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MEROMORPHIC FUNCTIONS COVERING CERTAIN

FINITE SETS AT THE SAME POINTS

BY KAZUYA TOHGE

1. Introduction.

We say that meromorphic functions / and g share a value c provided that
f(z)=c if and only if g(z)=c (regardless of multiplicities). When we need to
consider their multiplicities, we shall make use of the abbreviation CM, follow-
ing Gundersen [4]. Unless stated otherwise, all functions will be assumed to
be nonconstant and meromorphic in the plane. It is also assumed that the
reader is familiar with usual notations of Nevanlinna theory of meromorphic
functions (see, for example, [5]).

Our main interest in this paper lies in the following question: under what
circumstances two different functions share the values? R. Nevanlinna [8, 9]
proved that if two functions share five distinct values (possibly including oo),
then they must be identical. The functions exp(z) and exp(—z), with the values
0, 1, — 1, oo, show that here 5 cannot replaced by 4. He has also shown that three
or four values are, apart from certain exceptional cases, sufficient to determine
a function f{z), if we know in addition the multiplicity of the roots of the
equation f(z)—c. For entire functions, their relationships have been given in
the various specific circumstances. Here we prove some corresponding results
for meromorphic functions in the plane.

2. Statement and discussion of results.

Let {an}, {bn} and {pn} be three disjoint sequences with no finite limit
points. If there is a meromorphic function / whose zeros, d-points and poles
are exactly {an}, {bn} and {pn} respectively, then the given triple ({an}, {bn},
{pn}) is called the zero-d-pole set. Here of course d is a nonzero complex
number. If further there exists only one such function /, then the triad is said
to be unique. Unicity in this sense does not hold in general, and we have the
following theorem.

T H E O R E M 1. Let ({an}, {bn}, {pn}) and ({an\f {cn}, {pn}) be the zero-one-

pole set and the zero-d-pole set of a function N, where dΦl. Then at least one

of two given triads is unique, unless N is one of the following forms;
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and

where A is an arbitrary constant and L is an entire function.

The result for entire N has been proved by Ozawa [11]. We see easily
that if N is of the latter forms, then another function, whose zero-one-pole set
or zero-d-pole set is just the given triad in this theorem, is either N/d or dN.
The more reasonable assumptions are made about N, the more we can say about
unicity of its zero-d-pole sets.

Examples. The zero-d-pole set of s'm(z) is unique for any nonzero complex
number d. That of tan (2) is also unique if dΦ±i, and for d — ±i it is common
to —tan (z).

The former was given by Rubel and Yang [12] with d = l, and for the lat-
ter we observe z tan(»={exp(2z>)—l}/{exp(2z>)-f-l}. These results are shown
by the similar method to Theorem 1.

Now we shall confine the values shared by functions to 0, 1, 00. It is,
however, not sufficient in general to determine their relationships. Therefore
we shall impose the following additional assumption:

THEOREM 2. Let f(z) and g(z) be two transcendental functions. Suppose that
they share 0, 1, 00 CM and their first derivatives share a finite valve a CM. If
(A) a=0, or (B) aφΰ and further

Max [lim sup log log T(r, f)/\og r, lim sup log logT(r, g)/\og r ] < l ,
r-»oo r-»oo

then they must satisfy exactly one of the following relations;

f=g, f g=l, (/-1X*-1)=1, and

in addition to {A),

f=Cg, f+g=l, f-l=C(g-ί),

with a constant CφO, 1. Here for (B) f and g must be entire of order exactly
one, unless f—g.

These assumptions of CM have the necessity in some extent. In fact, for
example, C.C. Yang [13] proved the following result for entire functions;

THEOREM. Let f(z) and g{z) be two transcendental entire functions satisfying
(a) they share 0 CM and all zeros are simple, (b) their first derivatives share 0
CM, and
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(c) Max [lim sup log log log M(r, /)/log r, lim sup log log log M{r, g)/log r] < 1 .
r-»oo r-*oo

Then they satisfy exactly one of the following two relations:
( I ) f(z)—C{g{z)}k where C and k are constants, or
(Π) f(z)=d exp{7<z)}+C2, g(z)=C3lC2 exp {-?<*)}+d] where Cu C2 and Cz

are constants and γ is entire of order less than one.

Here we suppose further that / and g share 1 with no consideration of
multiplicity, then the simple analysis implies that they share 1 CM (so we
regard if they assume no 1-point). Also his example exp (2z) and exp (ez) show
that Condition (c) is necessary, however in our theorem, a question whether the
restrictions on CM and on their hyper-orders in (B) can be relaxed still remains
to be answered. It will be seen in the proof the actual representations for the
pair of functions to satisfy the above relationships.

Following the study of Gross [1], we shall consider the functions / and g
covering certain finite sets (possibly including oo), instead of certain values, at
the same points. In other words, we observe the circumstances that f(z)^S if
and only if g(z)(=S for some sets S. For the purpose of convenience we shall
make common use of the abbreviation CM also in this case. Now we choose
the following three sets S ι ={ —1, 1}, S2={0} and S3={oo} or more generally;

THEOREM 3. Let n be an integer (^2) and S ^ j ζ e C : ζn = l], S2={0} and
S3={oo}. Suppose that two functions f and g satisfy

f(z)£ΞSi if and only if g(z)^Si CM, i=l, 2, 3.

Then they must satisfy either of the following two relations;
(a) f(z)=Cg(z), where C is a constant with Cn—1, or
(b) f(z)n=exp{a(z)} and g(z)n=exp{—a(z)} with an entire function a, that

is, f(z)-g(z)=C1 for a constant Cj with C?=l.

Gross and Osgood have proven this result in [2] for entire / and g of finite
order with w=2. This theorem shows that the next two are only possible pairs
of functions, which share four values —1, 0, 1, oo CM, excepting f—g\

and

/ ( * ) = - £ ( * ) =

with an entire function α.
In this context, we may also consider the s^ts Si={l}, S2={ —1}, S3=

{0, a} and S4={°°} with aφQ, ± 1 , oo, and prove

THEOREM 4. Let S ^ U } , S 2 ={-1}, S3={α, &} αnύί S4={oo} with Si Sj=φ
(iφj). Suppose that two functions f and g satisfy
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/ e S i if and only if g^St CM, * = 1, •••, 4.

Then they must be connected with exactly one of the following relations;

f=±8, f g=l, f+g=±2, (/±1X*±1)=4,

( 1-f-Cϋ \ / H-ft> \ 4
f -| )\g j " " " "o~

where ω is a cubic root of unity different from 1 and double signs in same order
respectively. Further if all of a= — b, a-b=l and (l±α)(l±&)=4 fail, then

f=g.

The corresponding result for entire functions was obtained by Gross [1] and
there were introduced only three relations, f—gy f-g—l and (/—l)(g—1)=4.
However additional relations (/+l)(g+l)=4 and (f-\-c)(g—c)=4/3 with c—
(l+ω)/(l—ω) should have been done. The concrete representations for / and g
are given in our proof, and these give the same as Theorem 3 for α=fr=0.

Also the sets of two elements were considered by Gross and Yang [3], as-
suming two functions to be entire and of finite order. In this connection, we
are led to the following result by the idea of Theorem 1 which is closely related
to so-called Nevanlinna's three-function theorem [8, 9].

THEOREM 5. Let Sι={aίy a2), S2={biy b2) and 53={ci, c2} be three pairs of
elements whose sum is equal to d^C but multiplications are different from one
another. Suppose that there exist three functions f, g and h such that

if and only if g^St CM, i—l, 2, while
j is and only if h^Sj CMy / = 1 , 3, and further

f, g and h share oo CM.

Then either ( I ) one of f=g, f+g=d, f—h and f+h—d, or else
(Π) g=h, or g+h=d, and (f-(l/2)dXg-(l/2)d)=±(a1a2-c1c2) with c,=c2

and a1a2—b1b2=2(a1a2—c1c2),
(ΠI) g=h, or g+h=d, and {f-{l/2)d){g-{l/2)d)=±{a1a2-bιb2) with b^b2

and aίa2—CιC2=2(a1a2—b1b2),
(IV) (f-a/2)d)(g-a/2)d)=±(f-a/2)dXh-a/2)d)/K=±(a1a2--b1b2) with

aY—a2 and a^—dCz^Kia^—bM, K<^C—{0, 1}.

In the proof we see certain forms of these functions which are related as
mentioned above. As an immediate consequence of this theorem, we see that
if all the Si (2 = 1, 2, 3) have distinct elements then ( I ) is only the possible case.

3. Lemmas.

All our proofs depend on the impossibility of BoreΓs identity [9], which is
expressed as follows:
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LEMMA 1 [10]. Let {QLJ} be a set of nonzero constants and {gj} a set of
entire functions satisfying

Σ

Then

where δ(0, g3) denotes the Nevanlinna-deficiency.

LEMMA 2 [6]. Let ao(z), a^z), •••, an(z) be meromorphic functions and
gi(z)y '" > gn{z) nonconstant entire functions. Further suppose that

(*) T(r, aj)=o\±m(r, e*^)\, / = 0 , 1, - , n

holds outside a set of finite linear measure. If an identity

holds, then we have an identity

where the constants cv, v = l , ••• , n, are not all zero.

This result has a more general form;

LEMMA 3. Let ao(z), a^z), •••, an(z) (av^0, v^ l ) be meromorphic functions
and gi(z), •••, gn(z) nonconstant entire functions satisfying

ΣlogT(r, av)
.v ° . —
axlogm(r, e*»

v-zn

where Ω is a set of infinite linear measure. Suppose the identity

g(,
lim sup Λ.v ° . —- < 1,

r+x* Maxlogm(r, e*»)
( r e ? ? ) i z z

holds, then there exist n constants (cu •••, cn)Φ(0, •••, 0) such that

This lemma is shown by quite a similar method to Lemma 2. Moreover a
proof of Theorem 3 needs an estimation of Weierstrass products.
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LEMMA 4. Let {avμ} be n sequences (l^μ^n) of complex numbers satisfying
alμ\< \a2μ\^ ••• , Yιm\avμ\=+co for each μ. Then we can construct the

V->oo

Weierstrass products Pμ of the {avμ} il^μ^n) with the following property:
There exists a set Ω in [1, oo) of infinite linear measure such that

Σ log mix, Pμ)
-—} >0, as r->oo, refl.

r, l/Pμ)

Mues [7] has proven this result for n = l, and his way to verification is
still valid for this lemma by considering Max{Nμ(r)} instead of N(r) there, pro-
vided that Nμ(χ) denotes a counting function for the avμ, μ=l, ••• , n, and the
maximum is taken over μ (l^μ<n).

4. Proof of Theorem 1.

Our proof bears essentially on Ozawa's in [11] which depends on the im-
possibility of BoreΓs identity expressed as Lemma 1.

At first we note that the emptyness of {pn}, the sequence of poles of N,
reduces our proof to that for the case in which N is an entire function. This
has been settled by Ozawa, and there we find an exceptional form eL+A, as in
our theorem. Therefore we now assume {pn} to be not empty.

According to the assumptions, there are two meromorphic functions / and
g, together with entire functions a, β, γ and δ such that

f(z)=N(z)eaw,

NW>, g(z)-d={N(z)-

We may further assume that functions /, g and TV are represented by the ratios
fjfzy gi/g* and NJN2 of entire functions with no common zero respectively.
There is, however, no loss in generality in supposing that f2—g2—N2 with the
suitable choice of a and γ. Here in this case, Λf2 is not of the form eL for
entire L.

If {an}, the sequence of zeros of N, is empty, we can reduce this to the
case for {pn\ replacing /, g, N and d by 1//, 1/g, 1/N and l/d respectively.
Thus {an} is also supposed to be a nonempty set, noting that the second ex-
ception is {eLjrA)~ι.

A void {bn\ of one-points of N shows N1(z)—N2(z)=eUz:> with L entire.
From the relations

we obtain

f1(z)-N2(z)= {

gί(z)-dN2(z)={Nί(z)-dN2(z)}eδ^,
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Hence we may assume that each of e", eβ, eγ, eδ, ea~β and er~δ is not identically
equal to one, otherwise we have immediately the desired unicity of the given
zero-one-pole or zero-d-pole set, f—N or g=N. An elementary analysis shows
d+(l-d)eδ-erΞ£0 and

which implies that β, δ, β—a and δ—γ are all nonconstant in the present case,
and the identity

(1) dea-P-dea-ίi+δ--e-

If all of these functions are nonconstant, then Lemma 1 gives an inequality

0, er)+δ(O, eδ)<5,

by dφO, 1. This is, however, impossible since δ(0, eh)—l for any nonconstant
entire function h, and thus the left-hand side of this inequality must be equal
to 6. Therefore at least one of these functions is a constant. Now we know
that a—β and δ are not, so we shall discuss following four cases; ( I ) γ, (Π)
—β+r, W —β+δ> or (IV) a-β+δ is a constant c.

For Case ( I ) , ecφl and

(2) dea-t-dea-t+δ-(l-d)eδ-eee-P+e-t+δ=d-ee.

Firstly suppose that a—β+δ is a constant x, thus it follows

(3) de°-P-(l-d)exe-a+β-eee-fi+exe'a=d-ec+de*.

If a is not a constant, d — ec-f dex must be equal to zero by Lemma 1, since all
functions here are nonconstant, therefore we have

Lemma 1 also shows that 2a—β is a constant y and this identity is

(l-d)eχ-ye*a+d(l+ex)eye-a=dey+ex,

which is a contradiction. Hence we see that a—y is a constant with eyφl,
and thus identity (3) is

(dey-ec)e-β-(l-d)eχ-yeβ=d-ec+dex-eχ-y,

which gives a contradiction again, and the present assumption is denied in (2).
We suppose secondly that — β+δ=x is a constant in (2) and obtain
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(4) dea-β-dexea-(l-d)exeβ-ece-β=d-ec-ex.

Here neither a—β+δ nor a—a—β+δ— x is a constant, thus the lemma implies
ex—d — ec and

dea-d(d-ec)ea+β-(l~d)(d-ec)e2β=ec.

Then we see a+β is a constant 3; and this identity is

dea-Q.-dXd-ec)e2ve-2«=ec+d(d-ee)ey,

which is impossible, since now a is not a constant. Hence Lemma 1 gives d—ec

in (2) and

(5) dea-dea+δ-{l-d)eβ+δ+eδ=d,

which shows that at least one of a, a+δ and β+δ must be a constant. If a — x
is so with exφl, we have

Since <5 is not a constant, β + d ^ y must be a constant and thus

( l - ^ * ) 0 W ( l - O + ( l - ύ O ^ , or ex=l/d and ̂ = 1 .

From the above we see that ea=l/d, eδ=e~β, ey—dy and thus

N l-eβ deβ-d
ea-eβ deβ-l

and of course f=N/d and g—dN. This is the exceptional case asserted in our
theorem. Next we assume that a is nonconstant but a-\-δ—x is not. Then we
can see that ex~ — 1 and de2a+(l—d)eβ=l. While if β+δ is a constant x and
a is not, (d — l)ea+β—dea= — l is given similarly. In each case, Lemma 1 gives
only a contradiction. These observations permit us to suppose that γ is non-
constant.

In this manner, we can make sure of the fact that remained three cases
produce nothing but a contradiction. Here we note that ea—e2β, er=d2ea, eδ~
deβ and N=—e~β may be derived for (IΠ), although this is omitted now.
Therefore we may assume that {bn} is a nonvoid set.

For the case in which the sequence of rf-points of N, {cn}, is empty we can
discuss in much the same way and obtain the last exceptional form (eL— 1)/
(eL—d) with L entire.

Now we shall observe the case where sequences {an}, {bn}f {cn} and {pn\
are all nonvoid. If a is a constant, then f1~CNί with a constant C—ea. From
the assumption, it follows f1{bn)=zN1{bn):=N2(bn)Φθ, therefore we have now
C—\ and thus f=N. This is just the desired unicity of the given zero-one-
pole set, so that we may assume that a is nonconstant from now on. Also if
β is a constant, we have A—Nz=C(Ni—N2) with eβ—C and obtain C — l}f=N
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in consideration of fi(an)=N1(an)=0 and N2(an)Φθ. After this manner, all of
a, β, γ and δ may be assumed to be nonconstant entire functions. We may
further assume that so are both a—β and γ—δ. In fact firstly each of ea~β = l
and er~δ=l implies the desired result f—N or g=N. In the second place either
ea-β~a{Φl) or er~δ=b(Φl) for constants a and b gives

A/=—07 5T- or
eδψ-l) '

respectively by our relations. Each case, however, contradicts the assumption
that N is meromorphic not entire. With these knowledges, we shall recur to
the identity (1) and examine again all the possible cases only to get to a con-
tradiction.

Thus we complete the proof of Theorem 1.

5. Proof of Theorem 2.

From the assumptions of this theorem we obtain the following equations

(1) f(z)—g(z)eaiz>>,

and

where a, β and γ are entire functions. If one of ea, eβ and ea~P is identically
equal to 1, then (1) or (2) implies that / and g are identical. Therefore we
may now assume that all of them fail and thus by (1) and (2)

a n d

Differentiating each both sides and substituting them into (3), we get the
identity:

(5) ae

To prove the theorem, we shall make repeated use of Lemma 2. In this case,
Condition (*) is satisfied as follows for example, a' is the logarithmic deriva-
tive of ea, and if a is nonconstant then we may use the theorem for a proximity
function of the logarithmic derivative (see [5]), to get

m(r, a')=m{r, (eay/ea}=o{m(r, ea)}

outside a set of finite linear measure. Here af is entire so that this is true for
the characteristic function, T{r, a'). With respect to the identities appearing
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in our discussion, we need examining not only whether each exponential func-
tion is a constant or not, but also whether its coefficient Cj is equal to zero or
not. The detailed reason will be explained in the main part of our proof.

(A) We shall firstly proceed to the proof for the case in which a=0. Then
identity (5) gives

(6) β'ea+β'e-a+r-a'et+(a'-β')er-'a'e-ίi+r=β'-a',

which causes us to discuss following ήve cases; ( I ) a—x, (Π) β=x, (ΠI) γ=x,
(IV) — β+γ=x, (V) — a+γ=x with a constant x.

Case (/): α=x with exφl.

Then we have βfe~x(l—ex)er=β\l—ex). Here we note that β is not a con-
stant, since otherwise (4) shows that both / and g are constants. Thus ey—ex

— C, say, by exφl, so (1) and (4) give the desired relation

f(z)=Cg(z) with a constant CφO, 1,

together with

Case (II): β=x with exφl.

This is the similar case to the above and gives

f(z)-l=C{g(z)-l} with a constant CφO, 1,

and here

J\£) /v/»Λ 7~Λ anQ M\Z) nfr,\ SΛ

We may now assume that a and β are both nonconstant from now on.

Case (III): γ=x.

In this case, (6) gives

(7) Fea-a'eP+Fexe

This identity obviously satisfies Condition (*), so we have

(8) c1β'ea+P+cia

for the suitable constants c5 as in Lemma 2. If a-\- β—y is a constant, then by
(7) we have
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and thus ey= — ex=l applying Lemma 1, since a is not a constant. Here we
obtain ea=e~β, er= — l and

/(*)=

Then we may say that a+β is not a constant. While if —a+β=y is a con-
stant with eyφl, (7) gives a\l—ey)e~a(e2a—ex~y)—0, which is however impos-
sible. Thus — a-\-β is not a constant, either. Now we may apply Lemma 2 to
(8). In fact a+β, 2β and — a+β are all nonconstant, and

T(r, ctβ')=o{m(r, e?)}, ι = l, 3,

T(r, cja')=o{m(r, ea)}, / = 2 , 4,

outside a set of finite linear measure. If at least two of the ck (& = 1, 2, 3) are
different from 0, Condition (*) follows from Nevanlίnna's fundamental estimates.
For instance, Cι c2Φ§ gives

m(r, ea)=^ ^

z

as r->oo, excepting possibly a set of finite linear measure. Thus Lemma 2 im-
plies an identity

for the suitable constants ά} ( ; = 1 , 2, 3). This leads us to the conclusion

a'ea+P=dβ', β'e2a=dβ', or β'ea-P=da'

with a nonzero constant d, although each gives a contradiction, which is quite
the same when only one of the ck (& = 1, 2, 3) is never zero. Hence we may
say that γ is nonconstant entire.

Case (IV): -β+γ=x.

Then (6) is of the form

(9) β'

If — a-\-β—y is a constant with eyφl, then it follows from this identity
α'(l—ey)ea—a'ex(l—ey) which is evidently a contradiction. Hence — a+β is not
a constant in the present case. Then we see that Condition (*) holds for (9)
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and so we have

cίβ
/ea-β+cBβ'e-a=-c2{(ex-l)a/-exβ'}

with constants (clf c2, c3)Φ(0, 0, 0). Here if (ex-l)a'-exβ'=0 in (9), ea+exe~a+β

=ex+l by /3'E£0. Lemma 1 implies ex=-l and eβ=e2a, so that er=-eβ = -e2a

and thus

{/(*)-l}te(*)-l} = l

with functions

/(^)=l+ β «w and g(z)=l+e-a<2\

Next we suppose (β*—l)α/—exβ'^Q. If one of Ci and c3 is equal to zero, we have

dβ'e~a= {(ex-l)a'-exβ'} or dβ'ea-β={(ex-l)a'-~exβ'}

with a nonzero constant d, which implies ex— — 1 and either

- l ) ^ = d or

substituting into (9) and applying Lemma 1. Each identity contradicts this
Lemma 1. Hence we see that cX'CzφQ and apply Lemma 2 to get eβ=de2a with a
nonzero constant d. Again substituting this into (9), Lemma 1 gives

2(dex+l)ea-d(ex+l)e2a=ex+l

and thus £*+1=0 and d = l, or eβ—eLa and er= — e2a, which is mentioned above.
Hence we may assume that — β+γ is also not a constant now.

Case (V): —a+γ=x.

This is the case that we can discuss in much the same way as Case (IV),
and see that only the possible one is the following; ex~—1 and eβ=ea~β,

f(z)=-eβω a n d g(2)=-e-Pw

and their relationship is

f(z)-g(z)=l.

Hence — a+γ is supposed to be not a constant, either.

Now we return to the initial identity (6) and apply Lemma 2 there to get

(10) c2a
/e-

for suitable constants cu •••, cδ not all zero. We now need to discuss again the
following cases: (VI) — a+β—x, (VI) — a—β+γ—x, and (M) — 2a+γ—χ with a
constant x.
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Case (VI): -a+β=x with exφl.

Then (6) has a form, β\ex-l)e^ = exβ/(ex-l)e^+r so that we obtain ea=Ce^
and er—Ce2β with C — e~x. Therefore we derive the final relationship

which is satisfied by

Aand

and we may assume that a—β is also not a constant, and thus a'-—β'=

Case (VII): a+β-γ=x.

Identity (6) gives now

(11) (β'-a'e-χ\

Here we note that a+β^γ+x is not a constant, and both β'—a'e~x and β/—
a'ex do not vanish identically since otherwise ex—±l and a'±β'=Q or a±β is
a constant. There is no loss in generality supposing βf—afe~x not to vanish
identically. Applying the lemma to (11), there exist constants cu c2 and c3 not
all zero satisfying

(12) c2(a'-β')et+c9(e*a'--β')e-a+li = --cι(a'-exβ').

If exa'-β'=0 in (11),

e'x(eZx-l)a/ea+e~x(l-ex)a/ea+^=(ex~l)a/

f

so that ex—l, which gives a contradiction, a'—β'ΞΞθ. At last we see that both
exa'—β'^0 and a'—β'ex^0. The consequences of (12) are therefore,

β β β
and

(a'—β')ea=d(exa'—β'), with a nonzero constant d.

In each case we can reduce (11) to an identity with constant coefficients and
derive a contradiction by Lemma 1. Hence we see also that a+β—γ must be
nonconstant.

Case (VIII): 2a-γ^-x

In this last examination, (6) is the identity of the form

(13) j 8 / ( β a ? + l ) e β - α V + ( α / - j 8 / ) β V α - α / e V α - ^ = j 8 / - α / ,

and 2a—β= — x—β+γ is not a constant here, so that (13) satisfies Condition (*).
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The coefficient £*+l=0 gives

-a'eβ-(a'-β')e2oc+a'e2a-β=β'-a',

from which Lemma 2 implies an identity, c2(a'—β/)e2a-β+c3a
/e2a~2β=~cxa

f

y

where the cό (/=1, 2, 3) are constant not all zero. The consequences of this
identity due to Lemma 2 are

e2ca-βiz=ldf (a'-β')ea-β=dafe-a and (a'-β')eβ-°=da'e-a

with a nonzero constant d. The first is evidently a contradiction. Integrating
the second equation, we have the result that ea~β+de~a is a constant, which
contradicts our assumption according to Lemma 1. The same holds for the last
equation. Thus we have ex+lφ0, however in this case, only a similar con-
tradiction is derived in much the same way. Here we note that when there
appears an identity inapplicable for Lemma 2, for example,

β'=Aa'e-a+β+Ba'ea-β with nonzero constants A and B,

we shall substitute this to (13) and reduce it to an identity with constant co-
efficients, which is a matter of Lemma 1. In like manner, we see that 2a—γ
is nonconstant and so is 2β—γ, and come to an end of the examination.

Recurring to the identity (10) again and supposing constants Cj (2^/rg5) to
be different from zero, there exist the constants dk (& = 1, ••• , 4) of the same
property satisfying

If either d2 or d3 is equal to zero, we reduce (10) to the identity with constant
coefficients by substitution to get a contradiction. Otherwise it follows further

uίa
/ea+β-r+u2(a'-β/)ea+uza'ea-β=0,

where uu u2 and uz are not all zero. This gives us the following consequence:
for a nonzero constant d,

e2β~r=d, or (a'~ β')eβ=daf, or (a1f-βf)e'β+r=da\

or else β'=a'(Aeβ~r+Be~P+l) with nonzero constants A and B.

The first two are both immediate contradictions. Remained two results reduce
(6) to identities with constant coefficients, and this brings us to the conclusion
with a contradiction again. For the other cases, the analogous reasonings hold
and give nothing. In this way we find a completion of the proof for the case:
α=0.

(B) Next we set about the proof for the case: aΦ§. Recall the identity (5)
and note that in the present case we can nevermore reduce this identity to the
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one with constant coefficients through a substitution of some equation about a!
and β'. Instead of this we have hypothesized that both / and g are of hyper-
order less than one. Then Condition (*) always holds, if every exponential
function is not identically constant. In fact, suppose otherwise with respect to
a'—β/-\-2a for example, that is, there exist a nonconstant entire function h say,
as in (5) and a set Ω of infinite linear measure such that

T(r, a'-β'+2a) .
lim SUp -^— ί-rr >0 .

This is, however, impossible since T(r, af—β'+2a)<r\ l > ε > 0 for sufficiently
large r and ra(r, eh)^m(r, ecz)—\c\r/π for some nonzero constant c (see [5],
page 7). Therefore we can proceed to the discussion in much the same way
as in the previous Case (A). Here only the possible cases are introduced with-
out repeating such the complicated examinations as in (A).

Case (/): a—β=x is a constant with exφ\.

Here we may assume that both a and β are nonconstant, otherwise func-
tions / and g are reduced to constants. Our initial identity (5) gives now

If γ is a constant c, say, β\eβ—ec~xe~β)=αe~x(ex—l)(ec— 1), which shows that
β is a constant. Otherwise, we suppose that — β+γ is a constant c. Then (6)
also gives an identity {β'-αee-χ(ex-ΐ)}eβ=ec'x{β'-αe-c(ex-l)}. The entire
function β is not a constant, and

m(r, βrjrconstαnt)=o{m(r, eβ)}

outside a set of finite linear measure, therefore we must deduce

β'- αec-χ(ex-l)=0 and βf-αe~c{ex-l)=Q simultaneously,

so that e

c=±eα/2:>x and β/(z) = ±αe~il/2^x(ex~l)> double signs in same order.
Then eα—exeβ

1 er=±eil/2:>xeβ and also (4) give

f ^ = e \~lι'] and g(*>= V^Y 1 '
which are both entire of order exactly one. Their relationship is

with a constant C = exφQ, 1. Next suppose that — β+γ is not a constant in (6)
and apply Lemma 2 there to get cιβ'e2β~r+c2e

β= — cBβ
/ with the constants Cj

(/=1, 2, 3) not all zero. Then we see that 2β—γ must be a constant from (6)
and arrive at a contradiction, so that α—β may be supposed not to be a con-
stant from now on.
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Case (II): a—β+γ—x is a constant.

Then we obtain the starting identity

(7) ae°-β+β'e°+β'exe-*a+t + {a''-

-a'eP-aexe-2a+2P-a'exe-a=-{a'-β'-a(2+ex)\.

If — 2a+β—c is a constant, then Identity (7) is

-(a'-ae-χ-c)exe-a-{(l-2e-χ-c)a'-a(2+e-χ)}ex+cea

-(a'+aex+c)ece2a=(l-2ex+c)a'+a(2+ex),

from which we must derive that all coefficients of exponential functions here
vanish identically. In fact otherwise its consequence by the lemma is such a
contradiction

L ± φ I W i th an integer n(Φθ) and constants AJf Bj (; = 1, 2).
{Λ2a -rίjj

Thus we obtain β c =l, e2x— — 1, so that eβ — e2a and er—±iea, by which (4)
gives

*> and £(z)

with α'(z)=+/α. They are both entire of order exactly one, and related by

{f(z)-l} {g(z)-l}=l.

The similar is given for — a+β+γ— x and a—2β—c, that is,

f(z)=-e^z> and ^ ( 2 r ) = - e ^ w

with β'(z)=±ia, and their relationship

/(*) S(z)=l .

Then we may suppose that —2a+β is not a constant in (7) and discuss in the
usual way only to have a contradiction. We shall make it sure that the other
linear combinations of a, β and γ than the aboves cannot be constants in this
manner, and then Lemma 2 and our restrictions on the orders of a, β and γ
lead us to a completion of the proof.

6. Proof of Theorem 3.

Our assumptions of this theorem imply immediately

f(z)n-l={g(z)n-l}eaw and f(z)=g(z)e^

with entire functions a and β. We now distmguish three cases following
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Case 1) β is a constant with ^ Ξ C G C - { 0 } .

Then we have (eaW-Cn)g(z)n=e«w-l, so that either ea^ = Cn=l or

eaw-l

Since n^2, this function cannot assume a simple zero and a simple pole. There-
fore Cn must be equal to 1. In each case we have

f(z)=Cg(z), C » = l .

Case 2) a is a constant with β α Ξ C G C - ( 0 } , and β is not a constant.

In this case we have also

which gives C = l and thus f{z)n=g{z)n by the same reason as the above.

Case 3) Both a and β are nonconstant.

Then we may set

σ(Z)
n= - = —

with entire functions N, P, H, provided that N and P do not vanish identically
and posess no common zero. Thus Nn and Pn assume the value 0 possibly at
a multiple zero of e~a—1 and enβ~a—1 respectively.

In order to complete our proof we now apply Lemma 3 to the identity

(1) pne-a_

To do this we need to make sure of the followings: in the first place,

(2) m(r, e-a)

where E is a set of finite linear measure. (After this E denotes such an ex-
ceptional set and may not always be the same. Here S\(r)~S2(r) means that
their ratio tends to 1 as r->oo.) And secondly

(3) log+m(r, Nn)+log+m(r, Pn)=o{log+m(r, e~a)},

in a set of infinite linear measure. (2) can be given by estimations

N(r, g

1 _ 1 ) + Q{log+m(r, e~a)+\ogr}
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and

m(r, enβ}a_1)=O{\og+m(r> ena-β)+\ogr),

The first one is a consequence of the fact that all simple zeros of e~a—1
coincide with those of enβ~a—1. While Nevanlinna's first and second funda-
mental theorems give the last two estimations. We note that (2) shows nβ—a
is not a constant.

Now if Pn, for example, has at most a finite number of zeros, we may
choose this as a polynomial, so that m(r, Pn)=O(\ogr), which is a quantity of
no matter in (3). Thus we may suppose that both Pn and Nn posess infinitely
many zeros and satisfy the hypotheses of Lemma 4. Then there exists a set Ω
of infinite linear measure such that for Weierstrass products Pn and Nn,

N{r,l/Pn)+N{r,l/N«) ^ ° a S r^°

Since N(r, 1/Pn) and N(r, 1/Nn) are bounded upwards by counting functions for
multiple zeros of e~a—1 and enβ~a—l respectively, we have

N{r, 1/Pn)+N(r, l/Nn)=O{\og+m(r} e~a)

+ log+m(r, enβ-a)+\ogr}, r£E.

These two results together with (2) imply (3).
Next we need to examine the case where either nβ—a+H or H is a con-

stant, before we apply directly Lemma 3 to our identity (1). If nβ—a+H=c
is a constant, (1) gives

(4) Pne-"+Nnece-nP+a=Pn+ecNn.

We can apply the lemma here and get Nnec=dPnenβ~2a for a nonzero constant
d. Substituting this into (4) we obtain ea+denβ~a=l+d, which gives d — — l and

Z e~aiz' and
β JL

While H{z)ΞΞc+πi, c a constant, makes again the identity (4) from (1).
Then we may assume that both nβ—a+H and # a r e nonconstant and apply

Lemma 3 to (1) to get

(5) dίP
ne-a + d2N

neH + d3N
nenβ-a+H=0

with the constants dj (; = 1, 2, 3), (dlf d2, d,)Φ(0, 0, 0). ύίx^O^implies that d2-dz

Φθ and enβ~a is a constant, which is absurd. d2=0 gives di-diΦϋ and Nnenβ+H

=dPn for d^C—{0}. The initial identity (1) together with this leads us to
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the result ea—de'nβ+a=l—d, or d=l and enβ'a=e'a according to Lemma 1.
Then we have fn=gn = l. If <Z8=0, NneH=-dPne'a for d^C-{0}f which
derives the same as in the case where d2=0 from (1). Hence we may choose
the dj by dγdtdιΦ§ and obtain the following from (5),

P"e-'-H+dNnent-a=!lNn, d, J G Ξ C - 0 .

If a+H is nonconstant here, it follows from the lemma NneH— — dNne~nβ which
has been discussed above. Suppose a-\-H~c is a constant. Then (1) gives the
identity

which however concludes similarly to (4). Now we have checked up on all the
possibilities and complete the proof.

7. Proof of Theorem 4.

From the assumptions of Theorem 4, we obtain the usual equations

(1) f(z)-l=lg(z)-l}e"w,

(2) / (2)+l=te(*)+l}^ c o and

(3) {f{z)-a}{f{z)-b} = {g{z)-a}{g{z)-b}e^

for entire functions a> β and γ. Now we may assume that each of eaiz\ eβίz:>

and eaW"^w is not identically equal to one, otherwise (1) and (2) show that /
and g are unique. Then (1) and (2) also give

(4)

and together with (3)

(5) 4e2P-2(a+b+2)eP-(l

+2(ab-l)e-a+β+r-2(a+b--2)e-a+r+(l-a)(l-b)e-2a+2β

For want of space, we shall now introduce only the possible combinations with
a, β, γ, and the relations between / and g as well as their representations,
excepting the examinations which are quite similar to the proof of our first
theorem.

Case (I): β—x is a constant with exφl.

Then (5) gives an identity
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(6) 2ex{(a+b-2)ex-(ab-l)}e-a+2{(ab-l)ex-(a+b-2)}e-a+ΐ

+(l-a)(l-b)e2xe-2a-{(l+a)(l+b)e2x-2(a+b+2)ex+4.}e-2a+?

Here we note that a is not a constant now, since otherwise both / and g are
constants according to (4). It is immediately shown that both — a+γ and
—2a+γ are nonconstants by Lemma 1, and the same is valid for γ under the
restriction that a and b are different from ± 1 . Therefore Lemma 1 implies
that the right-hand side is equal to 0, that is, β*=l/2(α+l) or 1/2(6+1). We
may choose the former, with no loss of generality, so that the consequence of
(6) is

(7)

-(a+3){(a-3)+b(a+l)}e-2a=4(b-l),

which shows that either a+γ or 2a+γ must be a constant y. At the first place,
we suppose so is a+γ, that is,

{i(ab+2b-3)+(b-l)a+a)2e-y}e-a-(a+3){(a-3)+b(a+l)}e-2a

=4(b-l)-2(a+l)(a-b)e-y,

from which it follows that the coefficients are equal to 0. α+3=0 is evidently

a contradiction. While if (a—3)+b(a+l)—0, or (l+α)(l+fe)=4, then an elemen-

tary calculation gives a2+4a+7=0, so that a——2±V3/ and b=—2τV3i, double

signs in same order. Then eβ=ex=l/2(a+l)=l/2(—l±V3i)=ω, say and ev—

-l/4(α+l)(α+3)=l or er=e'a, so that (4) yields

H , (2ω-l)e^-ω e^+ω-2
/«= ^IΓω

 a n d gW= g α c o , ω

and thus

f(z)+l=ω{g(z)+iY,

in this case a—2ω—1 and b——2ω—3. Next we suppose that 2a+γ—y is a con-
stant, and so

2(a+l)(a-b)e-yea+4(ab+2b-3)e-a-(a+3){(a-3)+b(a+l)}e-2a

which implies similarly that the coefficients are zero. Then we see a—b——3
by aφ±l and bφl, and also eβ=ex=l/2(a+l)=-l and ey=l or er=e"ta, so
that
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and thus

f(z)+g(z)=-2.

From now on, we may regard β as a nonconstant entire function.

Case (II): y—x is a constant.

By (5) we then have an identity

(8) 4e2'3-2(a+b+2)eP+2(ab-l)(ex-l)e-a+P+2(a+b-2)e-a+2P-2(a+b-2)exe-a

+ {(l-a)(l-b)-(l+a)(l+b)ex}e-2a+2P+2(a+b+2)exe-2a+?-4exe-2a

For the case where one of — a+β, —a+2β and — 2a+β is a constant, (8)
gives a contradiction by Lemma 1, so that (1—α)(l—b)ex=(l+a)(l+b) and

(9) 2(l-a)(l-b)e2a+2β-(l-a)(l-b)(a+b+2)e2a+?+2(ab-l)(a+b)ea+P

+(l-a)(l-b)(a+b-2)ea+2β-(l+a)(l+b)(a+b-2)ea-2(ab+l)(a+b)e2β

Thus at least one of a-\-β, 2a+β and a+2β must be a constant, however aφ\
and &^1 deny the possibilities of 2a+β and a+2β with a simple calculation.
Suppose a+β to be a constant y and so a=y—β is not. Identity (9) yields now

{{l-a)(l-b)(a+b+2)ey+(l+a)(X+b)(a+b-2))e«

-{{l-a){l-b){a+b-2)ey+{l+a)(l+b){a+b+2)}eye-a+2(ab+l)(a+b)e2ye-2a

=2(l-a)(l-b)e2y+2{ab-l)(a+b)ey-2(l+a)(l+b).

Here it follows that all the coefficients are equal to zero, and an elementary
analysis shows that α=-ft , ey=ea+P=l and er=ex=(l+a)(l+b)/{Q.-a)(l-b)}
= 1, therefore

/ ( g ) = i + g « c o a n d ^ ^ l ϊ c i Γ j T '

which are connected with

Hence we may assume that γ is not a constant, either.

Case (III): —a+β=x is a constant with exφ\.

Then we note that a—β—x is not a constant and the starting identity is
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(10) 4e2xe2a+2ex{(a+b-2)ex-(a+b+2)}ea

Here we suppose that the right-hand side is equal to zero. Then (10) gives

4e2xei<χ-r+2ex{(a+b-2)ex-(a+b+2)}eBa-r

-{(l+aXl+b)e2x-2(ab-l)ex+(l-a)(l-b)}e2a

+2{(a+b+2)ex-~(a+b-2)}ea=:4.

Thus either 4a—γ or 3a—γ must be a constant y. If so is 4α—γ,

2ex{(a+b-2)ex-(a+b+2)\eye-a

-{a+a)a+b)e2x-2(ab-l)ex+(l-a)a-b)}e2a

+2{(a+b+2)ex-(a+b-2)}ea=4a-e2x+y),

whose consequence is the following; e2x+v — l, ex=—l and a=b=0f or eβ = — ea

and er=eiβ so that

f(z)=-ea^ and g(z)=-e-
aW

and
f{z)-g{z)=l.

While 3a—γ is a constant y,

{(l+a)a+b)e2x-2(ab-l)ex+a-a)a-b)}e2a

which leads us to the consequence that ev—l, e2x+ex+l=0, a-\-b=0 and ab—

1/3. Then ex=l/2(—l±V3i)—ω, say, and a=—b=±i/VT, eβ-ωea

f er=e3a,

so that in this case

1—ct> 1—ft

and therefore

Next we assume (l-a){l-b)e2x-2(ab-l)ex+(l+a)(\+b)ΦQ in (10). Then
either — a+γ or — 2a-\-γ must be a constant. It is easy to show that the former
is not. For the latter case we can find only one possibility that ex— — 1 and
er=e2a, which gives the same as the previous for 4a—γ, however in this case
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a-b=l.

Now we suppose — a+β to be nonconstant.

Case (IV): —a-\-2β=x is a constant.

Here a—2β—x is not a constant and

In this case, it is only the case sifted out that —2β+γ=y is a constant with
2(a+b—2)ex+(X+a)(l+b)Φθ, and the consequence is that ex=l, ey = l or ea=

e2β=e7 W i th (l-fl)(l-ft)=4. Thus

/ + l and

and they posess the relationship

{f(z)-l}{g(z)

Case (V): —a+β+γ—x is a constant.

An identity

+a-a)(l-b)e-2a+2P=-2(ab-l)ex-a+a)(l+b)

permits us only to imply that a=y is a constant with 2(ab —ϊ)ex+(l+a)(l+b)Φθ

and then ev=l/2(-l±V3i)=ω, ex=ω2, that is, ea=ω> er=e'P, and

f(z)-l=ω{g(z)-l}

satisfied by

with {a, b} = {2ω+3, l-2ω}.

Cβs^ (7/) ; —2α+2y3+^= x is a constant.

Then the identity (5) induces us to get
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We know that all functions in this left-hand side are nonconstant, therefore the
right-hand side, that is ex—1, must be equal to zero. Then we have a further
identity which shows that a—y must be a constant with eyφl, and thus

Since β is not a constant, all the coefficients must be zero and so we derive
ev= — 1 and a=b=3, or ea= — 1 and er=e~2β, thus

i + g * o a n d

which gives a relationship

(VII): —2aJrγ—x is a constant.

This is the last case that bears the fruitful consequence. It follows from
the identity

together with the assumption that —2a+β is a constant y,

Hence all the coefficients must be zero, therefore we derive that
and ex=ev=l, or e^=eia=e7. Then

/ ( ^ ) = - 2 e α C 2 ) - l and g(^)=-2e- α C *>-l

and they are connected with the relationship

Like this manner the last possibility has been found in our theorem.
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8. Proof of Theorem 5.

According to the assumptions, following four equations are obtained.

, te-0i)te-a«)=ee(/-ai)(/-a»)
(1)

and

(2)

where a, β, γ and δ are entire functions. Each difference of these two pairs
(1), (2) yields

(3)

(4) a1a2-c1c2=(er-eδ)f2+d(eδ-er)f+aίa2e
r-c1c2e

δ.

Since / is not a constant, we may assume that either of a and β is not a con-
stant and neither is γ nor δ. Moreover we may suppose that both ea—eβ and
er—eδ are not identically equal to zero, otherwise (3) or (4) shows ea=e$ = l or
er=eδ=l so that one of f=g, f+g=d, f—h and f+h — d. Then it follows
as well as g and h,

J
_ d Γ (i 2 fli

~ 2 ± L 4

and so

(6) Bea-δ-Bea

setting A=b1b2—c1c2, B=aιa2—c1c2 and C—axa2—bxb2j which are all different
from zero.

In this proof we shall see the possible combinations of a, β, γ and δ only.
Then we note that the resulted representations for /, g and h need to be scre-
ened under the criterion that a function in a square root never has a simple
zero and a simple pole since our functions are meromorphic.

Case (i): a—δ=x, —2a+βJrγ—y and —aΛ-β—z are all constants with
Bex+C=Q and C2ey + B2φ0

Then (6) gives C(Be2z+Cey)e-ze-a-C2ey-ABez-hB2

f so that both Be2z+Cey

and C2ey—ABez+B2 are equal to zero, since a—β—z must be nonconstant as
mentioned above. Thus we derive (i) **={-i4±(B+C)}/(2C)=l, -B/C if
B+CΦO, (ii) ez=A/(2B) if B+C=0. For (i), e'=l is omitted by ea-
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while e'= — B/C gives ey=-(B/Cf and now ex=-C/B, so that eβ = -(B/C)ea,
e?=(B/C)2ea and eδ=-(B/C)ea, by which (5) implies

/_ d J(d2 aiatC+bAB} C ii/*
J~ 2 ±LV 4 B + C r 1 + B/Ce J

<f X/d2 a^B+c^Cx B πi

2 - | Λ 4 £ + C /"*" (B+QB/C2 e J

and also
d γ\(d% aia*B+bib*C\ C= d -γ-\(d% aia*B+bib*C\ C i
2 -L\ 4 5+C r 1 + C/B J

2 ~L\ 42 -IΛ 4 B+C I ' (B+QC/B2

By the reason mentioned above, it must be satisfied that

r d 2 axa2C+b,b2B

4 β + C
d2 a^B+bAC
4 £+C

and

<i2 a1a2B+c1c2C
~i B + C

d2

B+C

=0

= 0 ,

which implies, however, B—C or bιb2=c1c2. This is a contradiction.
With respect to (ii), ez=A/(2B), ev=e2z and ex=l so that e^=l

er-l/2(A/B)ea and eδ=e". Here we note Aφ2B by ^ z=β-«+^^l. Then

/ - d

 + Γ/^2 2aίa2B-b1b2A\ 2BC
f~~ 2 ± L \ 4 25-^4 +

_ d Γ/d2 α1α2Λ-2c1c2B \
~" 2 —LV 4 A-2B Γ 2B-A

d \(d2 a1a2A-2b1b2B \ AC_ d \(d
g~ 2 ^LV 42 ^ L V 4 A-2B ) + A-2B

d V/d2 2aιa2B-c1c2A C ji/«

and the same observation as (i) leads us to A+2B=A+B— C~2A=0. Hence
there are no desired meromorphic functions in this case.

Case (ii): a—δ=x, —a+β=y and —a+γ=z are constants.

In the present case, (6) gives (Aey+Cex+y+z-B)ea=Bex(ey-l)+C(ex+z-l).
Since a=β—y is not a constant, it follows that

Aey+Cex+y+z-B=0 and Bex(ey-l)+C(ex+z-1)^=0,

and so we derive either (i) ey = l and ex+z=l, or (ii) ex+y = l and Aey+Cez-B.
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The former (i) is however the omitted case in which ea=eβ and er=eδ. For
the remainder (ii), it may be assumed since now that eyφl and ezφey, and eβ—

eye

a, er=ezea, eδ=eβ. From them

d C Ίi

Ύ^e J
d \(d2 aιa2e

z-c1c2e
y\ B iκ*

2 - | Λ 4 ez-ey Γ ez-ey J '

C

and the observation gives the conclusion ez=—ey=l so that it follows from
Aev+Ce'=B, a contradiction -A—B+C=-2Λ=0.

Case (in): a—δ—χ, — a+γ=y are constants.

Then the starting identity is

We can make it sure that a, —a+β and β are all nonconstant in the usual
way and so Bex—Cex+y + C=0 and Bea'^+Bexe'a=Cex+v+A, which implies
e2a=-exeβ, ex=-l and ev=A/Cy or e?=e2a, er=(A/C)ea and eδ=-ea. Thus

Λgd Γ/ c?2

~ 2 ±L\ 4

Λ ~ 2 ±LV 4

so that we derive d2/A—^i^2=l/4(6i—W2=0 or bι=b2, and ^4=C or Gi<22

—lifribi—CiC^), then

They are the desired functions given in (M).
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Case (iv): a=x, β+δ—y and γ—z are constants with ex—C/B and
eyΦ-C/A.

By (6) we have (Cez-B)eβ=Cez-Aey-C and thus Cez-B=Cez-Aey-C=0,
since β must be nonconstant now. The consequence is that ex—e~z—CIB and
ev=l, or er=e~a=B/C and eδ=e~β. Then we have

f= d + ι

y 2 — 2
+ \

2 — 2 L eβ-C/B

2L e-β-B/C

_ d l

2 — 22 — 2 L e-β-B/C

1 Γ (cι-c2γe^-{a,-a2γ

J *
Now each function in a square root cannot have any simple pole and zero, so
that its denominator and numerator share 0 CM, according to their forms. To
do this, we need C(C—B)=0, which is however impossible.

Case (v): β—d—xf —a+2β=y and —2β+γ=z are constants with ex—C/B.

Then (6) is of the form (B2-C2ey+2)eβ=ABey-C2ey+z+BC whose con-
sequence is that ey=l and ez=B2/C2, thus ea=e2β, er=(B2/C2)e2β and eδ=
(B/C)eβ. The representations for /, g and h follow from them, that is,

Hence by aι=-a2 and setting K—B/CφO, 1, we obtain the result (IV).

Case (vi): β—δ—x, β=y are constants.

In this case by (6)

B(eχ-v-ϊ)ea+Ce*-v(ev-l)er=Bex-Aey-C.

Since a and γ must be nonconstant, this gives Bex—Aev—C and B(ex~y—l)ea~r

=Ceχ-y{l-ey). If ex~v^ly ex=ey=l or eβ-eδ=l, which is reduced to the
result ( I ) . Otherwise we obtain er—e~xea in consideration of Bex—Aey=C.
Then it follows by eβ=ey and eδ=e~x+y with Bex—AeyjrCi the representation:

, d , 1Γ (fl,-

ea-ey
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_ d 1Γ (a1-a2)
2ea-(cί-c2)

2ey-{-4Bex 11/2

~ 2 - 2L 0 α - ^ J *

Those for g and h are obtained by replacing a by —a and similarly for x and
3/. The observation implies ex=ev=l, which is omitted above.

Case (viϊ): β+γ—δ=x, a—y—y and a+β=z are constants with ex— — l.

Then (6) gives us an identity ez(Aez+Bey)e~2a=Bez+Bey-Cf which leads
further to the result that ez—\ and ey — — Λ/B since a— — βJrz is not a constant.
Thus e?=e-a, er=-(B/Λ)ea and eδ=B/A, so that

f~~ 2 - 2 L ^ 2 α - l J

rf 1Γ(Q1-Q2)V + (C 1 -C 2 ) 2 -^Ί1^

2 — 2 L ^ α + l J '

d IV (bί-b2)
2e2a-ACea-(aί~a2)

2

~ L
d

g~ 2 - 2 L

d ,1 [ (aι-a2)
2e-a+(c1-c2)

2-B2/Λ γ
±[ J

.__ d , 1
h-Ύ±j J "Ύ±j[

It thus follows that either B or C must be equal to zero, which is impossible.

Case {viii): β+γ—δ=x, a—γ=y and —a+β=z are constants with ex——\.

Then e%Aez-B)e*a=Bev-Bey+z— C and thus e'=B/A, ev=—A/B, so that
we obtain eβ=(B/A)ea, er=-(B/A)ea, eδ=(B/Afe*a and the representation;

AC

- d Λl^ aiatB-bιbtA\l B
S~ 2 ±LV 4 B-A Γ B-

BC
A

Hence we need cx—c2 and aγa2—bίb2=2(aia2—cίC2), then
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so that g—h or g+h = d, which is found in (Π).

Case (ix): β=x and a+δ=y are constants with ex— — C/A.

This is the last case that we need to discuss, and now we have an identity

Bea + C(ex-l)er=B(ex+ey),

and thus ex~ — ey and ea~r— C/Λ together with ex— — C/A. They imply the

functions

f 2 ± 2 L ea+c/A J
rf l r (α 1 -α,) ' ( i4/C)V+4( i4B/C)g t t -(c 1 -c f ) ' - | »/»

2 — 2 L G4/C)V-1 J '

d 1 Γ (fli—#2)20~a-}-(^l — ̂ 2)2(d , 1 Γ (aί-a2)2e-a+φ1-b2)
2(A/C)+AC γ*

d 1Γ (a1-a2)\C/A)2e-2a+4:(BC/A)e-a-(cι-c2)
2γn

2 - 2 L (C/A)2e-2a-l J '(C/A)2e-2a-l

and so A-\-C—B—§ is needed in order to make these three meromorphic, and
this is impossible.

These are only the case worth introducing here. We note that resulted three
functions / , g, h, but ( I ) are entire and of a form eL+(l/2)d with an entire
function L.
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