis, it is convenient to select
a suitable constant C=C(, 7).
We shall define a function S=S(z, &, ) for §%£9(2x) in the following way.
@ If 0<cot((6—x)/2)<co, that is, if there exists a &, such that §,=¢£(2x)
and p<é,<p+n, then set

_1 . 2—& . 27
(5.14) S(z, &, 9)= E(Arg sin 3 Arg sin 2 )

where the branch of the right side in (5.14) is given as Figure,

3

1
1
2
S

7 § 7+2x &+2r p+4n &+4n
Figure.

A branch (Argsini:—g—) of u=S(z,¢, p):—:‘?(Arg sin z;—f —Argsin z;”) when

p<€<p+m, where z=x+1y and y>0 is fixed. The broken line is the limit curve
when ¥ 0. Arrows represent domains of increase of S as y decreases.

(f) In the left side, the branch with Arg sin z=% have to be adopted.
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(ii) If 0>cot((6—9)/2)>—co, set

(5.15) S(z, & 9)=S(z, 1, ).
(iii) If cot ((€—%)/2)=0 or p=&-+=(2x), then set

(5.16) S(z, &, 7)=0.

We can easily see:

[5.3] Let £%% (mod 2x).

(1) S(z, &, p) is harmonic in zeD, and 0<S<1.
(2) S(z, &, p) is periodic with period 2z in x, § and 7, and S(z, &, )=

S(z, 7, &).
(3) There exists

(6.17) S(x, & 7)= Ll-r.l;l S(z, & )

for all x, &€ and 7 (z=x+7y, £y (mod 2x)).
(4) S(z, &, n) increases to So(x, &, ) as y decreases to zero on the set S,=

{(Z’ E; 77): So(x’ E: n)>0}~
More precisely, S, is given by

undefined if §=9(2x),
[1 if (x, S, ﬂ)eUAn.my
So(x, &, )= 1 1 o

—2— lf (x’ 5} n)enyan,m ’

0 otherwise,
where

Ap n={(x, & p): |E—=p—2m—n)r| <z, §—x—2mnu)(n—x—2nx)>0}
Bn,n={(x, & n): E=x+42nm, p=x+2mn}

and n and m run over all integers.
For £+#n(2x), define

(518 TGz, &, = |cot 52|82, 8, ),

(5.19) W & n=—T( & N+
for z&D and x, y=R. Then, by (5.13) and definition of S, we have:

[5.4] For éz%n(mod 2x), W(z, &, 7) is a solution of (5.10).
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We also note:

[5.5] Let &5 (mod 2x).

(1) T(z, &, n) is positive harmonic in zeD.

(2) T(z, &, n) is periodic with period 2z in x, § and %, and T(z, &, 5)=
T(z, 1, ).

@) 0<T(, &, 7;)3— cot £ ”l.

2
siny
4) 0=T(z ¢ = 4———-coshy I for y>0.
(B) Tox, & )= 115} T(z, &, 3) exists for all x, & and 7, and
E

To(x) E) 7})_—_ ‘ cot

So(x, &, 7).

Proof. (1), (2), (3) and (5) are easily shown by using [5.3]. For y>0 and
|E—nl<m we have (4), since

and

£—y 1 n
‘°°t 2 1§|sin(s—r;/2>|§lé—n|

-7

IArg sm———S—Arg sinZ \ < sup }—Arg sin -;zy

=] 77| 2

x+z'y'<_1_ sinh y
= 2c

< — .
=2 sgpllm cot osh y—1

Noting T is periodic in £ and %, we can show (4) in general.
[5.6]

) S, & ={, hSiC & it

@ TG, &mn=| kT, & nde.

Proof. Since S, is a boundary function of the bounded harmonic function
S by (5.17), we have (1). By definition of T and T,, (2) is a consequence of (1).

In conclusion, we have defined W=W(z, §, 7) by

1. .
— kDt if E=q(m),
(5.20) Wz, & 9=
—T(z, & g i E+902m),
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which is a solution of (5.10).

3° Let p and vy be periodic signed measures gvitll period 2z and of bounded
variation in each finite interval. Set h,, k,, h,, k., [p] and [v] as in (5.1).
Integrating both sides of (5.18) by p and v, we have:

[6.7] Set
(5.21) W, o,0=([ W g pedeudn
= e ans T2 € MO(dEM D)
{0 o @0 YO+ 01Dy,
where
(5.22) (X =([ Te-poderan

=2 p({&:hv({€.}) for A€B(R).

Then W(z, p, v) is a solution of the equation
(5.23)

Let a and b be any constants. Since
B o+ a)+ B D) y=h o BB +ah, + b,
hhe—k,+b)E,+a)=h,h,—E,E,—(ak,+bk,)—ab.
We have, combining [5.2] and [5.7]:
[5.8] ,
(5.24) V(z, p, v, a, ))=W(z, p, v)+G(z, av+bp)—aby
is a solution of the equation (5.2).

4° Now, let ¢ and g be in My(R) and [¢]=[g]=1, and % be any con-
stant. Set

~ ~

s=hy, m=h,, t=k+k, I=k,~Fk,
as in [4.12]. Then, by [5.7] and [5.8], we immediately have:

[5.9] PROPOSITION.
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6.25) 0=0UG, o, k):—ﬁ T(z, &, 7)o(d€)uldn)

&+7; §, 9€r0,27)
[0 o X XdE)+ Gz, =)L)y

is a solution of the equation,
U.=mt+is,
(5.26)

U,=ms—It in D.
[5.10] Remark. Any solution of (5.26) is given by U-constant.

[5.11] THEOREM. Let o and p be in Mp(R) such that [e]=[p]=1, and k
be any constant. Then {a, p, k} satisfies the condition [P*] if and only if the
following condition is fulfilled :

Condition [P]
the measures ¢ and p have no common having positive mass and

cot £ 7 |o(de)ptd)

To(x, a, ”):SS

€, MEA(T)
is bounded in x, where
A(x)={&, n): &+, |E—nl<=m, (§—x)np—x)<0}.

Proof. By definition of S, we can easily see that condition [P] is equi-
valent to boundedness of the function

1
(5.27) To(x » Oy !’t)_ ?ESSG;E,); &, nero, 2

cot E;”

So(x, &, N)a(d&)u(dy)

in x. On the other hand, by (5.25), a solution [ of (5.26) is bounded below in
D if and only if

TG, o, w={{TC, & madeyutan
is bounded and
Feo o= eeXo - m(d8)
is bounded.

Since (¢-p) is a discrete measure, Ao »(2) is bounded if and only if (o-p)
=0 or ¢ and g have no common point having positive mass. By (2) in [5.6]
and Fubini’s theorem
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T(z, o, ﬁ)=gﬁc(2)7‘ &, o, p)dg
and T(z, g, p) is bounded in z if T(x, o, ¢) is bounded in x. On the other
hand, by (5) in [5.5]
Tu(x, o, w={{lim T & no(doudn)

<limT(z 0, p),
y-0
and T(x, o, #) is bounded in x if T(z, o, ) is bounded in z. [5.11] is proved.

[5.12] COROLLARY. Let B={o, y, k, p} in 8. Then U=U(B) defined in
[4.11] can be given by

(5.28) U<z>=—j§ TGz, & o(dEudn)+kG(z, p—a)+(+E)y+C

&#9; &, 9€00, 1)
where C is a constant determined by (4.15). FEspecially, U(z) is bounded in D®
for any a>0.

[5.13] DEerINITION. For B={o, o, k, p}, we set

6.29)  Un=—|| Tu(x, & Do(dEpdn)+-F(x, p—a)+C

§#1; §, ner0,2m

where C is the constant given in (5.28) and F is defined in (5.7). This func-
tion U, is a version of boundary function of U in the following sense.

[6.14] U, is bounded and in B,(R). Moreover

(5.30) Usa)=| | U@ha1e,

[o0,2x7

where Up=U(B) is defined in [4.12].

5°. Let B={a, ¢, k, p} be in 8. For ¢ in D(B), we shall investigate a
representation of a solution U(¢) of

{ U(@)e=—m@,+Ip:,
U(@)y=mp:+1$, -

First, we shall prepare two simple lemmas.

(5.31)

[5.15] Let ¢ in C D% be harmonic in D% If ¢.(x, y)dx—0 as y—0 in
weak sense as measures on torus [0, 2x), then, ¢ is in C,(D?) and there exists
a constant ¢ and a periodic function ¢° in C=(R) such that

d(2)—c=0(y),
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$(2)=0(y),
Py ()—P(x)=0(y) (y—0).
Proof. Note that ¢, and ¢, are in C,(D?), for ¢ is in Cy(D?*). Since
S:ﬂgb,(x, y)dx is independent of y by [4.1], we can immediately see ¢ is in
C,(D%) by assumption. For any b<a, z€D® and <3y,

9u2)=9a(6, by vE—0)dE+ T pute, pmrrrE—n)de

where "7#%(x)= % " (x+2nr) and "z°is given in §0, 8°. Letting ¢ tend to
n=—00
0, we have by assumption

Gole)={, pule, bYRHE—2)dE,

which can be extended to a periodic harmonic function ¢, in RX(—b, b) and
J+(x, 0)=0. Therefore, ¢ can be also extended to a periodic harmonic function
J in RX(—b, b) with J(x, 0)=c. Setting ¢*(x)=J,(x, 0) we can get [5.15].

[5.16] Set m=ﬁy(z)=§[0 . fi@n(dg) and ’=§E° . Fude—k for p in
My(R) with [p]=1, and ﬁ¢.,,(z)=gco mﬁe(z)gb(é)p(ds) for a function ¢ in
C=*(R)NC,(R). Then

W [Fymex, 9dr=o),
@ (731 »idr=),
@ [T1gemz, y—lhgux, Midx=o1) (7-0)

Proof. (1) is obvious. Since

1 ylIsin(E—x)|
Syll(x, y)‘d’é“z‘{gge, zero,22) cosh y—cos (§—x) pldddx+2ml kly

and cosljx) ;lfii;é)_ o) tends to 0 boundedly as y—0, (2) is proved. Since

[M1gtomte, 9=k ux, 2ldx

|sinhy |

cosh y—cos (§—x) wd&)dx — 0 (y—0),

=[Mgn-gel
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(3) is obtained.

Let B={o, p, k, p} in B be given, and ¢ be in D¢(B). Let o4 be the
periodic signed measure defined in [4.15]. Set ¢*(2)=G(z, d4), where G(z, a4)
is the function defined by (5.7), and set g=¢—¢*. Then, by [5.2],

$1:¢z'—ﬁo¢(z) )

$y=0,+koy(2).
Noting

2n ~
[ ghogx, nax — | g@ayde)
[o0,27)
for any g in C,(R), we see gz;xdx—»O (y—0) in weak sense. Set
W@=W, a5, =Wz, & nosdondn,
where W(z, §, 5) is given by (5.20). Then W is a solution of
We=—mo¥+19%,
Wy,=mg:+1l.¢%
and .
L=k (2)=l+F.
Let U(¢) be any solution of (5.31). Then
()~ W)o=—m@,+IF.— k% in Do,

Therefore, since ¢.dx—0 (y—0) in weak sense, it follows from [5.15] and [5.16]
that there exists a function 93° in C,(R), and we have

{O($)—W +Glz, kays+3°- )} .dx
=—(¢,—FImd x—($'m—hzo. Jdx+13.dx —> 0 (y—0)

in weak sense, where @°-p is the measure defined by @°-p(d€)=g°E)u(dE).
Applying [5.15] again, we have
U(@)—W+Gz, kay+3- p)=const+0(y) (y—0),

and O($)—W+G(z, kas+@o-p) is in C,(D*). By (2)in [4.13] U(g@) is in C,(D%)
and W is also in C,(D) by definition. Therefore G(z, kas+¢° p) is in C,(D%)
or

SEO.“)(kdU,t—I—gZ“dy):O )

By [4.15] d(g4-¢)=0 follows from d(¢-p)=0; the latter is a consequence of the
condition [P]. Using the representation of W given in [5.11], we finally have:
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[6.17] THEOREM. Let B={a, p, k, p} in B be given. Then, for any ¢ in
D¢=DZ(B), a solution 17(95) of (5.31) can be expressed by

(5.32) ﬁ(¢><z>=—§§ T(z; &, )os(de)p(dy)

&+ &, nel0,27)
—G(z, kas+3° )+C+0(y)

for small y. Here T and G are gz'zien by (5.18) and (5.7), respectively, $°(x)
is the boundary function of Pytkey on 0, which is in C(R)NCy(R),

S[o \ )(k-d0¢+g$°-d;z)=0, and C is a constant.

Since j{o .., (kds+3-dp)=0, the function G(z, ka,+§*-) is bounded in D.

And by [4.15]
{7 & mogaguan| =k ([ ¢ noaduan.
Therefore, as a consequence of condition [P], we have:
[5.18] The solution 17(¢) of (5.31) is bounded in D’ for each b<a.

[5.19] DEFINITION. Let B={o, g, k, p} in @ be given. For ¢ in DI(B)
and a solution l7(¢) of (5.31) given by (5.32), we define

(5.33) ﬁ°(¢)(x>=_§gé#m€, ﬂeco,zz)TO(x’ &, Nag(depdn)—F(x, kay+¢° )+,
where T, is defined by (5) of [5.5] and F by (5.7), and 4° and C are the same
as given in (5.32).

By Fubini’s theorem, we can easily have:

[5.20] The function [70(95) defined in (5.33) is a version of boundary func-
tion on @, of the function U(¢) given by (5.32), that is,

O@)a)={, k0@ &de+00).

[6.21] Remark. U=U(B) defined in [4.12] is a solution of (5.31) for ¢=u
by [4.14]. We can easily see U, defined in [5.13] is a version of boundary
function of U=U(u) in the sense stated in [5.20]. Note that u,=—t=—F,—k
and ¢,=—F in this case.

§6. Proof of the fundamental lemma.

The purpose of this section is to prove the following lemma, which is
essential in the proof of uniqueness of Bjy-solutions.
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[6.1] LEMMA. Let B={a, p, k, p} in B and ¢ in DI(B) be given, and [7(¢)
be any solution of (5.31) in §5, 5°. Then,

(6.1) tim  "g(n)0g)x, 1)z, wdx={  gnlgnayds)

for any g in C,(R) and any ¢ in DY B). Here Ijo(gﬁ) is defined in [5.19] and
gy in [4.15].

Let p be in M,(R)  in [0, 27). Set

Tulo, 0, M=|| T(E, a), & Do),

[0,27)X[0,27

6.2) Tp, 0, 1) =§§ ToC, & p(dD)op(de),

[0,27)%[0,27)

Qu(p, p, n)zﬁ Fo(x, W((x, @), & p)dxp(dE),

[0,27)X[0,27)

where T is defined in (5.18), T, in (5) [5.5] and W in (5.20).

[6.2]

(1) Qa(p, p, n) decreases as a decreases.

@) Qdlo, o, M=—T2lp, 0, M+alpl’, if o({n})=0.
®) 1im Qulp, p, M=—T(p, p, 1), if p({nh=0.

Proof. W(z, o, ”):S Wz, & mp(dg) is a solution of

[0,27

I

VhP’

Wao=h,k,+

W,=h,h,—kk,.
Therefore by (2) [4.5],

Qulp, 0, M=Qulp, p, = 4|

for b<a and (1) is proved. Assume p({n})=0. By (2) [5.6]

)ﬁ,,(ﬁg+£;>dxgo,

[o,2

Wt oo anyfints AT, @), & D x0(d8)

[T o amsacn oy PO T, & i, @, @)

0(d0)p(d&)dL ko €, 20)To(L', &, 1)

SSEO.ZR)XEO,zz)x[o,zz)
:Tza(p) P; 7])‘
Since, by (5.20)
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W((x, a), & n=—T(x, a), &, ,7)+£?

for £+, we have proved (2).
Since T,=0 and 1irrg T(z, & n)=T«x, & 5) by (5) [5.5], it follows from
y—)

Fatou’s lemma that
LiTn;l Ta(P; P; 7])27‘0([0: 40: 77):

and by (2) we have
(6.3) ﬁ Qau(p, p, P=—T(p, p, 7).

Set A,={&: |cot (§—9/2)| =n}CR and define dp,=1,,-dp. Then p, is in My(R)
and 0<T(z, & p)=<n/2r for £ A, by (3) [5.5]. Therefore l'nrg To(or, pr, )=

To(pz, Pn, B) by the bounded convergence theorem. Therefore, by (1) and (2),
Qa(.on; On, 77)2 lg_r)rol Qb(ﬂn: On, ﬂ):_TO(PM On, 7?)
Since p({n})=0and /4, T Iy, the monotone convergence theorem establishes

}Llfg Ton, on, N=T(p, p, 7),

and
Li.l:l;lo Qa(pm Pn, v):Qa(p’ o, 77)

by (2). Therefore
(6.4) Qup, o, N=—Tup, p, 7).
Combining (6.4) with (6.3), we finish the proof of (3).

Let B={a, p, k, p} in B be given, and set

. T .o, o, y)ESSS

Tu(a, o, w={(| oo (dEudNTE, & 7).

[0,27)X[0,27)X[0,27)

)a(dC)a(dS)#(d T, a), & 7).

[0,27)X[0,27)X[0,27

(6.5)

[6.3] lim Tu(o, 7, )=Ti(s, 0, 2).
Proof. By condition [P] in [5.11],
(6.6) 0z al{n))>0}=0,
and by (2) [6.2]
Tulo, 0, )= . Qulo, o, Putdn)+2ra.

[o,2m)
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By (2) [6.2], Q.(0, o, ) is bounded above in a for 0<a<a,<, and by (6.6)
and (1) and (3) in [6.2], Q.(g, o, ) converges to —T (o, o, 1) decreasingly as
a—0. Therefore [6.3] is proved by the monotone convergence theorem.

[6.4] Let ¢, and ¢, be periodic signed measures with period 2z. Assume
that ¢, (=1, 2) are absolutely continuous with respect to ¢ and |deo;/do|<K.
Then,

Ll_r}g To(os, 02 )=T(01, 03, pt),
where To(0,, 04, ) and T (o, 04, p) are defined in the way similary to (6.5).

Proof. By (4) [5.3], S(&, a), & n) increases to Sy, & 5) on the set §.=
{€, & n): Su&, & 7)>0, 0=, § n<2r} as a—0. Noting (5.18), we have by the
monotone convergence theorem

(6.7) tim| (], 7(C, @), & Do@Oatddutan)

=[{];. 7@, & matadotdeuan)
=T\(a, 0, ).
Combining (6.7) with [6.3], we have
(6.8) tim (. 7@, @), & mataDo@ouan=o,
where S¢={0<¢, 5, {<2x}—S§,. Therefore,
[Ta(01, 02, p)—To(01, 02, p1)]
<[ 1 & D=7, 0 & Koo pdy)

+[{]5 7@ o) & DKoo udr).

By (6.7) and (6.8), the right hand side tends to zero as a tends to zero. This
proves [6.4].

Proof of lemma [6.1]. Set
(6.9) I=Iy;g, ¢, gb)‘——S::g(x)ﬁ(gﬁ)(x, W%, y)dx.

Since U(¢)(2) is bounded near 9, by [5.18] and ¢.(x, y)dx—h,,(x, y)dx—0 in
weak sense, we have

1)=([ . osddxre@l@)x, iz, N+ (3-0).
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2z
0

Since S |g(x)— @1 hilx, y)dC=0(1) (y—0) uniformly in x,

1)={{ . osdDdxe@U@)x, i, 3)+o1) (3-0).
And by [5.20]

1)=(] . 0D xdEgORx, 3)itx, OO+ o(D)

=1 ey 0, AOIEELQRE, 29T PNO+o(D) (70).
Therefore, by definition of [7°(¢) in [5.19],

I0)==Tu(g-04 05, )= | IAdDLOGC, 2), kog+3*-10)

+CSE°,mg(C)o‘¢(d()+o(1) (y—0).

dg‘0'¢
do

Since by [4.15] | ‘éllg”'%‘ and '%l is bounded, it follows from

[6.4] that
lim T2y(g-0y, 74, 1)=T (804, 74, 1)

On the other hand, since Sz"(kdag,_;_sbod‘a):o, G((Z, 29), kas+3°-p) converges
to F(C, kasz+@° 1) boundedly by virtue of [5.2]. Therefore,

lim I()=—T(g- 0, 04 )= | gQa(dOFE, kog+3*-10)

+c|,, 8@y,
Using [5.19] again, we finally have
lim 1)={ |, e@o,00@)),
which proves lemma [6.1].
[6.5] Let B={a, g, k, p} in B be given. Then
M lim [ "g(UE.@d =] eV,

for any g in Cp(R) and any ¢ in Df. Here U=U, is defined in [4.12] and U,
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in [5.13].

(2) U,=0.

@ |, Udwadn=p.

Proof. By remark [5.217, (1) is an immediate consequence of lemma [6.1].
By Fatou’s lemma 11_11;1 T(z, 0, )=T«(x, g, p). Therefore, by [5.12],
y-o

0< lim U(z)=—lim T(z, @, )+ lim G(z, 6—p)+C
y-0 y-0 y-0

S—Tox, 0, p)+kF(x, 0—p)+C=Uyx),

which proves (2). Let u be the function defined in (4.15) and let g=1 and ¢=u
in (1). Then, noting [4.12], we have

g U(x)o(dx)= lim Y"U(z)s(z)dx: b,
0,27 y-0 Jo

which proves (3).

§7. Uniqueness of By-solutions and B-processes.

Thoughout this section, B={e, y, &, p} in B is fixed. The functions s, ¢,
m, ! and U are defined in [4.12], » in (4.16) and the class D¢ y in [4.13].

Let ¢ be a By-solution for f in D® Then, by lemma [6.1] and (1) [6.5],
we see that (4.18) in definition [4.16] is equivalent to

(7.1) Uy(x)dos=U(p)x)da ,

where U(¢) is the boundary version of a solution U(¢) of (4.19) which is de-
fined as in [5.20], and U, is defined in [5.13].

[7.1] PROPOSITION. For f in CyR) and a>0, a B;-solution for f in D®
is unique, if it exists.

Proof. Let ¢, and ¢, be B,;-solutions for f in D% Then, by definition it
is easy to see ¢=¢,;—¢@, is a B;-solution for 0 in D% Since @, are in Cy (D¢ 1),

®5(z+2n)— P (2)=f(x+2m)— f(x).
Therefore ¢ is in C,(D%)). Moreover ¢ is in C=(D®*), for ¢ is harmonic
in D* and ¢=0 on d,={y=a}. Therefore, ¢ is smooth on 9, and

lim S:nU(¢)¢xdx= —lim [ u@).pdx

Yy-a
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—_lim S:n(—m¢y+l¢x)¢dx:0.
y-a
On the other hand, by (2) [4.5]

°=§,il’é§o U($)podx

=[ uxx, g, b)dx+§oszéum<¢;+¢;>dxdy,
<y<a

for any b<a. By (7.1), lemma [6.1] and (2) of [6.5], we have

tim [ “U@)x, 0pax, BYax= U)o,

ro,2

_ d0‘¢ . d0‘¢
—SCO,ZZ')UO(¢)70'_-da_S[O,Zﬂ')UO dO‘ d0‘¢
_ dag\?

—S:o,2z>U°< do ) do=0.

Therefore,g m(@i+¢2)dxdy=<0. Since m>0 in D* and $=0 on da, we

0sr<2
0<y<

have ¢=¢,—¢,=0 in D°.

Now, we shall prove uniqueness of By-solution for f in C, y(R). First,
we note:

[7.2] Let p be in M}, y(R). Define py in M(R) by

1 x
(7.2) [rwdon=5{1(5)d0
for any f in Cx(R). Then py is in Mp(R) and
1 1
(7.3) g§co,2x)deﬁmS£0,2Nz>dp

[7.3] Let B={o, g, k, p} be in 8. Then B*={on, un, k, p/N} is also in
2, and
sn(z)=s(B*)(z)=s(Nz),

tn(z)=t(B*)(2)=t(Nz),
my(z)=m(B*)(z)=m(Nz),
In(2)=I(B*)(2)=I(Nz),

Un(2)=U(B*)z)= [lvuuvz) .
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Proof. We shall check the conditions in [4.9] for B*. The condition (b.1)
is obvious by (7.2), while (b.2) is trivial. We have

sw(@)={ 20 w(d®)= [rein2o(de)

= hern(3 N2)atar=s(2),

because (1/N)hen(z/N)=he(z). In the same way, we have ty(2)=HNz), my(2)
=m(Nz) and Iy(2)=I(Nz). Set U(z)=(1/N)U(Nz). Then I/;=U,(Nz) and U/,=
U ,(Nz). Therefore, it is easy to see that U is a solution of

U.=myty+lnsy,
ij=mNsN—thN .

Since U/ is nonnegative, (b.3)* in [4.9] holds. Finally,

L (ep dx=-2("U(Nx, Ny)s(Nx, Ny)d
E?So (%, ¥)snlx, ¥) x—mgo (Nx, Ny)s(Nx, Ny)dx

1

2Nz 1 2=
zmgo U(x, Ny)s(x, Ny)dx=—go U(x, Ny)s(x, Ny)dx

2Nrn
and

. 1 renn 1
11m2—g Ux, y)sn(x, y)dx=]—v-p,

y-0 LT Jo

which proves (b.4) and U=Uy.

[7.4] Let B and B* be as in [7.3]. Then ¢ is in D¢ y(B) if and only if
éx(2)=(1/N)$(Nz) is in D3/¥(B*).

Proof. Noting (¢n).(2)=¢(Nz) and (¢x),=@(Nz), we can easily check the
conditions in [4.13].

[7.5] Let B and B* be as in [7.3] and let f be in Cg nx(R). Then, ¢Kis
a Bpy-solution for f in D% if and only if ¢x(z)=(1/N)$(Nz) is a B¥-solution
for fn(x)=(1/N)f(Nx) in D¥¥,

Proof. First, we note fy isin Ci(R). Let ¢ be a By-solution for f in D®.
Then, by [7.4], ¢x is in DHV(B*). Itis obvious that ¢x(x, a/N)=fw(x). Set
Vilon)2)=(1/N)U($)Nz) (zeD*¥). Then Vx($) is a solution of

VN(¢N)x=_mN(¢N)y +ZN(¢N).7: ’
Valdw)y=muw(@n)z+in(@n)y,
for U(¢) is a solution of (4.19) in [4.16]. Let g bein C,(R). Since ¢ is a By--
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solution and g(x/N) is in C,, y(R), we have

. 22
tim g (U @)=V w@)- ), )
1
=lim (g XU g ~U@s)Nx, Ny)dx
=lim Nl g(E) U~ U@, Nyjdzx
=0.
Therefore ¢y is a B¥-solution for fy in D*/¥. In a similar manner the con-
verse is also proved.
Combining [7.5] with proposition [7.1], we have:

[7.6] THEOREM. Let B in B be given. Then, for any N, any f in Cq y(R)
and any a>0, a By-solution for f in D® is unique, if it exists.

[7.7] THEOREM. Let Bin B be given. Then a B-process is unique, if it
exists.

Proof. Let P be a B-process. By theorem [7.6] and the definition of B-
process, HEf is uniquely determined for any f in Cp ~(R) and a>0. Let f be
any function in Cx(R), and set

fN(x)zkgwf(x—}-Zan:) (N=1, 2, --).

Then fy is in Cp,x(R) and lim fy(x)=/(x) boundedly for any xcR. There-

fore, H3f(x)=1lim H®f y(x) is uniquely determined. By theorem [2.4], we can
see uniquess of a B-process.

III. Construction of Bp.
§8. Construction of yr and kr and condition [V].

In this section, we shall construct, for a given process P in 2@, a nonnega-
tive periodic harmonic function mp in D and its supporting measure gp on 0,.
In the last part of the section, we shall also show that mp(z) is the density
function of an invariant measure of the process P. Given a process P in P,
we write the harmonic measures H%(z, A) induced by P as H%z, A).

[8.1] Let "#%(x) (0<s<r, x&R) be defined as in §0.8°. Then, "z°(x)
and "#%(x)= i "n%(x+2nr) are C> functions with bounded derivatives in x,
n=—00
and
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g:‘gciinrirs(x)idx<oo .

Proof. By definition, we can see

ar , 5 )_P,,(cosh(zrx/r), sinh (zx/7))
dx® " M7 (cosh (mx/r)—cos (s /r))"*!

where P,(x, y) is a polynomial of degree n. Hence [8.1] is proved easily.

[8.2] The kernel H¢(x, A)=H%((x, b) (b<a) defined in [2.3] has a density
function Ag(x, &) in CP(RXR). Define

fs(x, 9= 3 hi(x, E+2na).

It is also in C*(RX R) and periodic in x and &.

Proof. Let c<b<a. Set R=3,(H!TIyHL. Since |H2 &TIjl=2=2
R is a bounded positive kernel and R(x, A)=R(x+2x, A+2x). By (h.2) and
(h.3) in [2.2]

<1,

H¢=H Hy=H (1§ +%1E HE).
Therefore H¢=R %J1¢, and

HE=%018+ 15 H¢ =118 +%015 R <115 .
The kernel Hg(x, A) has a density

(x, O=""meNe—n)+(em (g —)dn R(y, dO*mE—0).

RXR
Noting [8.1], we can get [8.2].

_[8.3] DEFINITIOIES. Let K(x, A) be a kernel defined for xR and
xEA= B(R). Here A is the closure of A. We use notation

[ K, doF, o=tim|  Kix, d)F(x,
X e=0J| >e

for F in C(RXR), if the limit exists. Set
8.1 Prfe)={" pre—n(f©—f(x)
for >0 and feCyR), and

6.2 Q' f0)={ ge—nr@de

for »>0 and f=B,(R), where p7(x) and ¢"(x) are defined in §0, 8°.
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Using explicit forms of each kernel, we can easily see:

[8.4]
®3) fim —[eTs(x, 4O @S (N=Pe-f(x)
for 0<c<a and f in C}R).
.4 lim—(211(x, 4O @ ()=Q*~f(x)

for 0<c¢<a and feBy(R).

[8.5] For f in C}R)

®5) Be f(x)=lim —— | H§(x, d€Xf@—f(2)

a—b

exists, and B®f is expressed by a kernels B%x, d§) as
8.6) Bef(w={ Be(x, deXr@—Fix).
The kernel B%(x, A) (xR, A= B(R) and x¢& A) satisfies for any c<a
.7 B%(x, A)=P*(x, A)+Q* °Hi(x, A).
Proof. For ¢<b<a, we have
Hy=%118+%115 He.
by (h.2) and [2.2]. By [8.4], we can immediately show

lim !
bte a—b

[Hscx, dexr@—rey
exists and is equal to
Pe=f+ (@ He)x, dXf©)—f()

for any f in C}R).
[8.6]
1) B%x, A)=B*x+2x, A+2z) if x&A.
(2) B%(x, A) has a density b%(x, &) in C*(R X R) off diagonal, which satisfies

8.8 b*(x, §)=p*(§— X)—I-SRQ”‘”(??—X)}Z?(% §dn.

Proof. (1) is obvious by (8.7). (8.8) follows from (8.7), [8.2] and explicit
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forms of p7(x) and ¢"(x) in §0, 8°.

[8.7] For f in Cy(R), set ¢=H*f. Then
8.9) $y(x, b)+B°¢(x, b)=0
holds for any b<a, where

Bg(x, =Bz, dO@(E, b—g(x, b).

If f belongs to C¥R), (8.9) holds for any b<a.

Proof. If f belongs to C¥R), then by [8.5]

Bux, )=lim—— (HF f(0)— f() =B ().

Noting ¢(x, a)=f(x), we have proved (8.8) for b=a. For b<a, g=H*(Hf) in
D and H#f is in C}(R) for any f in Cy(R). Therefore [8.7] is proved.

[8.8] For f in C¥R), set

8.10) Pr=2" (O 10,

(5

Then for a>0, there exists a function m.(x) in C,(R) such that

®.1) [ max)PFG)+ Be fx)d v=0

for any f in C%(R), and

8.12) [Tma(ndz=2x.

Moreover, mq(x) is uniquely determined by (8.11) and (8.12).

Proof. By (8.7), for any c<a

(P+B“)f(x)=Pf(x)+P“'”f(x)+SQ“"HJ’(X, &) f(&)—f(x)

for f in C}R). As an operator in C,(R), P4-P% ¢ with domain C%(R) is a
core of the generator of an additive process (process with stationary independent
increment) on the torus T=R/(2x), whose transition probability has a positive
smooth density. Since Q* °H¢ is bounded on C,(R) and maps C5(R) into C(R),
usual argument on smooth bounded perturbation proves that P+ B¢ is a core of
the generator of a Markov process on the compact space T, and its semigroup
maps C3(R) into C3(R), and its transition probability has a positive smooth
density. Therefore the Markov process corresponding to P+ B® has a unique
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invariant measure mq(x)dx which is characterized by (8.11) and (8.12).

[8.9] Let u be in C%R) and v be the Hilbert transform of u, that is,

(8.13) v(x)=lim—l-g* § L@e)de
: Nooco T JLz], 1€-2I<KN (é—x)
_ 1+ sin¢—x)
= Xm T—cos(E—x) “&)¢-
Then
(8.14) Szn(qu—vf')a’x_—.O

for any f in C%(R).

Proof. For zeD set

2n

2z)= ;7§ hu@de,

0

2= | Fem)de,

- 1 renn

o= @ f@de.
Then #, 7 and f are in _C,‘,(Df°-°°>) and harmc_mic in D. ¥ is a harmonic con-
jugate of #. Noting lli,rr%f,,(x, y)=Pf(x), Limfy(x, )=0 and lim 7 .(x, ¥)=0, we

" oo Yoo
have by [4.4]
1 2z 1 2z
| wPf—vfdx = (af ,~5f o), )

=1imSZ”(a Fo—bfa)x, y)dx=0.

Yoo
Therefore (8.14) is proved.
[8.10] Let mq(x) in C3(R) be the function given in [8.8]. Define m(z)=
my(x) for any z=(x, y)D. Then m(z) is a positive harmonic function in C,(D).

Proof. 1t has been already shown in [8.8] that m is positive and periodic
with period 2z. To show m is harmonic in D, it is sufficient to prove

27 o
8.15) mow)= ", a—bymy)dg
for any 0<b<a. Let [, be the Hilbert transform of m, and set

(@)= hela—bmi@de,
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- 27 o

)=, hz—blede
for zeD®*=, For any feC3(R), set ¢(z)=H*f(z) for z&D®. Noting i(x, a)
is the Hilbert transform of #(x, a), we have by (8.14), (8.9) and [4.1]

0

["mcx, axPre+BefGdx={ U, a)f(x)+m(x, B f(x)dx

2n

((x, a)po(x, a)—m(x, a)p,(x, a))dx

0

0

J
=[x, 0gux, —7Cx, )Py, b)dx
|

= zn(lo(x)qﬁz(x, b)+my(x)B°(x, b))d x

=["maxXPo(x, b+ B, b)dx

where Pg(x, b)=(P¢(-, b))(x) and B ¢(x, b)=(B%¢(:, b))(x). By definition of
my(x), the last member of the above equalities is zero. Therefore

["mex, axPreo+BefGandr=0
for any f in C3(R). Noting
gz”m(x, a)dx_—_gj"m,,(x)dx:zn,

and using uniqueness of m,, we can see i(x, a)=my(x). Therefore (8.15) is
proved.

Combining [8.8] with [8.10], we have:

[8.11] PROPOSITION. Let P in P be given. Then there exists a unique
positive harmonic function m(z) in Cp(D) such that

(8.16) SZ“m(x, a)(Pf(x)+B* f(x))d x=0
for any a>0 and any f in CY(R), and

®8.17) S:"m(x, a)dx=2x,

where Bef is defined in [8.5].

[8.12] DEFINITION. Let P in & be given.
(1) For a>0 and f in C}R), B4f is defined by (8.5) in [8.5]. For a>0
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Ae 3(R) and x&A, Bi(x, A) is defined by (8.7) in [8.5].

(2) mp is defined as the positive harmonic function in D which is in C,(D)
and satisfies (8.16) and (8.17) in [8.11].

(3) pp in M,(R) denotes the supporting measure of mp on g, that is,

(8.18) mpa)= | Fe@pn(dg).

[8.13] Remark.

(1) The measure pp in M,(R) is uniquely determined for the given P in
@, and [pp]=(1/27)pp([0, 27))=1.

(2) Let [ be a harmonic conjugate of mp. Then, for any a>0, /(x, a)
differs from the Hilbert transform of mp(x, @) only by an additive constant.
Therefore it follows from [8.9] that (8.16) in [8.11] is equivalent to

8.19) g:"(m,,(x, @)Baf(x)+I(x, a)f'(x))dx=0

for any f in Ci(R).

[8.14] Conditions [V ,] and [V] (Conditions for variance and Moment)
Let » be a positive integer. A process P in & satisfies condition [V,] if
and only if for any b<a

sup| _Hau(x, dexe—wrdg<eo.
Condition [V,] is called condition [V].

[8.15] Under condition [V.], (8.5) and (8.6) in [8.5] and (8.9) in [8.7]
remain to be true for all f in C*R) satisfying

(8.20) [ ()] KA+ x|*).
with a constant K.

Proof. First, we note the following estimates.
1
a—b

1
a—b

[ emmic, do=KCe, e,
lzizN

[ e, do=K(, ajemre,
Iz1zN
and

SH?(x, dE)(1+$Z’)§_SH?(x, d&2 (1+(E—x)"+ =)

<K(c, a)+2-1(1+x%)
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for 0<c<b<a and N=1. Here K(c, a) and K(c, a) are constants depending on
¢ and a. Then, (8.5)and (8.6) for f satisfying (8.20) follow from the equation

s=¢lls+eIIs HE .
(8.9) is a consequence of (8.5).
[8.16] Under condition [V ,],
sup | B(x, dg)(g—x)"<eo.
Proof. For 0<c<a,

*
S[ojp“‘c(x)x”dx=c,< oo, Sq“‘“(x)x”dx=c£< o

and
(Her, dexe—xyr=zr((Heer, dexe—nr+a—x).

Noting (8.7), we have [8.16].
[8.17] PROPOSITION. Let P in P be given and assume that P satisfies [V].

@

(8.21) br=—y | melx, @)dx{ Bi(x, deXe—n) (a>0)

1S independent of a.
(2) Let Ip(z) be the harmonic conjugate of mp satisfying

8.22) —21;52"1,,@ a)dx=—kp.
Then
(8.23) S:z(mr(x, a)Bgf(x)+ip(x, a)f'(x))dx=0

for any f in CYR).
(8) Let m in Cp(D) be positive harmonic in D satisfying Sznm(x, a)dx=2x.
Let [ be a harmonic conjugate of m in D. If
2n
(8.24) SO (m(x, a)B&f(x)+U(x, a)f'(x))dx=0
for any f in CYR), then m=mp and [=lp.

Proof. First we note that, under [V], B&f(x) is well defined for f in C¥R)
and belongs to C,(R). Let &, be the right hand side of (8.21) and let
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W@=| |, Fom(dd),

ro,2

which is a harmonic conjugate of mp(z) such that S:nlo(x, a)dx=0. By (8.19)

(8.25) [“omatx, Bpg(0+1(x, g ()dx=0
for any g in C3(R), since [(x, a) is the Hilbert transform of mp(x, a). For
any f in CXR), set C,=(1/2n)(f(x+2x)—f(x)) and ¢(z)=HEf(z) for z&D".
Then, by (h.4) in [2.1],

1 1

o (B+2m)— ()= H3(z, deXfE+2m—1@)=C;,

and f—Cyx is in C3(R) and ¢—C,x is in C}(D®). Therefore by (8.25)
(®.26) | metx, B3+, @) (20 dx=C ke
and similarly, for any b<a,

o matx, DYBR(x, D+, ulx, DNAx=C 1o,
On the other hand by [8.7] and [4.1]

S:ﬂ(mp(x, a)Bf(x)+l(x, a)f'(x))dx
:gz‘(—mP(X, a)p,(x, a)+ix, a)p.(x, a))dx
:Sz"(—mP(JC; b)o,(x, b)+1(x, b)P(x, b))dx

={"ome(x, 6)Byg(x, 0)+1x, Bpalx, D).

Therefore Crko=Cysky,. Choosing f==x, we have C,=1 and k,=k, which
shows kp=Fk, is independent of a. Set /=/,—kp. Then for any f in CXR)

[onetx, a¥B3r0+iCx, @) (0

=S:”(m,,(x, a)B&f(x)+1o(x, a)f'(x))dx—2rC s kp=0

by (8.26). The assertion (1) and (2) have been proved.
Assume (8.24). Then, for f in C2(R),
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["ontx, 0)B3fG+x, @)f () x=0,
Therefore for any f in C3(R) and a>0
[z, axBg G+ PrNx=0
by [8.9] and we have m=mp by [8.11]. Setting f=x in (8.24), we have
27rkp+gznl(x, a)dx=0,
which shows [=/p.

[8.18] DEFINITION. Let P in @ satisfying condition [V] be given. Define

1 (2= a
kp.:-é—i—go mp(x, a)deBp(X, dé)(&“x)
and

@)=, | F@punde)+ ke,

0,2

where pp, mp and Bg are defined in [8.12].

In the remainder of this section we shall proved that mp(z) in [8.12] is the
density of a periodic invariant measure of the process P. Note that P need
not satisfy the condition [V].

[8.19] For a>0, let =0, be the hitting time of d,.
(1) For a positive 4,
e V=) if y=a,

(8.27) Ee*)={ coshv/2y
coshv/21a

(2) Let f be in Cs(R) and 2 be a positive number and set

if y<a.

$(2)=E(e”** f(2(a)).
Then ¢, ¢, and ¢, tend to zero uniformly in x as y—co. We have
(8.28) |¢y(x, b)+Bh(x, b)| <+/22 tanh(+/22b)| f |
for any b<a.

Proof. By [1.6], E (e *°)=E®(e~*%a) where &, is the hitting time of
{a}. And by (p.4) [1.1], ¢(z)=EZ*e *°f(z(a))) for y>a. Therefore (1) and
the first part of (2) are obvious by properties of Brownian motions. To prove
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(8.28), let p=a, be the hitting time of @, and let z be in D*(b>a). Then @(z)=
E (e **¢(x(p), b)) for y<b, and ¢ is in C* in D2 Therefore,

L x, b—g(x, )

b—y
——b—;(Ez(qS(x(p), DN—¢(x, )+ ——ELd— e **)p(x(p), b)).
By [8.5]
llm-———(Ez(szS(x(p), b)—é(x, b)=(Bpg(-, b)x, b)
and by (1)

E—E“;b% |E(1—e™*)g(x, b)]

<11mb———E,(1 e~*0)|| @l <+/22 tanh(~/22)|| f | .

y1rd

Since @,(x, b)-hm

(¢(x b)—@(x, ¥)), (8.28) is obtained.

[8.20] PROPOSITION. Let Pin @ be given. Set D={z: 0<x<2r, 0<y<oo},
and let f be a function in C,(D) such that

(8.29) [l r@impa)dz<oo.

Then, for 2>0

(8.30) 3,Gaf@ma@dz={ f@ms)dz,
®3D) | ,Per@mpadz={ f@msadz,

where G;f(z)=E (S '“f(z(t))dt) and P,f(2)=E (f(z()).

Proof. Set m=mp. We may assume that f is in C%(D), nonnegative and
zero outside D@ ®(0<b<a). By (p.4) [1.1]

Gaf@=E2([/ e feO)D+ EPe-1%:Ga (al0.),

where ¢, is the hitting time of @, for any ¢>0. Therefore G;f(z) is in C*D)
and in C,(D) by (p.5) [1.1], and (A—MG,f=f in D. Hence for 0<e<b<a<N

2n N
(8.32) S 0 dxge dy(A—D)G 1 f (2m(z)
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=§ d "S N v f <2>m<z)=g S @m@dz.

By Green’s theorem

®33)  ("dx("dy 4G f@m@=] (G —m(Gif Nz, N)dx

+[ oG —m(Gafix, )dx.

Since
E (e 272G f(2(00) if y>a,

E e G, f(2(ay) if y<b,

the first term in the right side in (8.33) tends to zero as N—co by (2) [8.19].
On the other hand, noting remark (2) [8.13], we see that for any harmonic
conjugate [ of m,

sz(z)={

S:"m,,(cx £)x, e)dx:-—gzzl,(Gz F)x, e)dx

=S:nl(Glf)z(X, E)dx:-g:nt;(sz)(x’ e)dx .
Therefore, by (8.28), )

‘Szn(m(c”f)y_my(clf))(x, e)dx‘
=[G BsGa s, 3]

<7n+/21 tanh(+/22¢)|| G, f] -
Finally, it holds that

lim S:"deNd y 4G f(z)=0.

N >0, -0

Letting ¢—0 and N— in (8.32), we obtain (8.30). Since P.f(x) is continuous
in t by (3) [1.4], (8.31) follows from (8.30).
[8.21] COROLLARY. Using the notations in [8.20], let f be in C(D) such

that §D| flmp(z)dz<oo. Then

(8.34) ZSDG 1f(@mp(2)dz= SD f(@mp(z)dz,

(8.35) SP; f(z)mp(z)dzng F2me(z)dz.
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Proof. We can assume that f is in Cg(D). Then f(z):n:ﬁ_ f(z+2nx) is
in Cp(D), and by (p.5) [1.1]

S S @me(2)d Z=Sﬁf(2)mp(2)d z,
|,Gif@mpadz=( Gifemuadz,

SDPcf (2)mp(2)d 2=S5Pz Ff(2mp(z)dz.

Therefore (8.34) and (8.35) are immediate consequence of (8.30) and (8.31).

§9. Construction of ¢, and condition [M].

In this section we shall construct, for a given process P in &, a nonnegative
harmonic function sp in D and its supporting measure ¢p on d,. The function

¢(x)=S:0p(d$) plays a role of harmonic scale on d,. In order to guarantee

existence of ¢p or sp, we need condition [M'] and [V]. Later in part II, we
shall discuss necessity of conditions [M] and [V].

[9.1] Condition [M] (Monotonicity Condition). If f is a non-decreasing
function in Cu(R), then HE,f(x) is non-decreasing in x for any ¢ and b with

0<b<a.

[9.2] Remark. Under [M7, it is easily seen that, if f is measurable and
non-decreasing on R and H§,f(x)>—oo for any x, then H%,f(x) is non-decreas-
ing in x.

We define classes of harmonic functions related to the process P.

[9.3] DEFINITION. For 0<a<co, set
He=H*P)={¢=CyD): ¢=HEf for some f in C,(R)}.
Hg y=H3 y(P)=H*P)NCp, y(D**), Hi=H% |, H=a(>\oH“,
Hp,zv'—“QoH;,N, Hp:.QoH;'

If condition [V] is satisfied, set
Hi y=Hg n(P)
={¢€Cqn(D*): ¢=HLf for some f in C, y(R)}.
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H, 5, H? and H, are defined similarly.

[9.4] Remark. If ¢ belongs to H®, then ¢ is harmonic in D * and

8(2)=Hz, dp(¢, b)
for any b<a and zeD".

[9.5] THEOREM. Assume P in @ satisfies [V] and [M]. There exists a
function u in Hy such that

u(0, 1)=0,
O.1) u(x, y) is increasing in x,
u(z+2rn)—u(z)=2rx.

Movreover, such a u in H® is unique. The derivatives s=u, and t=—u, of u have
the following properties.

(1) s is positive harmonic in D and belongs to C,(D).

(2) tis a harmonic conjugate of s in D and also belongs to C (D).

3

9.2 L ("ix, ydx=
9.2) |t dx=tr,

where kp is the constant defined in [8.18].

Proof of (1), (2) and (3). Let u in H, satisfy (9.1). Then (1) and (2) are
obvious, for u is harmonic and in C4(D). Set

1 2n
k—z_zgo Hx, y)dx,
which is independent of y by [4.1]. Noting u(z)=(H®u(-, a))Xz) for any a>0
and z in D®, we can see u,(x, a)+(B%u(-, a))(x, a)=0 by [8.15]. Let mp and
Ip be functions defined in [8.12] and [8.18], respectively. Then, since

L
2

we have

g“ (x, a)dx=1 —I—S“z (x, a)dx=—"F —I-S“( a)dx=1
0mP ) x=1, 27r0P ’ xX= Py 271' Osx’ x=1,

2n(k—kp)=S:"(m,,t+zpsxx, a)dx
=Szﬂ(—mpuy+lpur)(x, a)dx

=(TomnBsu) 1z, @),
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by [4.4] and the last member is zero by (8.23) in [8.17], for u(x, a)is in CXR).
Thus (9.2) is proved.

Proof of uniqueness. Let u and # be both functions in H, satisfying (9.1).
Set v=u—1#. Then v is in H,. Especially v is a harmonic function in G,(D),

which is represented by
27 A
©.3) w@)={ hi(x, y—an(€, a)dg+Cy
for any ¢>0 and z€ D=, By (3) in the theorem,
27 2n
22C={"v,(x, dw={ u,~i1,)x, y)dx=0

lllll UV —K—- “a 5 V a d .

For any a>0, v is harmonic in D¢ and v,+Bgv(-, a)=0 on 4, by [8.7].
Therefore, by the maximum principle, v can not attain strict maximum nor
strict minimum in D', Thus v=K in D'**,  Since a is arbitrary and
v(0, 1)=0, v=u—#=0 in D.

Proof of existence.

1° Set ﬁa(z)=§H %z, d&)¢ for any a>0 and z= D% which is well defined
by condition [V]. By definition, #, is in HZ with #.(z+2r)—f.(2)=2x.
Moreover by condition [M7] (see also [9.2]), #i.(x, y) is increasing in x. Set

ua(z)z-‘ﬁa(z)—ﬂa((ll): sa"_—(ua)z and ta:—(ua)y-
2° Obviously s.(z) is a positive harmonic function in C,(D?) with

insa(x, y)dx=2r. Therefore, for a,>0, the integrals of s,(z) on each fixed

compact set in D% are bounded with respect to a=a,. Hence we can choose
a sequence {a,} with lima,=co such that s,=s,,(n=1, 2, ---) and their deri-
vatives converge uniformly on each compact set in D.

3° Set up=u,, and {,=t,,=—(us),. Since

un(x, D="sa(6, Ddg=20n+[" 56 Dt
for 2k <x<2(k+1)z and un(z):SH‘(z, d&u,(&, 1), {u,} converges uniformly

on 0, and therefore on D¢,
4° Let f, be a harmonic conjugate of s, such that £,(0, 1)=0. Then

Fa)=—| (5,06, Ddg+{ (stx, iy
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and {f,} converges uniformly in each compact set in D. On the other hand,
by 3°{t.} converges in D' and t,={,+k,. Therefore {£,} converges, and thus
{t»} converges uniformly in each compact set in D. Noting u,(1, 0)=0, we
finally see {u,} converges uniformly on each compact set in D.

5° Set u=limu,. For any >0, {u,} converges uniformly on 9,. There:

n->00

fore, it follows from u,(2)=(H%u,(-, b))Xz) that u(z)=(H’u(-, b))(z) and we see
that » belongs to H, Since u, satisfies (9.1) in D%», 4 also satisfies (9.1) in
D. Thus, u is the function just wanted. The proof of the theorem is complete.

[9.6] DEFINITION. Let P in ¢ be given and assume that P satisfies the
conditions [V] and [M].

(1) up is the harmonic function in Hy(P) determined by (9.1).

(2) sp=(up): and tp=—(up)y.

(3) op is the measure in M,(R) such that

9.4) SP(Z):S:”ﬁe(Z)PP(df)-

[9.7] Remark.
(1) Since sp is positive harmonic in D and lim sp=1, existence and uniqueness

y-»eo
of op is obvious. Therefore g, is uniquely determined for a given P in @, and
Lop]=(1/2m)a p([0, 27))=1.
(2) tp is the harmonic conjugate of sp that satisfies
1
2

(3) Since lim(up).(2)=1 and lim(up),(z)=—=Fkp, it is easy to see that
Yoo Y -0

S:“tp(x, ydx=Fkp.

(9.5) w=up—x+kpy

is a bounded harmonic function in C,(D).

[9.8] Assume P in @ satisfies [V] and [M]. Let f be in CYR) and
| f(x)IK(1+|x|*) with a constant K. Let a be a positive number and set
¢(z2)=Hgf(z). Then we have:

1) If f'(x)£Csp(x, a) for some real C, then ¢.(z)<Csp(z) for z in D,

(2) If | f'(x)|£Csp(x, a) for some positive C, then

|¢o(2)| £Csp(2) for z in D°.

Proof. If f'(x)<Csp(x, a), then Cup(x, a)—f(x) is nondecreasing. There-
fore, by condition [M], Cupg(x, y)—¢(x, v) is non-decreasing in x, which proves
(1. If | f'(x)| <Csp(x, a), then + f'(x)<Csp(x, a) and (2) is obvious from (1).

[9.9] Assume P in @ satisfies [V] and [M7]. For any f in C, » and a>
0, set C;=1/2Nn(f(x+2Nr)—f(x)) and ¢(z)=HEf(z). Then it holds that, for
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any b<a,

D i ulx, bdx=C
W g, $ax, Bdx=Cy,

2N=n
@ [ onep,— o822z, HYdx=0,

and
(3) there exists K=K(¢, b)>0 such that |¢.(z)| <Ksp(z) for all z in D°.

Proof. By (p.5) in [1.17, (1) is obvious. Set a(z)=§:¢(z+2kn), then § is
in C(D%). Therefore, by [8.15] and (8.23) in [8.17],

2Nz 27 ~
[ ooy —top)x, OY1x = Ony— Lo, D)L

:_Sj"(mp(B°5)+lngx)(x, b)d x=0.

Hence (2) is proved. Since sp is positive harmonic in D, Set
|$(x, b)]

TELO,2N 1) sP(x, b)

Then |@.(x, b)| <Ksp(x, b). Since ¢(z)=(H’¢(-, b))z) for zeD® (3) is a con-
sequence of (2) in [9.8].

K= <o

§10. Construction of Up, Up(¢) and pp.

Throughout this section, we shall fix a process P in ¢ and assume [V]
and [M] for P. First, in order to apply (8.23) in [8.17] to this section, we
rewrite it in a slightly more general form.

[10.1] For any f in CZ% y(R) and a>0,
[ ometx, )B3f G +x, @) (x)dx=0.
Proof. Let f(x)=§:f(x+2nz). Then f is in CYR) and satisfies (8.23).
Noting that mp and /p are in C,(R), we can easily show [10.1].
[10.2] Notations. For f and g in CZ y(R) and a>0, set
10.) or.x O= g/ - F(at

=[{e@—swrrwa,
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(10.2) Bi.a(f, )=, melx, a)dx(Bs(x, d&)py.o(x, &)
and

(10.3 B.w(f, 9)=5(B3.xlf, O+ B5.n(g, ).

For f and g in CXR) and a>0, set

(10.4) B3/, 9=B3.(, )

and

(10.5) Bif, )=B3.(f, 8).

[10.3] Remark. It holds that
10.6)  3(os.ox O+paslx H=5 (O FENEO—80),
and especially

(10.7 p1.1(x, O=5(F@—F(N.

[10.4] LEMMA. For any f in C3% y(R), g in C% y(R) and a>0,

108) Bl @=—[ fxXmslx, )Bsg(x)Hip(x, )g'(x)dx.

Proof. Set F(x):S:f(t)g'(t)dt, then F is in C% y(R) and by [10.1] it
holds that

O:S:N"(mp(x, a)BLF(x)+1p(x, a)F'(x))dx

= (" metx, a)dx(Btx, dEXF@O—F)+(. telx, ) (x)g(x)dx
Add the right side to the right side of (10.8). Then the right side of (10.8)
eNz §
=" metx, dx(Bscx, ao){[ g dt—rxxe@© g0}

=Bs.~(f, 8).
For any g in CZ% y(R), set

(10.9) VulgXx)=( (me(t, ) Ba®)+1elt, @)'(x)dt
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Then, by [10.1], V.(g) is in Cin(R). If fisin C3 y(R) and gisin Ci y(R),
then we have, by [10.4] and by integration by part,

(10.10) s, 9= fV0)dx.

[10.5] For any g in CZ y(R), there exists a unique function V,(g) in
C;}, w(R) such that

(10.11) V() (x)=mp(x, @)BEg(x)+1p(x, )'(x)
and
(10.12) Bi.nlf, =( [0V au(@Xx)dx

for any f in CZ y(R).

Proof. 1t is sufficient to prove that there exists a unique constant c=c(a, g)
such that (10.12) holds with V(g)=V.(g)+¢ for all f in C2 n(R). Set
2N
0

2Nrmc=B% y(x, g)—S zV,,g(x)dx.

2Nz

For any f in CZ y(R) with 2N7rc,=g0 f'(x)dx, f—cyx belongs in C% y(R).
Therefore by (10.10)
Bg n(f, 8)=B3 x(f—csx, 8)+csBg n(x, 8)

=[" eV u@)ix+esBsatx, 0

=[OV @+ e (Boatx, )= T ulex0)dx)

=[" e uer+odz,

which shows that V,(g) satisfies (10.12). On the other hand, ¢ is uniquely
determined by the equality
2Nz A,
Bg n(x, g)=So Va(g)x)dx+2Nrc.

Let N,, N, and M be positive integers with N,=N,M and let g be a func-
tion in C, n,(R). Then, g is also in Cq x,(R). Set Vi(g)yj=l, 2) be functions
satisfying (10.11) and (10.12) for N=N,(j=1, 2). Then by (10.11) Vi(g)'=
Vig), or Vi(g)=Vai(g)+c. Since

2
0

Nz
B3.v(x, ©=MB3.x(x, 9=M|" "Vilg(r)dx



196 MINORU MOTOO

and

2Ngn 2Non
Biw(x, 9= Vi@xdr={ "(VigXx)+odx

Nn
=M{""Vigrndx+aNae,
we have ¢=0, that is, Vi(g)=V2(g). Therefore we have the following remark:

[10.6] Remark. In the above sense, V,(g) is independent of the positive
integer N used in its definition.

[10.7] Let g and h be in CZ% y(R) and a be positive.

(1) The mapping g—V,.(g) from CZ y(R) into Cj, »(R) is linear.
(2) V.(g) is nonnegative if g is nondecreasing.

(3) If h is nondecreasing and |g’| <ch’, then

V@)l =cVa(h).

Proof. Since V,(g) is uniquely determined by (10.11) and (10.12), (1) is
obvious. Let g be nondecreasing. For any nonnegative f in C »(R), set

F(x)-——S:f(t)a’t. Then F is in C2 y(R) and nondecreasing, and pg,,(x, §)=0.

Therefore
[ 7oV se))d x=B3(F, £)20,

which proves V,(g)=0 and (2) is verified, (3) is an immediate consequence of (2).

Let ¢ be in the class HEy=H§y(P) defined in [9.3]. In the following we
shall fix a solution [(g) of the equation

10.13) { 0(@)e=—mpp,+1ppo,
U(p),=mppo+ipp, in D°.
For any b<a
U(@)a(x, b)=(—mpp,+1pp)x, b)

=mpBg(-, b)(x)+1p(x, b)P(x, b
=Vug(-, b))'(x)

bya[8.15]. Therefore we can see:

[10.8] For any 0<b<a and ¢ in Hfy
Vi@(-, D)x)=U(g)x, b)+ci($),
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where V,(-) is defined in [10.5] and c¢,(¢) is a constant depending on b and ¢.
In the following, we shall show that c,(¢) is independent of b.

[10.9] Let f be in C,n(R). Then, for 0<b<a, the function Hy f2—(Hy f)*
is in C,, n(R).

Proof. Since |f(x)|<K+L|x| with constants & and L, Hff* is well de-
fined by [V]. Noting f—H#¢f is in C,, y(R), we can easily show

Ha“fz(X)—(Ha“f(x))2=SHb“(x, dé&)f(&)—Hy' f(x)*
is in Cp, n(R).
[10.10] For 0<c<b<a and ¢ in Hiy,
B2 n(9(-, b), ¢(-, 0))—BE n((-, ©), ¢(+, ©))

=["ax(mag+opay.

0

Proof. By definition, ¢=H?f with some f in C,y(R). Set ¢g=H®f>
Then by [10.9] ¢—¢?* is in Cp, y(R) and by [10.1]

[ matx, BUG, ))x

0

=" matx, B)BYGC, )Y

+ {1, X atx, D—(@Patx, B
By [8.15]
By(g(-, b))(x)=—¢y(x, b) and By@(-, b))(x)=—¢,(x, b).
Therefore, noting (mp),=—p):, We have

2B3 n(g(, b), ¢(-, b))
=[""matx, b)ax(Bacx, dexge, g, )

=S:Nnmp(xy D) BHP*(+, b))(x)—2¢(x, b)BRP(-, b))Xx))dx
=S:N"’"P(x’ YBYH(-, b))(x)—26(x, b)BH@(-, b))(x))dx

2Nz
+{.1atx, bXG—g0atx, D)
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=" matx, b)XG,—268,)x, Y
2Nz
[z, Xp—¢")x, D)dx

:_Szm{’”"<¢‘¢z>v—<mr>y<¢—¢”>}(x, bYdx.

The preceeding equalities also hold for b=c. Therefore Green’s theorem proves
that

2B (g, b), §C:, D)—2B4,x(9(:, ©), 4, 0)
=— [ ax'mptg—gray=2f " ax'meipr+opay.
[10.11] the constant c,(¢) in [10.8] is independent of b.
Proof. For any 0<c<b<a, by (10.12) and [10.8] we have
(10.14)  BRa(gC-, ), 9, D)—Bi.a(g-, ), (-, ©)

Nz

:S:Nn¢z(x, bV é(-, b))dx—gz b(x, )WV (-, ©)dx

2Nz 2Nz ~
=["0.00)x, Bax—{" 6,005, Odx

+2N7'L'C¢(Ca(¢)“cc(¢)) .

Here 2Nmcy=¢(x+2Nx, y)—¢(x, y), which is independent of (x, y), for ¢ is
in H?y. Setting f=¢., g=—¢, and u=mp in (4.7) of [4.5], we have

2Nn ~ 2Nz ~
(10.15) So 6.0(@)x, b)dx—go 6.0(8)(x, ¢)dx

2n b
=("ax(muos+o9ay.
By [10.10], (10.14) and (10.15), it holds that

cg(en(@)—cd$)=0.

Therefore cy(@)=ce(@) if c4#0. If c¢=Q, choose u=up defined in [9.6]. Then
Cy=Cg+y=2m. Noting l7(¢+u)—(7(¢)—U(u) is constant in D* and g—V,(g) is
linear, we can see by [10.7]

el @+u)—co(@)—co(w)=0(¢+u)—U(¢)—U(w))x, b)
=(($+u)—0($)—Tw))x, ¢)
=cd+u)—cdd)—cou).
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Since cy(p+u)=c(p+u) and cy(u)=cu), it is shown that c,(¢)=c(¢).

[10.12] THEOREM. For any ¢ in HZn(0<a=<oo), there exists a unique
U(g)z)(ze D) such that U(¢) satisfies (10.13) and

(10.16) Bpu(f, 90, 0)=( (U)X, b)dx
for any f in C%y(R) and 0<b<a.

Proof. Set U(@)x, b)=Vy(¢(-, b)). Then, by [10.8], and [10.11], U(¢)
satisfies (10.13), for l7'(¢) satisfies (10.13). This proves existence of U(¢), since
Vu(é(-, b)) satisfies (10.16). On the other hand, if U(@) satisfies (10.13) and
(10.16), set Vb(¢)(x)=U(¢)(x, b). Then V,,(¢) satisfies (10.11) and (10.12) and
Vb(¢)=V,,(¢(~, b)). Therefore, uniqueness of U(¢) follows.

In the proof of theorem [10.12], we have seen that U(@)(x, b)=V (-, b)).
Therefore, by [10.5] and [10.7], it is easy to show:

[10.13] PROPOSITION. Let ¢ and ¢ be in HE y(0<a=<oo).

(1) The mapping ¢—U(@) from HEy into the set of periodic harmonic func-
tions with period 2Nmx in D® is linear.

(2) If ¢-=0, then U($)=0. Especially U(c)=0 for a constant function c.

3) If |§:1=cds for a nonnegative constant ¢, then (U(p)| <cU(P).

[10.14] DEFINITION.

(1) For ¢ in HZx(P)Y0<a=<c0), Up(¢p)=U(¢) is the function which is uni-
quely determined by theorem [10.12].

(2) Especially we set Up=U(up), where up is the function given in [9.6].

(3) Set p,.(a):SZ"U,(x, @)selx, a)dx and pp=lim py(a), where sp is given
in [9.6].

[10.15] Remark.
(1) By [10.13] Up is a nonnegative periodic harmonic function with period

2r in D.
(2) Up(¢) is the solution of (10.13) determined by

(10.17) [ Ungrx, Ddx=Bputx, 90, b,

if ¢ is in HZy.
For 0<b<a

pr@)—pp0)=| dx| mes+13)d

by (4.7) of [4.5]. Therefore pp(a) is nonincreasing in a and nonnegative, and
pp always exists.
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Since Up is nonnegative solution of (10.13) for ¢,=sp and ¢,=—tp, we see
that {gp, op, kp} defined in [8.12], [8.18] and [9.6] satisfies the condition [P*]
and therefore {yp, op} satisfies the condition [P] by theorem [5.11]. By the
construction in §8, §9 and §10, we can easily show:

[10.16] THEOREM. Let P in @ satisfying [V] and [M] be given. Then
Bp={pp, 0p, kp, pp} isin the class B. Moreover sp=s(Bp), tp=1t(Bp), mp=m(Bp),
lp=I(Bp), #P-_—,U(BP) and Up=U(Bp)®.

For later use we note:

[10.17] For ¢ in H¢y and 0<b<a, there exists a constant K=K(g, b)
such that
(10.18) |Up(@)| <KUp in D"

Proof. By (3) in [9.9] there exists a constant K=K(¢, b) such that
|¢.(2)| <K(up),. (10.18) is an immediate consequence of (3) in proposition

[10.13].

[10.18]
(1) For f and g in C} x(R), B3(f, g) and 3%( f, ) are well defined.
(2) For f in Ci y(R), ¢ in HZy and b<a, (10.16) still holds.

Proof. By the explicit form of Bg(x, d&¢) in (8.7) of [8.5] and condition
[V], (1) is obvious. To prove (2), approximate f uniformly together with its
first derivative by a sequence in CZ y(R). (10.16) for f follows from (10.16)
for each element of the approximating sequence by virtue of the bounded con-

vergence theorem.

§11. Condition [L] and Bp-processes.

In this section, we shall also fix a process P in @, which satisfies [V] and
[M]. In §10, we have seen Bp={0p, tp, kp, pp} is in the class 8. Noting
[9.9], we can easily see:

[11.1] PROPOSITION.
(11.1) H¢ y(P)CDg n(Bp),

where D§ y is defined in [4.13].

In general P is not a Bp-process. In this section, however, we shall prove

(1) See definition [4.12].
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that P is a Bp-process under the condition [L] defined below. Later we shall
see, [L] is the condition which implies continuity of the process P on the
boundary d,={y=0}. In the following, for simplicity, we shall suppress the
suffix P for quantities in §8, §9 and §10. That is, we shall write c=0p,
p=pp, k=kp, p=pp, u=up, B*x, d&)=B(x, d§), U=Up etc.

[11.2] For any >0 and z in D?%, there exists a constant M, such that

1) 0SUR)EM,,
(2) Bx, u(-, b))<2zM, for 0<b<a.

Proof. (1) is a special case of [5.18]. Since B(x, u(-, b)):SZ”U(x, bdx
by (10.16), (2) is obvious.

[11.3] For f and g in C} »(R) and a>0, |B%(f, g)| and ZIEﬁ(f, g)| are
bounded by

(” s(+, a) ” H s(+, @) SZN [f’|deZN"]qux)”z“U(.’ al-

Proof. Set f(x):S:If'(t)ldt and g(x)-——g:]g'(t)]dt. Then f and g are in
C: ~n(R) and nondecreasing. Since

los. o, OISO —FNEE) 8],

we have
(11.2) —lB (f, @1, |By(f, I <B%(f, D<B%(f, NBY(&, 2)'".
Since, by (10.1)

7. 5%, E)=Si(f(5)—f(t))|f'(f)l dt

=Us@?aﬁuyf@r<ﬂnna,awt

=P uc (X, 5)”

’

s(-,
it follows from [10.18] that

B3, N=B3(, DB, ut-, )L

s(+, a)

I

UCETE

lioe, an{™ s,

é“ s(-, a)
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A similar inequality holds for B;‘,(g, Z). Therefore, [11.3] is proved.
[11.4] Condition [L] (Locality condition). For positive ¢, set
Be(u; =B3u; = msx, ) Bs(x, deXur@, a)—uslx, a)).

Then P satisfies the condition [L] if and only if

lirr01 B®(u; e)=0 for any positive e.
a-

For any 4 in C,, y(R), set

(11.3) B%[h]:%—gzmm(x, a)dng“(x, d&)h(x)(u(€, a)—u(x, a)).

[11.5] For any f and g in C,, »(R) and z=(x, y), set
F=( fst, 3t and G@={ ewstt, y)dt.
Then, under condition [L],

m{B{(F(-, a), G(-, &)= B[/ g]}=0.

Proof. By definition (10.1)
B?V<F('7 a)) G(') a))
2Nz 3 a
=" mix, arax[Becx, 4o g@sia, dal’ 18158, @)

Therefore

| B§(F (-, a), G(-, a)—B3[fgll

2Nz § @
=[x, ydx([Bex, do 1@ —g(n)Ista, axdal 1 /(B)Is(B, a)dp
+[ 1801 sta, axdal’1 (8= 10158, @)2B).
Set s(f)=l€§1ilpss|f($)——f(x)| and s(g)=|5§ggs|g(8)—g(x)| for any positive e. Then
|B§(F(-, a), G(-, a)—B%[fg]l

<4l fINgINB(u ; &)+l flle(g)+1gle(fNBE(u(-, a), u(-, a)).

Since B%(u(-, a), u(-, a)) is bounded for a<1 by [10.10], we get [11.15] by
uniform continuity of f and g and the condition [L].



TWO-DIMENSIONAL BROWNIAN MOTION 203

[11.6] Let a be positive and z=(x, y). Let ¢ be in H¢y and g be in
Cp w(R). Set

HE)=( g®g.t, it and G@)={ gwstt, ydt.

Then, under the condition [L],

(11.4) lim (BY(GC(-, ), (-, D)~ BYWH(, b), u(-, b))} =0
and
(1L.5) tim [ g0 (U@, D)s(x, H—U(x, Bigalx, D} dx=0.

For f in C4 n(R), set ¢=H*f. Then, by [11.1] ¢ is in D¢ 5. Therefore,
if we obtain [11.6], then, by definitions [4.16] and [4.19], we conclude that P
is a Bp-process.

[11.7] THEOREM. If P satisfies [V], [M] and [L], then P is a Bp-process.
Proof of [11.6]. By (10.16) in [10.12], equivalence of (11.4) and (11.5) is

obvious. We shall prove (11.4). First, for any fixed a,<a and ze D%, |¢.(2)|
< Ks(z) holds for some positive K and ¢, can be represented in form

R R I NOR VLS CEACROING

and d|g4|=Kdo.
1° Set

biue)=[r1E—0da,®,  di=| diutt, 1t

and Hl(z)=5:g(t)¢m(t, y)dt. Then it holds that

lim BY(G(-, b), (-, )—g(-, b))=0,
(11.6) l

13933,(1{1(-, b)—H(-, b), u(-, b))=0.

Proof of 1° First we note;

[ lstat ana [716.0 b1dxs2Nzis
For b<a,

[rre—nda@
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and

Fouaus

Further we have for b<a,
I$:12(-, )—¢(-, DI Kb

with some positive K, since ¢,,—¢, is a periodic harmonic function in D* and
has null boundary value on d,. Therefore by [11.3]

| BR(G(+, b), i(-, b)—(:, b))

| S open

2Nz 2Nz 1/2
X[ 16w, B dx] 1guatx, )—=@ulx, D) dx) " supa, 1UG)]
<2 g -2K-2Na |- 2NR Kb} *Ma,

where M,, is given in (1) [11.2]. Letting b tend to 0, we get the first part of
(11.6). Noting u.(x, b)=s(x, b),

2Nz
So u(t, bydi=2Nx,

“ H.(-, b)

H.(-, b)
s(-, b) H

|skist, |52

|=Kisl

and
|Hiz(-, b)—Ho(-, DIZNglP1a(+, b)—a(-, b
=K gllb,

we obtain the second part of (11.6) in the similar way.
2° For any ¢>0, there exists a function f in C,, y(R) such that

{ | BK(G(-, b), ¢u(+, D)—6u(-, B))| <e.

(11.7)
| By (Hy(+, b)—H.(+, b), u(-, b)) <e

for b<a,, where
b= 70 fOd0®),  u@= puutt, n)at
and

Hi2)= guutt, »at,

Proof of 2° Since d|o4| <Kdo, there exists a bounded periodic measurable
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function f(x) with period 2N such that dog= Fde. For any positive ¢;, choose
Nz ~

fin Cp x(R) such that S: | f(x)— F(x)|do(x)<e,. We can assume || and ||f]

are less than or equal to K. Then

|

2Nz 2Nz
[ 180atx, D)= atx, )1 x| dxlmre— 1 1O—FiO1dat®)

H: (-, b)

MH%K’ ” s(-, b)

s |k,

2Nz ~
SIVOEOIEEORS
and
2Nz 2Nz
[ Huutx, )= Hiax, D dx=181[] 1 6uatr, = guats, bl dx
<llglle;.
Therefore, by [11.3] we have
| BX(G(+, b), o+, b)—&:(-, D)| <2l gll-2K-2Nm- || gl - €)"*Ma,,
| BY(Hy(+, b)—Hi(-, b), u(-, b)| <22K- | g||-2Nx- | gll-€1)"* Mo, -
Since ¢, can be arbitrarily small, we have (11.7).
3* For f in 2°, set ¢3(z)=5: F(Os(t, y)dt and Hg(z)———-S: FOebs(t, y)dt.
Then
lbigolB’z’v(G(', b), @s(-, b)—¢s(-, b))=0,
(11.8)
lbi_l:Io]-B[I)V(H3(') b)—H2(') b)) u(') b)):O,
Proof of 3°. First, we note

H.(-, b)

“M”g””g{ and | S, B

s(+, )

|=1f21=Kiel.
Since
2N

[ 180ax, =guutr, B axs [ (26— 01 F0— @)1 do®)
2Nz
SRR TG G ORGIEE

and Sn"(&—x)lf(x)—f(&)ldx tens to zero uniformly in x as b6—0 for f in
C,.~v(R), we have
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. 2Nz
tim [ 1 grat, 0)~gaelz, B dx=0.

Similarly, we have

tim {1 Hua(x, 5= Hau(z, 5)1dx<1imlgl|Igsa(x, )—ocls, D)l dx

=0.
Using [11.3], we get (11.8).
4° Since f and g are in C,, y(R), we have

lbigllB?v(G(-, b), ¢s(+, B))—B%[fgl1=0,
(11.9) .
lg_rj)l IBIbV(Hs('f b)) u('; b))_B?V[fg:H =0’
by [11.5]. Combining (11.6), (11.7), (11.8) and (11.9), we see
l_bi:noi | BY(G(-, b), ¢(-, b))—B}(H(-, b), u(-, b))|Ze.
Since e can be taken arbitrarily small, (11.4) is now proved.

In the remainder of this section, we shall give sufficient conditions for the
condition [L].

[11.87 Condition [L*]. For positive &, set
2n
B(e)=Bye)=| mx, adx B, dgxe—rr.
16-z12¢
Then P satisfies the condition [L*] if and only if
lérrz Bi(e)=0 for every e.

[11.97 LEMMA. Let p be in M, y(R) and positive on any open set. Then,
for any >0, inf p((x—e¢, x+¢))>0.

Proof. If there is a sequence {x,} such that ;lirn p((xn—e, x,+6)=0, we

may assume that x,’s are in [0, 2Nz] and lim x,=x. Then
N=>co

0=lim p((xn—¢, xate))2 p((x - %, x+ -Z—)) ,
which contradicts the assumption.

[11.10]
(1) The condition [ L*] implies the condition [L].
(2) If ¢p is positive on any open set, then [L] implies [L*].
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Proof. Since u(x, a) is nondecreasing and in C, y(R), we have

e, —ux, o =2n+1e—x15(2E +1)1g-x)

207

if |é—x|=e. Hence (1) is obvious. If ¢ is positive on any open set, then

do(e)=inf a((x —¢&/2, x+¢/2)) is positive by [11.9]. For é&—x=¢ we have

€, a)—ulx, a>:§is<t, a)dt=§id:§na<c—t>a<dc>

u+
u

=[aure@("” a@ryzace.
Therefore, if |é—x|=¢, then
[§—x|=2n+|u(é, a)—u(x, a)l
< (55 +1) e, 9=utz, o).
Now (2) is obvious by definitions of B%(u ; ¢) and B%(e).
[11.11] ProPOSITION. If

(11.10) lim sup ig He(x, de)E—x)t=0
a0 = A Jié-x1>e
for any positive ¢, then the conditions [L*] and [L] hold.
Proof. By (8.7) in [8.5]

Bre(x, d§)=p*(E—x)dé+[g*(n—r)He(, d&)d.
By explicit forms of functions »* and ¢ in §0, 8° we have
7

p<a>=Spa<x)x2dx=Ka,
L

a@=[emdz="2,

(11.11)
(]2(0)=Sq“(x)x2dx=[,2a ,

L
q¥(x)dx= —a: e TGIO
3

(e, a)=g

1z1>

where K, L,, L, and L, are absolute positive constants. Set

he, oy=sup | Hitx, de)e—x).

1§-z1
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Then
(11.12)
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.1 .
lgr'l);h(e, a)=0

by the assumption and we have

(rzecx, dexe—rr=ertace, o).

Noting H*(x, R)=1, we have

[ B, dexe—wr
16-21>2¢
<[pee—xxe—nrae
2| e 0HEG, dIE -1 +n— o)

< p(@)+20x(a)+2] ¢°(n—0)Hz"(n, dOE—7)

(1E-n1>e)0r (| p-2|>€)

< p(a)+2q:.(a)+2q.(a)h(e, a)+qs(e, a)e®+h(e, a)).

By (11.11) and (11.12), the last member of the above inequalities goes to 0
uniformly in x as a—0. Therefore, the condition [L*] is satisfied.
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