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REMARKS ON A RESULT OF HAYMAN

BY BAO-QIN LI

1. Introduction.

In this paper, we use the usual notation of Nevanlinna theoryc3].

Suppose that f(z)= Σ anz
λn is a transcendental entire function, where anφ0

71 = 0

(n=0, 1, 2, •••) and {λn} is arranged in increasing order. Also let g{z) be an

arbitrary entire function growing slowly compared with the function f(z), i.e.,

T(r, g)=o{T(r, /)} as r-*oo. Following HaymanC4], if f(z) has finite order, we

define

s(g(z), /)=1—hm Y—7τ

If f(z) has infinite order, let E be any set in (1, oo) having finite length. We
define

Ss(g(Z), f)=lsuPrME ^ ι = ψ r ^ % E n r t f)

Obviously,

d{g{z), / ) = l
1 [r,

In particular, when g(z)=a {a is a constant) we get the definition of δs(a, f)
defined by Hayman1143.

Under the above definitions, HaymanC4] proved

THEOREM A. Let dn be the highest common factor of all the numbers λm+1

—λm for m^n and suppose that

dn—> oo as ft—>oo.

Then δs(a, / )=0 for every finite complex number a.

With the hypotheses of Theorem A, we proved in [2] θs(g(z), / )^ l/2 for
every function g(z) satisfying T(r, g)—o{T{rf /)}. Now we further prove
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δs(g(z), / ) = 0 for every entire function g{z) satisfying T(r, g)—o{T{r, /)} as
r—>oo. That is, we shall prove

THEOREM 1. Let dn be the highest common factor of all the numbers λm+1

—λm for m^n and suppose that

dn — > °° cis n—>co.

Then δs(g(z), / ) = 0 for every entire function g{z) satisfying T(r, g)=o{T(r, f)\
as r—>oo.

Clearly, Theorem 1 is an extension of Theorem A.

2. Proof of Theorem 1.

From now on we denote by S(r, f) any term which satisfies Sir, / ) =
o{T{r, /)} as r->oo outside some set of finite length. In particular, if fiz) is of
finite order, then we assume that Six, f)=o{(T(r, /))} as Γ-*CXD without excep-
tional set. Also suppose that a and b are two positive numbers. "α|&" implies
that there exists a positive integer n such that b—n-a.

In order to obtain Theorem 1, we need the following lemma of [1].

L E M M A 1. // F(z) is an entire function and gι(z), g2(z), •••, gm(z) are distinct
entire functions satisfying T(χ, gj)=o{Tir, F)\ as r-*oo ( / = ! , 2, ••• , m), then

Proof of Theorem 1. Suppose that g(z) is any entire function satisfying

(1) T(r, g)=o{T(r, f)} as r->oo.

We then discuss two cases separately.
t

Case (A). g(z)= Σbυz
hυ is a polynomial.

We write

where ηvΦθ and {βυ} is arranged in increasing order. Let d% be the highest
common factor of all the numbers βm+ι—βm for rn^n. Obviously we have
dj->oo as n—>oo. Hence by Theorem A we have, in view of (1),

δs(g(z),f)=δs(0,f-g)=0.

Case (B). g(z)=Σ>bvz
hv is transcendental, where bvφ§ (v=0, 1, 2, •••) and

υo
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{hv} is arranged in increasing order.
Suppose contrary to hypothesis that δs(g(z), / )>0 and choose a positive in-

teger T such that

( 2 ) δs(g(z),f)>-γ.

We write

( 3 )

where ηvφ0 (v=0, 1, 2, •••) and {/3J is arranged in increasing order.
Let us choose an integer n so large that

( 4 ) n>T+2 and dn>T\Tβτ+2.

We assume hΌn as the minimum of numbers hv (v=0, 1, 2, •••) satisfying hΌ^λn.
Again we consider two subcases separately.

Case (B.I). There exists an integer vN>vn such that

(5) (hVN-χn9dn)<4*-.

In this case we write

f(z)-g(z)=

say, where ^ o ^ Σ α ^ ^ — Σ ^ Λ υ , φi= Σ β

By ί ίJWm+i-4) for m ^ n , we have

dn\(λυ—λn) for v ^

We set ωn=exp(2πi/dn). Then for each non-negative integer j we have

say, where Qj(z)=—ωniλnφo((ύJ

nz). We deduce that

( 6) m(r, - r - r τ — n , Λ—m(r, )=m(r, — —).
V φi(z)—Qj(z)/ \ φι(z)+φQ(z) / \ f—g(z)/

Also according to (1) we have

(7) T{r, Qj(z))=o{T(r, φ1)} as r-*oo.

Obviously, hVN>hVn^λn. Thus the coefficient of zhv* in Qs(z) is
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Ij=bVNa)nj;in(uihVN=bVNa)i(hVN-x^=bVN exp (2πij(KN-λn)/dn).

By (5), the number of distinct values of /; is precisely

dn/(hVN-λn, dn)>T.

Thus more than T of Qj(z) are distinct from each other. Using (6), (7) and
Lemma 1 we deduce that

<T(r, φ^+Sζr, φι)

^T(r, f)+S(r, f) (r-»oo).
Hence

<δs(g(z),f)£-

This contradicts (2).

Case (B.2). For all v>Vn we have (hυ-λn, dn)^dJT.
In this case we have

(hυ—λni dn)=—-
cv

where cυ is an integer and l<Lcυ<*T.

Clearly dJT\\dn/cυ. Thus
A

(hυ~λn) for v>vn.
(8)

By (3)

an dn

Kz)-k

and

?(z)=

a
T

Σc

n
f

ivZ
υ=o v=o

Thus we easily deduce, in view of (8) and the definition of dn, that there exists
an integer vM such that vM^n and

(9) -ψγ\(βv-βvM) for V

Obviously we have

9ΣΪηvZβ*+ Σ ηvzβ*
o

υ j t f i oo

say, where φo= Σ Vυ^βv and ox— S f)vz
βv.

We set ζn=exp(2πiT\/dn) Noticing (9), we deduce that

φi(ίiz)= Σ ηΛtfoz^ζίf'Mφάz),
V=Vfif

where j is a non-negative integer.
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Hence

say, where Rj(z)=-ζnjβvMφo(ζίz).
We easily see that

(10) T(r,R^z))=o{T(r9φ1)},

(11) m(r, — vTτ)=m(r> r . / )=m(r> 1

Now we set

Δ,=(T KβVM-βυ), dn) (v=2, 3, ..., T + 2 ) .

Then there must exist an integer p such that 2^p^T-\-2 and

(12) AP=(T l(βVM-βp), 4 ) < - y .

In fact if Δ^dJT for each v (v=2, 3, •••, T+2), then Av=dn/qΌ where ?υ

is an integer and l<qΌ^T. Thus there can be at most T different values of
qΌ and so of Av. But Av (v=2, 3, •••, T+2) must all be distinct (If Au=AΌ=m
for 2<^u<v<LT+2, thenm\T\(βυ—βu), which is impossible since by (4) we have
0<T\(βυ-βu)<T\βτ+2<dn/T^m). Therefore the number of distinct values of
Aυ (v=2, 3, •••, T+2) is precisely T+l. This is a contradiction, which shows
that (12) is valid.

Now let us recall the definition of vM and p and notice (4). Clearly we
have

βp ^ βτ+2 < βn ̂  βυM

Hence the coefficient of zβp in Rj(z) is

By (12), the number of distinct values of L, is precisely

(T \(βVM-βp), dπ)

Thus more than T of the functions Rj(z) are distinct from each other. Using
(10), (11) and Lemma 1, we obtain that

, f)+S(r, f) (r->oo).
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Therefore

This contradicts (2).

According to the above discussion, we deduce that in case (B)

δs(g(z), /)=0

This completes the proof of Theorem 1.
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