REMARKS ON A RESULT OF HAYMAN

By Bao-Qin Li

1. Introduction.

In this paper, we use the usual notation of Nevanlinna theory[3].

Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^{\lambda_n}$ is a transcendental entire function, where $a_n \neq 0$ $(n=0, 1, 2, \cdots)$ and $\{\lambda_n\}$ is arranged in increasing order. Also let g(z) be an arbitrary entire function growing slowly compared with the function f(z), i.e., $T(r, g) = o\{T(r, f)\}$ as $r \to \infty$. Following Hayman^[4], if f(z) has finite order, we define

$$\delta_{s}(g(z), f) = 1 - \lim_{r \to \infty} \frac{N\left(r, \frac{1}{f - g(z)}\right)}{T(r, f)}.$$

If f(z) has infinite order, let E be any set in $(1, \infty)$ having finite length. We define

$$\delta_{S}(g(z), f) = 1 - \sup_{E} \lim_{r \to \infty, r \notin E} \frac{N\left(r, \frac{1}{f - g(z)}\right)}{T(r, f)} = \inf_{E} \lim_{r \to \infty, r \notin E} \frac{m\left(r, \frac{1}{f - g(z)}\right)}{T(r, f)}.$$

Obviously,

$$\delta(g(z), f) = 1 - \overline{\lim}_{r \to \infty} \frac{N\left(r, \frac{1}{f - g(z)}\right)}{T(r, f)} \leq \delta_{s}(g(z), f).$$

In particular, when $g(z) \equiv a$ (a is a constant) we get the definition of $\delta_s(a, f)$ defined by Hayman^[4].

Under the above definitions, Hayman^[4] proved

THEOREM A. Let d_n be the highest common factor of all the numbers λ_{m+1} $-\lambda_m$ for $m \ge n$ and suppose that

$$d_n \longrightarrow \infty$$
 as $n \rightarrow \infty$.

Then $\delta_s(a, f)=0$ for every finite complex number a.

With the hypotheses of Theorem A, we proved in [2] $\Theta_{\mathcal{S}}(g(z), f) \leq 1/2$ for every function g(z) satisfying $T(r, g) = o\{T(r, f)\}$. Now we further prove

Received July 15, 1987

 $\delta_S(g(z), f) = 0$ for every entire function g(z) satisfying $T(r, g) = o\{T(r, f)\}$ as $r \to \infty$. That is, we shall prove

THEOREM 1. Let d_n be the highest common factor of all the numbers λ_{m+1} $-\lambda_m$ for $m \ge n$ and suppose that

$$d_n \longrightarrow \infty$$
 as $n \to \infty$.

Then $\delta_{\mathcal{S}}(g(z), f) = 0$ for every entire function g(z) satisfying $T(r, g) = o\{T(r, f)\}$ as $r \to \infty$.

Clearly, Theorem 1 is an extension of Theorem A.

2. Proof of Theorem 1.

From now on we denote by S(r, f) any term which satisfies $S(r, f) = o\{T(r, f)\}$ as $r \to \infty$ outside some set of finite length. In particular, if f(z) is of finite order, then we assume that $S(r, f) = o\{(T(r, f))\}$ as $r \to \infty$ without exceptional set. Also suppose that a and b are two positive numbers. " $a \mid b$ " implies that there exists a positive integer n such that $b = n \cdot a$.

In order to obtain Theorem 1, we need the following lemma of [1].

LEMMA 1. If F(z) is an entire function and $g_1(z)$, $g_2(z)$, \cdots , $g_m(z)$ are distinct entire functions satisfying $T(r, g_j) = o\{T(r, F)\}$ as $r \to \infty$ $(j=1, 2, \cdots, m)$, then

$$\sum_{j=1}^{m} m \left(r, \frac{1}{F - g_{j}(z)} \right) \leq T(r, F) + S(r, F).$$

Proof of Theorem 1. Suppose that g(z) is any entire function satisfying

(1)
$$T(r, g) = o\{T(r, f)\} \quad \text{as} \quad r \to \infty.$$

We then discuss two cases separately.

Case (A). $g(z) = \sum_{v=0}^{t} b_v z^{h_v}$ is a polynomial.

We write

$$f(z)-g(z)=\sum_{v=0}^{\infty}\eta_{v}z^{\beta_{v}}$$
,

where $\eta_v \neq 0$ and $\{\beta_v\}$ is arranged in increasing order. Let d_n^* be the highest common factor of all the numbers $\beta_{m+1} - \beta_m$ for $m \geq n$. Obviously we have $d_n^* \to \infty$ as $n \to \infty$. Hence by Theorem A we have, in view of (1),

$$\delta_{S}(g(z), f) = \delta_{S}(0, f-g) = 0.$$

Case (B). $g(z) = \sum_{v=0}^{\infty} b_v z^{h_v}$ is transcendental, where $b_v \neq 0$ ($v = 0, 1, 2, \cdots$) and

 $\{h_v\}$ is arranged in increasing order.

Suppose contrary to hypothesis that $\delta_{\mathcal{S}}(g(z), f) > 0$ and choose a positive integer T such that

(2)
$$\delta_{\mathcal{S}}(g(z), f) > \frac{1}{T}.$$

We write

(3)
$$f(z)-g(z)=\sum_{v=0}^{\infty}\eta_{v}z^{\beta_{v}},$$

where $\eta_v \neq 0$ ($v=0, 1, 2, \cdots$) and $\{\beta_v\}$ is arranged in increasing order. Let us choose an integer n so large that

(4)
$$n>T+2$$
 and $d_n>T!T\beta_{T+2}$.

We assume h_{v_n} as the minimum of numbers h_v (v=0, 1, 2, \cdots) satisfying $h_v \ge \lambda_n$. Again we consider two subcases separately.

Case (B.1). There exists an integer $v_N > v_n$ such that

$$(5) (h_{v_N} - \lambda_n, d_n) < \frac{d_n}{T}.$$

In this case we write

$$f(z)-g(z)=\sum_{v=0}^{\infty}a_{v}z^{\lambda_{v}}-\sum_{v=0}^{\infty}b_{v}z^{h_{v}}=\phi_{0}(z)+\phi_{1}(z)$$
,

say, where $\phi_0 = \sum_{v=0}^{n-1} a_v z^{\lambda_v} - \sum_{v=0}^{\infty} b_v z^{h_v}$, $\phi_1 = \sum_{v=n}^{\infty} a_v z^{\lambda_v}$.

By $d_n|(\lambda_{m+1}-\lambda_m)$ for $m\geq n$, we have

$$d_n|(\lambda_v-\lambda_n)$$
 for $v \ge n+1$.

We set $\omega_n = \exp(2\pi i/d_n)$. Then for each non-negative integer j we have

$$egin{aligned} \phi_1(\omega_n^jz) = & \omega_n^{j\lambda_n}\phi_1(z)\,, \ \phi_1(\omega_n^jz) + \phi_0(\omega_n^jz) = & \omega_n^{j\lambda_n}\{\phi_1(z) + \omega_n^{-j\lambda_n}\phi_0(\omega_n^jz)\} \ = & \omega_n^{j\lambda_n}\{\phi_1(z) - Q_j(z)\}\,, \end{aligned}$$

say, where $Q_j(z) = -\omega_n^{-j\lambda_n}\phi_0(\omega_n^j z)$. We deduce that

(6)
$$m\left(r, \frac{1}{\phi_1(z) - Q_j(z)}\right) = m\left(r, \frac{1}{\phi_1(z) + \phi_0(z)}\right) = m\left(r, \frac{1}{f - g(z)}\right).$$

Also according to (1) we have

(7)
$$T(r, Q_i(z)) = o\{T(r, \phi_1)\} \quad \text{as} \quad r \to \infty.$$

Obviously, $h_{v_N} > h_{v_n} \ge \lambda_n$. Thus the coefficient of $z^{h_{v_N}}$ in $Q_j(z)$ is

$$I_j = b_{v_N} \omega_n^{-j\lambda_n} \omega_n^{jh_{v_N}} = b_{v_N} \omega_n^{j(h_{v_N} - \lambda_n)} = b_{v_N} \exp(2\pi i j(h_{v_N} - \lambda_n)/d_n).$$

By (5), the number of distinct values of I_{j} is precisely

$$d_n/(h_{v_N}-\lambda_n, d_n)>T$$
.

Thus more than T of $Q_j(z)$ are distinct from each other. Using (6), (7) and Lemma 1 we deduce that

$$(T+1)m\left(r,\frac{1}{f-g(z)}\right) \leq T(r,\phi_1) + S(r,\phi_1)$$

$$\leq T(r,f) + S(r,f) \qquad (r \to \infty).$$

Hence

$$\delta_{\mathcal{S}}(g(z), f) \leq \frac{1}{T+1} < \frac{1}{T}.$$

This contradicts (2).

Case (B.2). For all $v > V_n$ we have $(h_v - \lambda_n, d_n) \ge d_n/T$. In this case we have

$$(h_v-\lambda_n, d_n)=\frac{d_n}{c_n}$$

where c_v is an integer and $1 \le c_v \le T$.

Clearly $d_n/T!|d_n/c_v$. Thus

(8)
$$\frac{d_n}{T!} | d_n \text{ and } \frac{d_n}{T!} | (h_v - \lambda_n) \text{ for } v > v_n.$$

By (3)

$$f(z)-g(z)\!=\!\textstyle\sum\limits_{v=0}^{\infty}a_{v}z^{\lambda_{v}}\!-\!\textstyle\sum\limits_{v=0}^{\infty}b_{v}z^{\lambda_{v}}\!=\!\textstyle\sum\limits_{v=0}^{\infty}\eta_{v}z^{\beta_{v}}.$$

Thus we easily deduce, in view of (8) and the definition of d_n , that there exists an integer v_M such that $v_M \ge n$ and

(9)
$$\frac{d_n}{T!} \left| (\beta_v - \beta_{v_M}) \quad \text{for } v \ge v_M + 1.$$

Obviously we have

$$f(z) - g(z) = \sum_{v=0}^{v_M-1} \eta_v z^{\beta_v} + \sum_{v=v_M}^{\infty} \eta_v z^{\beta_v} = \psi_0(z) + \psi_1(z),$$

say, where $\psi_0 = \sum_{v=0}^{v_M-1} \eta_v z^{\beta_v}$ and $\psi_1 = \sum_{v=v_M}^{\infty} \eta_v z^{\beta_v}$.

We set $\zeta_n = \exp(2\pi i T!/d_n)$. Noticing (9), we deduce that

$$\psi_1(\zeta_n^j z) = \sum_{v=v_M}^{\infty} \eta_v \zeta_n^{j\beta_v} z^{\beta_v} = \zeta_n^{j\beta_v} M \psi_1(z)$$
,

where j is a non-negative integer.

Hence

$$\begin{aligned} \phi_1(\zeta_n^j z) + \phi_0(\zeta_n^j z) &= \zeta_n^{j\beta_{v_M}} \{ \phi_1(z) + \zeta_n^{-j\beta_{v_M}} \phi_0(\zeta_n^j z) \} \\ &= \zeta_n^{j\beta_{v_M}} \{ \phi_1(z) - R_j(z) \} , \end{aligned}$$

say, where $R_j(z) = -\zeta_n^{-j\beta_v} M \psi_0(\zeta_n^j z)$.

We easily see that

(10)
$$T(r, R_{j}(z)) = o\{T(r, \psi_{1})\},$$

(11)
$$m\left(r, \frac{1}{\psi_1 - R_i(z)}\right) = m\left(r, \frac{1}{\psi_0 + \psi_1}\right) = m\left(r, \frac{1}{f - g(z)}\right).$$

Now we set

$$\Delta_v = (T!(\beta_{v_M} - \beta_v), d_n)$$
 (v=2, 3, ..., T+2).

Then there must exist an integer p such that $2 \le p \le T+2$ and

(12)
$$\Delta_p = (T!(\beta_{v_M} - \beta_p), d_n) < \frac{d_n}{T}.$$

In fact if $\Delta_v \ge d_n/T$ for each v ($v=2,3,\cdots,T+2$), then $\Delta_v = d_n/q_v$ where q_v is an integer and $1 \le q_v \le T$. Thus there can be at most T different values of q_v and so of Δ_v . But Δ_v ($v=2,3,\cdots,T+2$) must all be distinct (If $\Delta_u = \Delta_v = m$ for $2 \le u < v \le T+2$, then $m \mid T \mid (\beta_v - \beta_u)$, which is impossible since by (4) we have $0 < T \mid (\beta_v - \beta_u) < T \mid \beta_{T+2} < d_n/T \le m$). Therefore the number of distinct values of Δ_v ($v=2,3,\cdots,T+2$) is precisely T+1. This is a contradiction, which shows that (12) is valid.

Now let us recall the definition of v_M and p and notice (4). Clearly we have

$$\beta_p \leq \beta_{T+2} < \beta_n \leq \beta_{v_M}$$
.

Hence the coefficient of $z^{\beta p}$ in $R_i(z)$ is

$$\begin{split} L_{j} &= -\zeta_{n}^{-j\beta_{v_{M}}} \eta_{p} \zeta_{n}^{j\beta_{p}} \\ &= -\eta_{p} \zeta_{n}^{-j(\beta_{v_{M}} - \beta_{p})} = -\eta_{p} \exp \left(-\frac{2\pi i j (\beta_{v_{M}} - \beta_{p}) T !}{d_{n}} \right). \end{split}$$

By (12), the number of distinct values of L_j is precisely

$$\frac{d_n}{(T!(\beta_{v_M}-\beta_p), d_n)} > T.$$

Thus more than T of the functions $R_j(z)$ are distinct from each other. Using (10), (11) and Lemma 1, we obtain that

$$(T+1)m\left(r, \frac{1}{f-g(z)}\right) \leq T(r, \phi_1) + S(r, \phi_1)$$

$$\leq T(r, f) + S(r, f) \qquad (r \to \infty).$$

Therefore

$$\delta_{\mathcal{S}}(g(z), f) \leq \frac{1}{T+1} \leq \frac{1}{T}.$$

This contradicts (2).

According to the above discussion, we deduce that in case (B)

$$\delta_{\mathcal{S}}(g(z), f) = 0$$

This completes the proof of Theorem 1.

REFERENCES

- [1] C.T. Chuang, Une généralisation d'une inégalité de Nevanlinna, Sci. Sinica, 13 (1964), 887-895.
- [2] B.-Q. LI AND C.-J. DAI, A.P. gaps of (b, d) type and modular distribution, Journal of East China Nomal University. (to appear).
- [3] W.K. HAYMAN, Meromorphic functions (Oxford University Press, Oxford, 1964)
- [4] W.K. HAYMAN, Value distribution and A.P. gaps, J. London Math. Soc. (2), 28 (1983), 327-338.

DEPARTMENT OF MATHEMATICS YANG ZHOU TEACHERS COLLEGE CHINA