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REMARKS ON A RESULT OF HAYMAN

By Bao-QIN L1

1. Introduction.

In this paper, we use the usual notation of Nevanlinna theorytl.

Suppose that f(z)= > a,z*» is a transcendental entire function, where a,+#0
n=0

(n=0, 1, 2, ---) and {4,} is arranged in increasing order. Also let g(z) be an
arbitrary entire function growing slowly compared with the function f(z), i.e.,
T(r, g)=0{T(r, f)} as r—oo. Following Hayman™), if f(z) has finite order, we

define
1
N(r, L~
3s(8(2), H=1— n_m(T(fr_fg)@» _

T—00

If f(z) has infinite order, let £ be any set in (1, co) having finite length. We
define

N(r N — ) m(r L )
- ; P8R . o P f—8()
Osle@ D=1 e ™ Tr ) Bies T Tr )

Obviously,

S
N(r’ / —g(2)>
T(r, f)

In particular, when g(z)=a (@ is a constant) we get the definition of ds(a, f)

defined by Hayman(l,
Under the above definitions, Hayman'*! proved

o(g(2), f)=1—1TiTr°1° =0s(&(2), f).

THEOREM A. Let d, be the highest common factor of all the numbers Am:
—2Anm for m=n and suppose that

d, —> oo as n—oo,
Then ds(a, f)=0 for every finite complex number a.

With the hypotheses of Theorem A, we proved in [2] O4(g(z), f)<1/2 for
every function g(z) satisfying T'(r, g)=o{T(r, f)}. Now we further prove
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ds(g(z), /)=0 for every entire function g(z) satisfying T(r, g)=o{T(, f)} as
r—oo. That is, we shall prove

THEOREM 1. Let d, be the highest common factor of all the numbers Amsy
—2An for m=n and suppose that

d, —> oo as n—oo,

Then 05(g(z), f)=0 for every entire function g(z) satisfying T(r, @)=o0{T(r, )}

as r—oo,

Clearly, Theorem 1 is an extension of Theorem A.

2. Proof of Theorem 1.

From now on we denote by S(r, f) any term which satisfies S(r, f)=
o{T(r, f)} as r—oco outside some set of finite length. In particular, if f(z) is of
finite order, then we assume that S(r, f)=o{(T(r, f))} as r—oo without excep-
tional set. Also suppose that ¢ and » are two positive numbers. “a|b” implies
that there exists a positive integer n such that b=n-a.

In order to obtain Theorem 1, we need the following lemma of [1].

LEMMA 1. If F(z) is an entire function and g,(z), g:(2), ---, gn(2) ave distinct
entire functions satisfying T(r, g)=0{T(r, F)} as r—oo (j=1, 2, -+, m), then

m

1
3 m(r, g ST Fy+Sr, B,

J=1

Proof of Theorem 1. Suppose that g(z) is any entire function satisfying
(1) T(r, &)=o{T(r, )}  as r—oo.
We then discuss two cases separately.

Case (A). g(z)zvgbvz"v is a polynomial.
We write

f(2)—g&)= Z ez,

where 7,#0 and {8,} is arranged in increasing order. Let d% be the highest
common factor of all the numbers Bm+1—Bm for m=n. Obviously we have
d¥—oo as n—oo. Hence by Theorem A we have, in view of (1),

05(g(2), f)=0s0, f—g)=0.

Case (B). g(z):vgbvzhv is transcendental, where b,%0 (v=0, 1, 2, ---) and
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{h,} is arranged in increasing order.
Suppose contrary to hypothesis that ds(g(z), f)>0 and choose a positive in-
teger T such that

(2) 35(8@), >
We write
(3) f (2)—g(2)=§% n02Pv,

where ,#0 (v=0, 1, 2, ---) and {B,} is arranged in increasing order.
Let us choose an integer n so large that

(4) n>T+2 and d,>T!TBrss.

We assume h,, as the minimum of numbers h, (v=0, 1, 2, ---) satisfying h,=2,.
Again we consider two subcases separately.
Case (B.1). There exists an integer vy>v, such that

dn
T

(5) (hoy =2y d)<

In this case we write

f(D)—8()= S azi— Tba"r=go()+:(2),

say, where ¢,= nZ_}lavz*”— ﬁ byz™, ¢y= ﬁ a,z*.
=0 V=0 v=n
By d.|(Ans1—An) for m=n, we have
dal(Ae—2A7) for v=n-+l1.

We set w,=exp(2xi/d,). Then for each non-negative integer ; we have

¢1(wrjnz):w#n¢1(z);

P1(@32)+ Po(wi2) =i {$:(2)+ w77 no(whz)}

=i {$,(2)—Q42)},

say, where Q;(z)=—w;*"¢y(w}z). We deduce that

1 _ 1 B 1
(6) (7, ¢1<z>~—Q,~<z>)‘m<” soram) 0 =)
Also according to (1) we have
(7) T(r, Q2)=0{T(r, ¢.)} as r—co.

>2,. Thus the coefficient of z"¥ in Qz) is

vp=

Obviously, hy,>h
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I,=b, w7 rwion =b,  wion =40 =b, , exp (27ij(hyy—2An)/d ).
By (5), the number of distinct values of I, is precisely
dn/(hoy—2n, d)>T.

Thus more than T of Q,(z) are distinct from each other. Using (6), (7) and
Lemma 1 we deduce that

(T+Dm(r, <T(r, $)+S(r, ¢

1
f—g(Z))
<T@, H+Sr, f)  (r—oo).

Hence

1 1
ds(g(2), fl= T <7

This contradicts (2).

Case (B.2). For all v>V, we have (h,—2,, d,)=d,/T.
In this case we have

(ho—2n, dn) =22
C

v

where ¢, is an integer and 1<¢,<T.

Clearly d,/T!'|dn/c,. Thus

dn dn

By (3)

(hv“‘zn) for V>V,

f(@)—g(2)= Z avztv— Jbz™= 3 n,zP.
v=0 v=0 =0
Thus we easily deduce, in view of (8) and the definition of d,, that there exists
an integer vy such that vy=n and

(9) g’: (Bo—Boy)  for v=vy+1.

Obviously we have
oy-1 o
f@—-g@= 2 mzﬂ”Jrv:ED}M Nu2Pr=¢o(2)+¢i(2),

oy-1 o
say, where ¢,= MZO N,zfv and ¢, = > yp,zfe.
V= v=vyr
We set {,=exp(@n:T !/d,). Noticing (9), we deduce that

diliay= 3 nlibrzPo=Lifougy(a),

where ; is a non-negative integer.
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Hence
D0(L32)+ o Chz)=Lifou {P(2)+La?Pounpo(Ch2)}
=Pou{p(z2)—Ry(2)},

say, where R;(z)=—{"Peudy(L}2).
We easily see that

(10 T(r, Ri(2)=0{T(r, $)},

1 1 1
an (e 5=r@) =0 )= )
Now we set

Ay=(T Boyy—PBw), dv) =2, 3, -+, T+2).
Then there must exist an integer p such that 2<p<T+2 and
(12 By =(T oy =By, d)<-32

In fact if A,=d,/T for each v (v=2, 3, ---, T+2), then A,=d,/q, where ¢,
is an integer and 1<¢,<T. Thus there can be at most T different values of
g, and so of A, But A, v=2, 3, ---, T+2) must all be distinct (If A,=A,=m
for 2€u<v<T+2, then m|T |(8,— B.), which is impossible since by (4) we have
0<T By—Bu)<T 1Br+s<dn/T<m). Therefore the number of distinct values of
A, =2, 3, -+, T+2) is precisely T-+1. This is a contradiction, which shows
that (12) is valid.

Now let us recall the definition of v, and p and notice (4). Clearly we

have
,Bpé,BT+2<,Bn§ﬂvM-

Hence the coefficient of zf7 in Ry(z) is
Ly=—CatPou, i
27§ (Boy—Bp)T !)
d, '
By (12), the number of distinct values of L, is precisely
dn
(T !(‘B'vu—ﬁp): d )

Thus more than T of the functions R,(z) are distinct from each other. Using
(10), (11) and Lemma 1, we obtain that

>T.

(T-+1m(r, =) ST, g0+50, 6

=T(r, H+Sr, f)  (r—o0).
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Therefore

1 1
<<
os(g(@), = TS
This contradicts (2).
According to the above discussion, we deduce that in case (B)

ds(g(2), /)=0

This completes the proof of Theorem 1.
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