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GAUGE FIELDS AND QUATERNION STRUCTURE
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Dedicated to Professor M. Obata on his 60th birthday

1. The aim of this article is to discuss geometry of the moduli space of
Yang-Mills connections over a 4-manifold with quaternion structure.

Let (M, h) be a compact, connected Riemannian 4-manifold with covariantly
constant almost complex structures {Iu I2, h) satisfying IJ2=— / 2 / i = / 8 . We
call such almost complex structures covariantly constant quaternion structure.
Note that only complex flat two-tori and Ricci flat K3 surfaces are such spaces.

Each almost complex structure It given on the base space M defines a 2-
form θt on M which is covariantly constant; θί(X, Y)=h(ItX, Y), 2=1, 2, 3.
The manifold M carries the canonical orientation compatible with the quaternion
structure. The base metric h together with this orientation gives the Hodge
operator *; A\M)->A\M), which is involutive. So the bundle Λ2—Λ\M) splits
into A2=A++A~(A+ and Λ~ are subbundles of self-dual 2-forms and of anti-
self-dual 2-forms, respectively). Then over the manifold M A+ becomes trivial.
We have indeed the decomposition;

A+=RΘ1®RΘ2®RΘ, (1.1)

Let P be a smooth principal bundle over the manifold M with a compact
simple Lie group G.

Fix a positive number />4 in order that analysis on gauge fields works
well and denote by Λ — JίP the set of all L\ connections on P. The set J. is
an affine space with model vector space Ω\QP)h the space of L\ 1-forms over
M taking values in the adjoint bundle QP=PXA<IQ(Q is the Lie algebra of G).
Then J,—A+Ωι(Qp)ι for some fixed smooth connection A The subset Jίιr in
J. consisting of irreducible connections is dense and open relative to the L\-
topology. A connection is said to be irreducible if the centralizer of its holonomy
group in G reduces to the center ZG of G.

The group Q—QP of L?+1 gauge transformations of P acts on Jί smoothly
as g(A)=g~1dg+g~1Ά'g. Remark that Q/ZG acts freely on Jίtr so that by
the slice argument Jlιr has a fibration over the orbit space $ιr = Jl
with fibre G/ZQ.
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A connection A is ASD(anti-self-dual) if and only if its curvature F=F(A)
=dA-\-l/2[AΛA2 sati-sfies the anti-self-duality equations

F(A)+*F(A)=Q. (1.2)

Since F(g(A))=g~ι-F(A)*g, gtΞG/ZG, the solution space J.' of (1.2) is
invariant under the gauge action. Hence we have the quotient M=JI~/{Q/ZG)
which parametrizes the set of gauge equivalence classes of solutions. The
quotient space is called the moduli space of ASD connections on P.

Relative to geometrical structure of the moduli space over a general compact,
oriented Riemannian 4-manifold (M, h) we have the following finite dimensional
space theorem.

THEOREM ([1]). The moduli space 31 of ASD connections on a principal
bundle P—P(M, G) is a smooth Hausdorff manifold possibly with singularities
provided M is not empty. The dimension of the generic part dimΛc^ is pι(Qp^C)
[Λf]—dimΛG(l —bx+b+), where bγ is the first Beth number of M and b+ —
dimRH+(M), H+(M)—{self-dual harmonic 2-forms}.

Remark that b+ in the dimension formula is a topological invariant of M
since b+—l/2(b2Λ τ)y where b2 is the second Betti number and r is the Hirzebruch
index of M.

The Pontrjagin number />i = ίi(0p®C)[M] is calculated for each simple Lie
group as follows pί=inkf G=SU(n); 4(n-2)6, G=Spin(n); i(n + l)k, G=Sp(n);
16k, G=G2; 36k, G=F2; 48&, G=E6; Ί2ky G=EΊ; 120*, G=E8, where k is an
integer called the index of the bundle P ( [ l ] , §8).

On the moduli space 3i of ASD connections a Riemannian metric is defined
by a gauge invariant L2 inner product. To investigate geometrical properties
of this Riemannian metric is an important matter. It seems indeed one of
interesting problems to examine geometry of the moduli space from the view-
point of hoionomy group. The examination is available in the special case
where the base space (M, h) has as its holonomy group a unitary or symplectic
group, that is, (M, h) is Kahler or endowed with a covariantly constant qua-
ternion structure. In fact, the holonomy group of the Riemannian metric on
the moduli space is unitary, when (M, Λ) is a complex Kahler surface. A
similar statement holds for the symplectic case. Namely, applying the mo-
mentum map method developed in §3 we deduce Theorem 2.1 which states that
the moduli space holonomy is symplectic when the base space holonomy is Sp(l).

This holonomy group argument is also valid for the moduli space of Einstein-
Hermitian connections on a fixed complex vector bundle and further for the
moduli space JMoo of based anti-instantons over the 4-sphere S4 with the standard
metric.

Of course, to get the Riemannian curvature tensor of the Riemannian metric
on the moduli space is a subject of great interest. The Riemannian curvature
tensor is actually expressed in terms of the Green operators of the Laplace
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operators associated to an ASD connection (formula (4.1) in §4). If the base
space M carries a covariantly constant quaternion structure (we say such a
space hyperkahler 4-manifold), then an identity relating on the curvature holds
(Theorem 4.1) and as a consequence of this identity it is shown that the Rie-
mannian metric on the moduli space is Ricci flat. This identity asserts moreover
that the quaternionic bisectional curvature vanishes. The notion of quaternionic
bisectional curvature appears in §4 and is regarded as a quaternionic version
of the holomorphic bisectional curvature of a Kahler manifold.

The Poincare bundle and the index bundles present in a geometrical way
finite dimensional vector bundles over the moduli space of ASD connections.
A principal bundle P with structure group G over the product space M X J l r ,
or MXMgen, is defined by the ^-quotient of the product PχJLtr, or PXJ.~gen,
where Λ~gtn— {generic ASD connections o n ? | . We call this bundle Poincare
bundle. The restriction of P to {x}X3ίgen can be considered as the framed
moduli space <3ίx at x e M .

As the tangent bundle of the moduli space JMgen is one of typical index
bundles, an index bundle is defined in terms of elliptic operators parametrized
by connections on P. For a given elliptic operator 3)\ Γι-+Γ2 associated to a
connection 7 on certain vector bundle V, coupling this connection 7 to connec-
tions on P we get infinitely many gauge equivariant elliptic operators £DAt A^Jl
so that the formal differences ( K e r ^ ) — ( C o k e r ^ ) well define a (virtual) vector
bundle over the orbit space &%r, or 3Lgen. These bundles are associated to the
natural fibration Jlιr-*$ιr with the fibre Q/zG>

 0 Γ ι t s restriction over JMgen,
which is equipped with a naturally defined connection ω. So, as is explained
in §5, if the base space is endowed with a covariantly constant quaternion
structure, these bundles admit in a canonical sense a holomorphic structure
together with an Einstein-Hermitian structure of zero trace^ Ricci curvature (g
is the Riemannian metric on the moduli space).

Finally we can make additional arguments on the compactness of the moduli
space of SO(3)-ASD connections over a hyperkahler 4-manifold M. Compared
to the SU(2)-ASD connection case, the moduli space of SO(3)-ASD connections
has a different aspect. Actually a phenomenon that the moduli space is com-
pact occurs, when the first Pontrjagin number of the SO(3)-bundle P is small
(Theorem 6.2).

2. The Riemannian metric on the moduli space.

Since the Hodge operator depends on the base metric, the moduli space
must reflect primarily geometrical properties of the base space (M, A).

We can actually define a natural Riemannian metric on the moduli space as
follows. Since JL is afϊine, the tangent space TAJlιr is isomorphic to Ω\QP)I.
On this tangent space an inner product is well defined by
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<β, r>=( (-tr<8)A)(/8,7')</v=f (-trXj9yί*r) (2.1)

β, rtΞΩ\tp)t for G=S£7(n).

For general G we must replace — tr by some adjoint invariant inner product.
We see easily that this inner product is gauge invariant. Hence the inner
product descends to $ιr = Λιr/(β/ZG), the orbit space of irreducible connections
on P and its restriction on the generic part JMgen of <3ί lying smoothly in $ιr

provides a Riemannian metric there.
When the base space is Kahler, we have the following Kahler structure

theorem.

THEOREM ([15], [17]). Let (M, h) be a compact connected Kahler surface and
G a compact simple Lie group. Let <Mgen be the generic part of the moduli
space JM of ASD connections on P=P(M, G). Then it admits naturally an in-
tegrable almost complex structure with respect to which thus defined Riemannian
metric becomes Kahler. Its complex dimension is dime <3ttgβn—l/2pι{§p®C)\_M~] —
άimRG(l—q(M)+pg(M)) provided that 3igen is not empty, where q{M) is the
irregularity of M and pg(M) is the geometric genus, dimc H°(M O(KM)) for the
line bundle KM of holomorphic 2-forms.

Remarks. ( i ) We call an ASD connection A generic if it is irreducible
and its second cohomology H\ associated to the Atiyah-Hitchin-Singer complex
0^β°(gP)->β1(gp)->β+(gp)-^0 vanishes.

(ii) Another definition of the Riemannian metric is given by S. Kobayashi
([20]) and investigations of the Riemannian metric over special base spaces (for
example the 4-sphere) are proceeded ([6], [12]). A Riemannian metric of another
type is also discussed in [25].

(iii) If a Kahler surface (M, h) has positive scalar curvature or the canonical
line bundle KM is holomorphically trivial, then 3ίgen coincides with 3iΓ\Bxr,
the moduli space of irreducible ASD connections so that the singularities of M
arise exactly from reducible ASD connections ([14], Remark 2.1).

(iv) The anti-self-duality of connections is equivalent to the stability of
holomorphic vector bundles over an algebraic surface. So <MΓ\<Bχr is in one-
to-one correspondence with the moduli <3ist of stable vector bundles with cor-
responding rank and Chern classes.

This theorem says that if the base holonomy is unitary, then the moduli
space holonomy is also unitary. Thus, we can pose the problem:

Suppose that (M, h) has holonomy in group SU(2)^Sp(l). Is the holonomy
of the Riemannian metric on the moduli space M of ASD connections symplectic ?

This problem can be rewritten as

Suppose that the base space is hyperkahler. Is it true that the moduli
space is also hyperkahler ?
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DEFINITION. A Riemannian manifold (N, g) is hyperkahler if there exists
o n i V a quaternion structure which is covariantly constant with respect to the
Levi-Civita connection.

We can easily observe from this definition that a hyperkahler manifold
has a symplectic group as its holonomy group and hence is Ricci flat Kahler
and further has a holomorphic symplectic structure so that KN is trivial (see
for example [22], IX, Theorem 4.6 and [3]).

Over a compact hyperkahler 4-manifold the dimension of the moduli space
of ASD connections is ίi(g j P®C)[M]— 4ε(M)XdimΛG where ε(torus)=0 and
ε(K3 surface)=l. So, the dimension is divisible by four. On the other hand
we have another circumstantial evidence to this problem

THEOREM ([26]). Let M be a complex 2-torus or a K2> surface. If M is
algebraic, then the moduli space of stable sheaves has a holomorphic symplectic
structure.

We are able to exhibit actually the following affirmative answer.

THEOREM 2.1 ([15]). Let P—P(M, G) be a principal bundle over a compact
hyperkahler ^-manifold M with a compact simple Lie group G. Then the generic
part Mgen of the moduli space 3ί of ΛSD connections on P carries a hyperkahler
structure.

Remarks. ( i ) This theorem holds for an arbitrary compact simple group,
for example, a special orthogonal group SO(n).

(ii) Since KM is holomorphically trivial, an ASD connection is generic if
and only if it is irreducible. Thus the singular part of the moduli space 3ί
comes from reducible connections.

(iii) Over a compact Kahler manifold (N, g) an Einstein-Hermitian structure
is defined on a holomorphic vector bundle V-*N. A Hermitian fibre metric φ
on V is said to be Einstein-Hermitian if its curvature satisfies trgR

φ=λidE for
constant λ where tr* means the trace with respect to the Kahler metric g.
The fibre metric ψ defines in a certain way the principal bundle P with group
U(n), n=rank(V). In terminology of gauge fields we can formulate an Einstein-
Hermitian connection on P being equivalent to the Einstein-Hermitian structure
on the vector bundle V. For more details, refer to [15]. It is shown in [15]
that the moduli space of irreducible Einstein-Hermitian connections over a
compact hyperkahler 4-manifold inherits a hyperkahler structure in a similar
way to the anti-self-dual case.

(iv) The framed moduli space M of anti-instantons over the standard 4-
sphere S4 is investigated in [7] with respect to the Penrose twistor approach.
On the other hand there is a one-to-one correspondence between 3. and the
moduli space of based anti-instantons over S4 at the north pole oo. Since the
ASD equations (1.2) are conformally invariant and S4—RiU{oo} is the con-
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formal compactification of the Euclidean 4-space, we obtain the following fact:
the moduli space JMo* of based anti-instantons over S4 carries a quaternion
structure which is induced naturally from 724 and yields a hyperkahler structure
on <̂ oo (Theorem ([19])). The space JMo* (or equivalently 3i) has a bundle
structure over M with group G. We observe that this fibration is just the
restriction of the so-called Poincare bundle P-^S4X$ιr to {oo}χ^ ί e n (see §5
for the definition of the Poincare bundle).

(v) Besides the Euclidean 4-space there are nontrivial examples of complete
open hyperkahler 4-manifolds, Eguchi-Hanson metric, Taub-Nut metric, Multi-
center Taub-Nut metrics and spaces which are recently discovered by Kronheimer
by using the momentum map ([23]). We can argue also over such spaces the
moduli space of ASD connections modulo based gauge actions. These moduli
spaces carry similarly a hyperkahler structure ([19]).

3. The momentum map.

There are two ways for the proof of Theorem 2.1 which is our main
theorem. One is the momentum map method due to primarily Marsden-Weinstein
([24]). Another one is the Hodge decomposition method with the Kuranishi
map. In [15] we completed a proof of the theorem by using the latter way.
While in the latter case due to the calculation, which is not so easy, we can
get explicitly the Riemannian curvature tensor by the aid of the Green operators
associated to the Laplacians of the Atiyah-Hitchin-Singer complex. Actually,
if we denote by It an almost complex structure on Ω\qP)ι induced from the
corresponding almost complex structure on the base space M of the same symbol,
* = 1 , 2, 3, then each tangent space of the moduli space 3i, being identified with
the first cohomology group H\, is invariant under the operation of any Iτ in
such a way that these It's define a quaternion structure on 3ί. That this
quaternion structure is parallel with respect to the Levi-Civita connection is
derived from an argument on the Hodge theory and the Kuranishi map.

We will give here an alternative proof of the theorem using the momentum
map.

Each almost complex structure It of M induces naturally an endomorphism
on the bundle Λι of 1-forms and hence an endomorphism on the tensor product
Λι®§P for which we use the same symbol Iτ. So, the space JLtr of irreducible
connections carries almost complex structures {Ilf /2, /3}, since TAJtτr=Ω1(QP)ι.

Define skew symmetric bilinear forms ωiy 2 = 1, 2, 3 on Ωι($P)ι by

ω,(α, β)=<Ita, /3>, a, β^.Ω\q>P)ι (3.1)

Note that every gauge transformation commutes with It's and hence is sym-
plectic with respect to each ωt.

Let A be an irreducible connection on the principal bundle P. The self-
dual curvature F+(Λ) belongs to Ω+(QP)=ΦU(Ω%QP)($Θ1) (we abbreviate /).
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This decomposition of Ω+(qP) corresponds to the decomposition (1.1). Denote by
Fι=Fi(A)(ΞΩ%QP) the 0rcomponent of F+(A), F+(A)=Σ>UFi®θι here F*=
\θι\~2h(F+(A), θt) and h; (Λ2(g)QP)xΛ2->QP is the bilinear map given by con-
traction with the base metric h.

We would like to define a momentum map JM=(J«I, μ2, μ*)\ cjΛιr->φ3(fl0(gP))*

by
μx\ Λxr —>(fl°(βp))*, the dual space of Ω\QP),

(3.2)

), i=l, 2, 3, where < , > in the left hand side denotes the dual pairing.
Since (μi(g(A))t φy=iμt{A)t g φ g"1} for any g^Q, the moduli space MC\&xr

of irreducible ASD connections on P i s then described as 3iΓ\^xr—μ~\^)l{Ql zG),
the gauge quotient of the zero locus of the map μ.

THEOREM 3.1. (a) The map μ is actually a momentum map, namely it
satisfies

<d{μι)A{β),φy^ωi{β,lAφ), (3.3)

\qP), βKQp)
(b) Moreover ( i) μ is Q/ZG-equi variant,

, (3.4)

and (ii) the zero set μ~\0) is a submanifold of Jtιr and at each A^μ~\0) the
tangent space to μ~\Q) coincides with Ker(d(μ)A) and (iii) the group of gauge
transformations Q/zG acts freely on μ~\0) and at each A in μ~\0) there exists a
slice SA(Zμ''1(0) for this action.

(c) There exist symplectic forms {ώί} ώ2, α>3} on the quotient of the zero locus
μ~\0)/(Q/ZG) satisfying π*ώi=j*a)i, 2 = 1, 2, 3, where j ; μ~\Q)^Jltr is the canonical
embedding and π μ~\0)-+μ-\0)/(ΰ/ZG) is the natural projection.

It is derived from this theorem that 3igen—3iΓ\^%τ is a hyperkahler
manifold. In fact if we let 7 be the Levi-Civita connection of the canonical
Riemannian metric on <3tgen, then each ώι is covariantly constant (Vώi=0),
since we see that <?>*(•, )=<Λ , •> holds for the almost complex structure ϊt

on 3iΓ\$ιr induced from It and we have that each It is integrable ([17], §4).

Now we have to show Theorem 3.1. We will first prove (3.3). For any

β^TAJlιr <(dμt)Λ(β), φ> iseq ual by the definition to I (-tr®h)(dAβ, φ®θi)dv.

The integrand is further calculated as

{-tr®h){dAβ, φ®θt)dv={-tr){dAβΛ*{φ®θt))

Hence
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<(dμtUβ), φ>=-\ (-tr®AXj8, *φΛφΛθt))dυ.

Using the following formula, which is available by a straightforward calcula-
tion, we obtain (3.3)

FORMULA. *(aΛθt)=—Uay a^Λι®§P, (3.5)

The gauge equivariance of μ is seen from the formula

<μt(£(A)), φ}=<μί(Λ), g-φ-g-1}.

To prove (ii) and (iii) we can make use of the slice lemma argument ([17],
Proposition 2.3) and also the fact that the second cohomology group H\ vanishes
for each irreducible ASD connection ^4(see Remark (ii) in § 2).

The statement (c) is a direct consequence of [21], Chapter VII, §5.

4. Quaternionic bisectional curvature.

The Riemannian curvature tensor of the canonical Riemannian metric on
the moduli space is calculated in [17], §5.

For tangent vectors X, Y^TίA1<3lgen the value of the tensor (R(X, Y)Y, X}
is given by

<R(X, Y)Y, *>=3<{Z, Y], GA{X, Y}>-<ίXΛYy, GA[XΛYy>

(4.1)

Here < , •> denotes the inner product given at (2.1) and GA are the Green
operators of the Laplacians Δ^. The bilinear map {•, •} is defined by {X, Y)
=Jjh%J[Xt, Yjl and \_XΛYy denotes the self-dual part of adjoint bundle valued
2-form IXAY] for X=^Xidx% and Y=ΣiYidx\

The above formula applies to any compact Riemannian 4-manifold. But we
assume now that the base space (M, h) is hyperkahler. In the hyperkahler case
we derive from (4.1) the following

THEOREM 4.1 ([15]). Let (M, A) be a compact hyperkahler i-manifoίd and P
a principal bundle over M with a compact simple Lie group G. Let Mgen be the
moduli space of generic ASD connections on P. Then the curvature tensor of the
Riemannian metric on Mgen satisfies

<R{X, Y)Y, X>+ΣU<R(X, ItY)ItY, * > = 0 , (4.2)

X,

This is verified in a direct way by the aid of the following formulae which
hold for the hyperkahler case (see [15], §5)
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and

a, β

FORMULAE. &

G A(Φ®Θ

MITSUHIRO

fΣ?=i[/<α>ί

.)=I^|-2(G

ITOH

w= (4.3)

(4.4)

(4.5)

From this we can immediately show that the Ricci curvature identically
vanishes, since Ric(Z, Y)=Σj(R(X> £ ^ , F> for an orthonormal basis {ej} and
we are able to choose

{Xt, IXX%9 hXx, hXt}(i=l, - , 1 / 4 d i m Λ M , β n ) as {^}.

The formula (4.2) asserts moreover that the left hand side represents a
"quaternionic" bisectional curvature of one-dimensional //-linear subspaces V χ=
span{X, hX, I2X, I,X\ and FF==span{F, IλY, ItY, ISY\, likewise the holomor-
phic bisectional curvature of a Kahler manifold ([11]). Actually we can define
the quaternionic bisectional curvature of a hyperkahler manifold in the follow-
ing way

DEFINITION. Let (N, g) be a hyperkahler manifold. For any given one-
dimensional //-linear subspaces V and V at x^N the quaternionic bisectional
curvature Q(V, Vf) is defined by

Q(V, V')=g(R(X, Y)Y, X)+ΣUig(R(Xf UY)UY, X) (4.6)

where X and Y are unit vectors in V and V, respectively.

It is a simple fact that (4.6) depends only on //-invariant subspaces V, V.
Theorem 4.1 says then that the quaternionic bisectional curvature of the

moduli space vanishes so that this bisectional curvature phenomenon must give
a further restriction to the moduli space. We can therefore pose the question:

Does every hyperkahler manifold satisfy this curvature identity ?

All hyperkahler 4-manifolds do certainly satisfy it, since they are Ricci flat.
With respect to this problem we have a result of M. Obata. He obtained in
[27], Theorem 3.1 the following fact which says that the Riemannian curvature
tensor of a hyperkahler manifold is completely determined in terms of almost
complex structures. Let (N, g) be a hyperkahler manifold with a quaternion
structure {/, /, K=IJ}. Let (zλ) be a complex coordinate system associated to
the first almost complex structure /. Then /, / and g take the forms

, /v-i3j o \ / o n
\ 0 -V=Tί$J J [jf 0

and g=[
\gu U
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The Levi-Civita connection of the metric g whose coefficients are

Γ*μλ = Σ>a(d/dzVgλa)g™ (46)

coincides with an affine connection V given by

(4.7)

so that the Riemannian curvature tensor of a hyperkahler manifold can be ex-
pressed in terms of the derivatives of the components of / with respect to
(zλ). This theorem might give a clue to solve the problem.

5. Poincare bundle and index bundles.

In [18] we investigate the naturally defined connections and their curvature
forms on the so-called Poincare bundle and also on the index bundles.

The Poincare bundle P is a principal bundle with group G over MXBιr

defined for a given bundle P—P(M, G) by taking the £/Z(J-quotient as P=
(Pχjltr)/(β/ZG)-^Mx$ιr = G\(PχJlιr)/(ύ/ZG), where we regard Q/ZG as the
group of automorphisms of P covering the identity of M so that it acts on
PXJL%r as (H, Ay*(g(u), £(i4))([18]).

The index bundle is defined over Bιr as follows (see for the precise defini-
tion [18]).

Let g); Ω\V)^(Ω°®Ω+)(V) be a first order elliptic operator associated with
a Hermitian vector bundle V over M with an Einstein-Hermitian connection 7.
Tensoring V with an associated vector bundle E to P and also coupling 7 to
7^, A(Ξjlιr, we have a family of elliptic operators \S)A\ Ω\V®E)->(Ω°(BΩ+)
(V(g)E)} over the space Jίιr.

We assume that Coker £)A=Q for each A. Then the dimension of Ker 3)A

is constant because of the Atiyah-Singer index theorem and thus we get the
family of linear subspaces of the same finite dimension in Ω\V(&E). Since
3)A is gauge equivariant, { K e r ^ } defines a vector bundle over $lr which we
call the index bundle.

These bundles are related to an infinite dimensional principal bundle JLtr->
Bxr — Λxrl{QlZG) with structure group Q/zG> On this bundle we are able to
define in a natural way a connection ω giving a distribution of horizontal spaces.

In virtue of this connection and its curvature form Ωω we can equip the
Poincare bundle P with a connection A and also any index bundle Ind 3) with
a connection 7 ([18]).

Relative to the product structure M X J l r the curvature F on P decomposes
into F=F*'°+F1'1+F° 2, where F*'°=F(A), the curvature of A on P at MX
[A], F°'2=evx(Ωω) at {x}x$ιr, evaluation at x of Ωω which takes values in
fl°(gjp), the Lie algebra of Q/ZG and F 1 ' 1 ^ , a)=-i(Y)a for (Y, α ) G T U ) [ i ] ) ( M x
&tr)(Y^TxM, a is a tangent vector to the slice at A) (see [2] and also [18], § 2).

On the other hand on the index bundle Ind S) the curvature Ω—Ω1 of 7 is
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written in the form of Gauss equation;

ξ, η)-(σxξ, σγη)

ξ, σxη) (5.1)

Here ( , •) is the L2-inner product on Ωι(V®E) and Ω is the curvature of the
ambient vector bundle JίtrXQ/ZGΩ

ι{V®E) induced from the principal bundle
curvature Ωω, and axξ denotes the second fundamental form.

We apply these curvature formulae to our hyperkahler 4-manifold case to
get the following

THEOREM 5.1. Let (M, h) be a compact hyperkahler i-manifold and P a
principal bundle over M with a compact simple Lie group G. Let 3tgen be the
moduli space of generic ASD connections on P. If we restrict P on <Mgen, then
the connection A on P yields on any associated complex vector bundle an Einstein-
Hermitian structure with zero traceg-Ricci curvature (g is the canonical Rieman-
nian metric on <Mgen).

Proof. The curvature Ωω of ω is represented as

Ωx,y=-2GA({X, Y}), (5.2)

X, F G T [ A ] ^ t r , where GA denotes the inverse operator of the Laplace operator
Vf7A on fl°(0p)([18], Proposition 2.1).

We observe that the curvature F on the Poincare bundle P-+MXMgen and
hence on its associated complex vector bundle is of type (1.1) so that it induces
a holomorphic structure ([1], Proposition 5.2). To prove that the trace^-Ricci
curvature is zero it suffices to show that the trace of F° 2 vanishes with respect
to the Kahler metric on 3άgen, since the (2,0)-part F2 ° at [Λ] is just the cur-
vature of A and A is ASD.

LEMMA 5.2. The following equality holds

{X, / 1Z} + {/2Z, IzX}=0, X<ΞΩ\QP). (5.3)

As {X, Y) is skew symmetric and \_XΛY~]+ is symmetric, it follows from
(4.4) that {X, IιY} = -{IιXf Y} and hence {•,•} is /<-invariant. Taking the
inner product of (4.3) and the covariantly constant 2-form θx and using (4.4),
we have (5.3).

We will return to the proof of Theorem 5.1. From (5.2) the traceg-Ricci
curvature is trgF° 2=-2GA(Σ>j{Zj, Zj}) for a unitary base {Zj} of T\&Mgtn.
Since the real tangent space TίA1<JMgen carries a quaternion structure {Ilf I2, h\,
we can put Zpl/^f^-V^I/ir,), Z ^ ^ l / ^ / ^ - V ^ I / i ^ r , ) , j= l , - ,
n=l/4cdimRT<3lgen in such a way that the tracê  vanishes from the lemma.

THEOREM 5.3. Let (Λf, h) and P be as in Theorem 5.1. Let S)\ Ω\V)->
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be the elliptic operator associated to an Einstein-Hermitian vector
bundle (V, 7) and WA's elliptic operators coupled to connections A on P. We
assume that Coker^)^=0 for any A. Then the connection 7 of the index bundle
Ind^)={Ker^i} restricted on the moduli space <3igen induces on the complexifica-
tion of Ind^) the holomorphic structure and also an Einstein-Hermitian structure
with zero traceg-Ricci curvature. Further the ordinary Ricci form of the connec-
tion 7, namely of the Einstein-Hermitian structure, is identically zero.

Proof. It is shown ([18], §5) that the curvature Ω of 7 is of type (1,1)
and hence gives the integrability of a holomorphic vector bundle structure.

We will compute the trace^-Ricci curvature. We have first for the second
fundamental form a x

(σxξ, σIlXη)+(σIiXξ, σIsXη)=0, (5.4)

ξ, η^Ker£)A, because the second fundamental form commutes with each /t(see
[18], (5.1) and (5.2) and notice the operation of each I% on gP-valued 1-form X)
and also the following holds (see (5.4) in [18]);

(σxliξ, σγlxη)=(σ1%xξ, σI{Yη) (5.5)

Then, observing that the curvature Ω of the ambient space is Ωω in a certain
sense and applying the Gauss equation (5.1), we see that the trace^ must vanish.

To show that the Ricci form Φ is zero we make use of the Gauss equation
again and have

for a unitary basis {φi^l/^iξi—V^Iiξt)} and a tangent vector Z—X—
y/^iIiX of type (1.0). Like tangent spaces of the moduli space 3igen, each
Ker^?A, fibre of inάW over [_A~\ enjoys the quaternion structure induced from
the /»'s. Further each It defined on Ω\V®E) commutes with the action of
infinitesimal gauge transformation GA({X, Y}). So, we get

(Ωx.γξ, Lφ+Φ^rhξ, /,9)=0. (5.6)

In a similar way to (5.3) and (5.6) we have by using the fact that σx commutes
with each It.

(σxξ, aYI£)+(axhS, σYhξ)=0. (5.7)

Therefore the Ricci form Φ is identically zero.

Remark. The moduli space <fMx of framed ASD connections at x on P—
P(M, G) has a bundle structure over <M and of structure group G. In this
case the bundle Mx-^Mgen has moreover a connection whose curvature is of
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type (1,1) and gives an Einstein-Hermitian structure with zero trace^-Ricci
curvature. In fact, the space JAX is exactly the Poincare bundle P restricted
over {x)XJί and the connection is A restricted over there so that Theorem
5.1 applies.

6. Remark on the moduli space of £O(3)-ASD connections.

We now suppose that a bundle P has the structure group S0(3) and in-
vestigate the moduli space of S0(3)-connections on P.

From the Atiyah-Singer index theorem the moduli space has the virtual
dimension —2/—3(1—Z?iH-6+) (/ is the first Pontrjagin number pι(P)[_M~\).

Unlike S£/(2)-bundles we have two topological invariants on S0(3)-bundle
P. The second Stiefel-Whitney class w2(P)^H\M; Z2) and the first Pontrjagin
class p1(P)^H\M; Z) characterize SO(3)-bundles. Two SO(3)-bundles P and
Pr are topologically equivalent when these invariants coincide for them. If
w2(P)=0, then P comes from an S£/(2)-bundle and pi(P)=—4c2(P).

We remark that the adjoint bundle $P is equivalent with the oriented 3-
plane bundle S=PXPR

3. The bundle S is reducible when it splits into L φ l
with an S0(2)-bundle L and a trivial real line bundle 1. In this case w2{P)—
d(L) mod 2 and p1(P)=cι(L)2(=(w2(P))2 mod 2).

A connection A on P defines a covariant derivative 7—7^ on S satisfying
d(φ, φ)=(lψ, φ)+(φ, 7Φ) and l^φ^φ^Λφ^^ for any oriented local orthonormal
frame {φu φ2) φz) of 5. A connection A is reducible when it admits a nonzero
covariantly constant section φ. So, 5 splits into S=Rφξ£)φ1.

If a bundle P admits an ASD connection, then the first Pontrjagin number

/ is nonpositive because of the Chern-Weil theorem l— — -τ—ΛtvFΛF.

While the moduli space of S£/(2)-ASD connections has ends, we observe in
our SO(3) case with a small / a phenomenon that the moduli space must be
compact. See [9] and [10] for the standard references on 5O(3)-bundles and
the moduli space of S0(3)-connections.

Since the base space is hyperkahler, the quaternion structure {Iίf I2, I3\
on M acts in a natural way on the tangent spaces of the moduli space of S0(3)-
connections.

The following theorem gives an obstruction against the existence of SO(3)-
ASD connections.

THEOREM 6.1. Let M be a complex 2-torus or a K3 surface and P be an
SO(3)-bundle over M with nonzero w2. If the first Pontrjagin number I is odd,
then there exist no ASD connections on P with respect to an arbitrary hyperkahler
base metric.

Proof. Assume that there is an ASD connection on P with respect to
some hyperkahler base metric h. Then A must be irreducible, otherwise the
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intersection form IM of the space M must odd. Therefore, A is generic from
[14], Proposition 2.3 and Remark 2.1. So, the dimension of the moduli space
of generic ASD connections is — 21— 12ε(M), whereas from Theorem 2.1 it
carries a hyperkahler structure and hence its dimension is divisible by four.

Remark. This theorem might suggest that there exist on M no SO(3)-
bundles with odd /.

Let P be an SO(3)-bundle with w2 and / over a compact Kahler surface.
That P admits ASD connection if and only if there exists a holomorphic

line bundle L satisfying the following conditions

Cl(L)=w2 mod2 and d(L) 2 =/ (6.1)

0 (6.2)

First two conditions say that the Whitney sum L 0 1 gives an S0(3)-bundle
equivalent to P and (6.2) asserts that L φ l carries a reducible ASD connection.

If (6.2) fails for any holomorphic line bundle L satisfying (6.1), then there
exist no reducible ASD connections on P with respect to the base metric h.

For an 5O(3)-bundle with a small / we have the following compactness
argument.

THEOREM 6.2. ( i ) Let P be an SO(3)-bundle with w2φ0 and I——2 over a
compact 2-torus M. Choose a flat base Kahler metric h in such a way that
cί(L)Λ[_ωh]Φθ for any holomorphic line bundle L with cλ{L)—w2 mod2 and Ci(L)2=
—2. Let <fM,gen be the moduli space of irreducible h-ΛSD connections on P. Then
each connected component of JMgen is a complex flat torus, provided MgenΦφ.

(ii) Let P be an SO(3)-bundle with w2=0 and I——8 over a K3 surface.
Choose a Ricci flat base Kahler metric h so that c1(L)Λ[ωh']φQ for any holomor-
phic line bundle L with cx{L)—w2 mod2 and c^L)2——^ or —8. Then each of
connected component of the moduli space Mgen of irreducible h-ΛSD connections
on P is a compact hyperkahler 4-manιfold provided 3tgen is not empty.

We remark on the existence of the base Kahler metrics. It is actually
possible to choose them because, since the condition that (6.2) fails is open and
dense, we can perturb the metrics h in a suitable way.

Proof. ( i ) Since the metric h is flat Kahler, the moduli space is endowed
with a 4-dimensional hyperkahler structure. We claim that the moduli space
is smooth and compact.

Assume that {[A]} be a sequence in JHgen which does not converge. As
this can not go to any reducible ASD connection because of the base metric
condition, it follows that there are finitely many points {xίf ••• , xk\ in M so
that over M'=M\{x1} ••• , xk} (a) each Λt has a gauge transformation gt

defined over M' and (b) A/

i—gι{At) converges to an /z-ASD connection Λo(see

the argument in the proof of [9], Theorem 7.3). Since f |F(Ao)Γ^f \F(At)\2

j M' J M
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=8π 2 , from the removability theorem due to K. Uhlenbeck A<» extends smoothly
over the whole space M to an ASD connection on an S0(3)-bundle Poo. The
bundle P*. has w2(Poo)=w2(P). The first Pontrjagin number L of P«> is non-
positive and |/oo|^2. Moreover L=—2 mod4 by a topological argument ([5],
Theorem 2). So, this is a contradiction. Hence Mgen is smooth and compact.

We now assert that 3igen is locally homogeneous and hence each of its
connected components becomes a complex 2-torus with a flat Kahler metric.

In fact the identity component K of the isometry group of (M, h) acts on
the moduli space Mgen through the horizontal lifting and this action induces
an infinitesimal deformation ix(F(A)) of any ASD connection A, where X is a
Killing vector field ([4], §2). Since %XF satisfies the gauge fixing equations

)—^)y the action is effective. Hence Mgen is locally homogeneous, because

g coincides with the dimension of K.
(ii) Since the Ricci flat Kahler metric h is hyperkahler, the moduli space

<3ίgen is hyperkahler. We assume that it has a sequence which does not con-
verge within it. So, as in the proof just above we have an S0(3)-bundle Poo
with an ASD connection A** whose Pontrjagin number L must be 0, —4 or —8.
The case /oo=0 is eliminated since it then requires that Poo must be the product
bundle, whereas w2(Poo)φ0. If L is —4, then the connection A* must be ir-
reducible, otherwise there is a holomorphic line bundle L satisfying Cι{L)A[ωh~]
= 0 and also d(L)=w2 mod 2 and d{L)2——4 and this does not occur from the
base metric condition. Thus H° and H+ vanishes for A* so that obviously

^O. However, the Atiyah-Singer index theorem computes the dimension

/x =—(dimi^0—dimH1JrdimH+)=— 4. So, every sequence converges and
hence Mgen is compact.

Remark. It is easily seen from the structure of the intersection form IM\
H2(M; Z)XH2(M; Z)-+Z that the 5O(3)-bundles P with the values w2 and /
appeared in Theorem 6.2 carry reducible ASD connections for some base hy-
perkahler metric h0. We will discuss whether or not those bundles admit an
irreducible ASD connection with respect to a Ricci flat Kahler metric.

Let Ao be a reducible ho-ASD connection on P over a K3 surface. So,

0—l and according to (1.1) Hi0 is written as

o ψ ψ ψ φ 0 } . (6.3)

Then the moduli space of ASD connections on P is around [^40] described as

i 0 ; |α |<β,Φ(α)=0}/i? i l 0

where Φ ;i/i0—>i/J0 is a map given by the Kuranishi map and GAo denotes the
isotropy of AOf isomorphic to £7(1) ([16], Theorem 1). Since Φ is approximated
by the quadratic map??*; Hio-^HiQf a>-*pvH+{[<xAa~]+) and the formula (4.3)
holds, the primary part of <Φ, θt>, i=l, 2, 3 is an indefinite quadratic form so
that Zero(Φ) has really 5-dimension near the origin. Therefore there must
exist an irreducible ho-A$D connection A close to Ao on P because there are
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at most finitely many reducible ASD connections when the base space is a K2>
surface.

Let h be a Ricci flat Kahler metric which satisfies the following; for any
Kahler metric on the path ha)=(l—t)h0-\-th Cι(L)Λ[ωht]φQ where L is an
arbitrary holomorphic line bundle with Cι{L)=w2 mod 2 and c1(L)2=—8.

We seek a solution a^Ωι{gP) to the equation

*hF(A+a)+F(A+a)=0 (6.4)

By the well known theorem of Yau there exists a path ht of Ricci flat Kahler
metrics from h0 to h. To solve (6.4) use the continuity method with respect
to ht;

HtF(A+a)+F(A+a)=0 (6.4,)

We reduce (6.4*) to

0 (6.5,)

where dί*ία=l/2((ίAα+*Λίrfii«) and laAa~]+>t is the *Λί-self-dual part. For
a=(dtΛ)*Ψ, ΨSΞΩ+ '^P) (6.5,) is written as

d+A '(di ')*y + [(<*!' l)*WA{d\'«)*y]+ ί +l/2(*, ί -*,)(F(A))=0 (6.6,)

Since 4̂ is irreducible and then the operator dJ 'CύfiΌ* is invertible for small
ί, by applying Taubes' iterating procedure ([13]) we get a solution Ψt for
sufficiently small t in such a way that ^4+<β>ί*? r, is an ASD connection with
respect to ht. Note that P admit no reducible /ιrASD connections because of
the Kahler metric condition.

On the other hand there is another way to find an irreducible ASD con-
nection on an 5O(3)-bundle. In fact for an S(9(3)-bundle with /=—6 over a
K3 surface M Donaldson exhibits an irreducible ASD connection on P by pulling
back the holomorphic tangent bundle TP2(C) by π M-+P2(C) the double cover-
ing P2(C) branched over a smooth curve. The moduli space consists only of
this single point ([8]).
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