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DIRICHLET PRINCIPLE FOR THE ROYDEN

COMPACTIFICATION

BY MOSES GLASNER

Consider a hyperbolic Riemann surface R. Given some notion of vanishing
of functions on a portion of the ideal boundary of R and a suitable function /

on R with finite Dirichlet integral, D(/) = \ dfΛ*df<oo} consider the family of

Dirichlet finite functions §/ consisting of functions φ such that φ—f "vanishes"
at the ideal boundary. A Dirichlet principle is the statement that there exists
a unique harmonic function hf in the family Q7 such that

(1) D(hf)=mf{D(φ);φcΞ%f}.

Several notions of vanishing have been considered. Royden [6] and Kura-
mochi [4] introduced compactifications of R and required functions to have the
value 0 on certain subsets of the additions to R. Brelot [1] required functions
to have 0 limit along almost every line in a bundle of Green's lines whereas
Ohtsuka [5] required the limit to be 0 along almost every curve in a family
of curves of finite extremal length tending to the ideal boundary.

The latter three works allow free boundary values; that is, in the defini-
tion of Qy vanishing is required only at a portion of the potential-theoretically
significant part of the ideal boundary. In this case the minimizing function
may not agree with the given function on the prescribed portion and thus the
notion of vanishing must allow for exceptions. Although capacities have been
studied on the Royden boundary (cf. [8]), essentially only harmonic measure
has been used extensively for specifying exceptions there. But the latter is not
sufficiently sensitive to the Dirichlet integral to be used in formulating a Dirichlet
principle. In this paper we show that the definition of Dirichlet capacity intro-
duced in [3] leads to the Dirichlet principle with free boundary values on the
Royden compactification.

1. We use the standard notations and results associated with the Royden
boundary theory as presented in [7]. The Royden compactification of R is
denoted by R*. We will use the symbols cl(A) and dA to denote closure and
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boundary in R, while reserving the symbol Λ for the closure of A in R*.
We begin by recalling the definition of Dirichlet capacity given in [3].

Since we will be dealing with this capacity exclusively we will simply call it
capacity here. Fix a regular boundary neighborhood W of R, i.e., R—W is
compact and dW is piecewise analytic. We denote by M(W;dW) the functions
in the Royden algebra M(R) which vanish on R—W. For an open set OdR
with cl (0)dW consider the family

dW) φ\O^l\

and define

(2) d(p)=inf{D(φ);φς=ε\

It is easy to see that d is an increasing real-valued function on the open subsets
of W with closures in W. Set W*=W—dW. For a compact set K in W* we set

(3) c(K)=mf{d(UnR); U open in W*, KdU, c\(UnR)(ZW}.

It is easy to see that c(-) is a capacity in the sense of Choquet (cf. [3]). For
an open OCi?*, c(O) is defined by

c(O)=sup{c(K) K is compact in W*, Kc.0}.

For an arbitrary subset A of W*, with AdW*, the inner and outer capaci-
ties of A are defined in the usual manner and it is called capacitable if the two
agree. By [3, Proposition 11] compact sets in W* are capacitable and therefore
so is any countable union of compact sets of capacity 0.

2. If K is a compact subset of the Royden harmonic boundary Δ, then it
is convenient to have the somewhat simpler expression for c(K) given in the
following

LEMMA. There is a unique function uκ^HBD(W dW) which is the BD-limit
of any sequence minimizing the Dirichlet integral in the family

Moreover, c(K)=D(uκ).

We shall call the function uκ the capacitary potential for K. Also note that
uκ may be less than 1 at some points of K. (From the proof of Proposition 4
it will follow that these points are at most a set of capacity 0.) For the proof
set d=inf{D(φ); φGC}. Let {un}CC be a minimizing sequence, i.e., d —
\imD(un). By replacing un by unΓ\l, we may assume that 0 ^ w n ^ l ; in par-
ticular, un\K~l. Then by replacing un by its harmonic projection on W (cf.
[7]), we may also assume that un^HBD(W dW). Since the family C is convex,
any minimizing sequence in C is Z)-Cauchy. We conclude that there is a func-
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tion uκ(ΞHBD(W;dW) such that uκ=^BD-\imun and d=D(uκ).
To complete the proof we must show that d—c{K). Set an-=(n—l)/n and

Un={p^R*; Un(p)>an}, an open subset of R* containing K. Also set fn=
(unr\an)/an. Then by (2) and (3), D(fn)^d(UnΓλR)>c(K). Consequently, d =
lim D(un)=\imD(fn)^c(K).

For the reverse inequality, by (3) we can choose a sequence of open sets
{On} in i?* with c\(OnΓ\R)c:W, KdOn and c(K)=\Ίmd(OnnR). Then by (2) we
choose {φn}cM(W;dW) with φn\OnΓλR^l and D(φn)^d{OnΓ\R)+n-\ By the
denseness of OnΓ\R in On, we also have φn\On^l and hence 0n^£". Thus
d<D(φn)ύd(Onr\R)+n-\ which gives d£

3. We need another technical.

LEMMA. // ψ^M(W 3W) with ψ\K^0, then

(4)

For the proof take a minimizing sequence {un}(ZC. Then for every ε>0
and every positive integer n the function un-{-εφ^C. Thus, Diu^^Diun+εφ)
=D(un)+2εD(un, φ)+ε2D(φ). By letting n->oo we see that 0<2D(un, φ)J

rεD(φ),
and then letting ε->0 establishes (4).

4. The following characterization of the compact subsets of Δ with positive
capacity is the key to relating convergence of boundary values to convergence
on R.

PROPOSITION. Let K be a compact subset of Δ. Then c(K)>0 if and only
if every sequence {gn}(ZM(W dW), with {D(gn)\ bounded, 0<gn^ίl, gn\K=l and
go=B—Mm gn existing, satisfies

(5) maXtf£0=l.

For the sufficiency note that the minimizing sequence {un} used in the proof
of Lemma 2 has all the stated properties of the sequence {gn\ with go=uκ.
Thus (5) implies that uκ^0 and thus c(uK)—D(uK)>0.

For the proof of the necessity let {gn} be a sequence having the properties
given in the proposition except that it does not satisfy (5); i.e., a—meLXκgQ^
[0, 1). Note that by Kawamura's lemma (cf. [7]), go^M(W dW) and {gn} con-
verges to g 0 D-weakly. Let {un}dC be a minimizing sequence chosen with
un\K—\ as in the proof of Lemma 2. Since gn—un\K=0, Lemma 3 implies
that D{uκ, gn—un)=0 and by letting n->oo we have

(6) D(uκ,g0-uκ)=0.

On the other hand, since agn—golK^O, Lemma 3 implies that D{uκ, agn—g0)^0
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and by letting n-»oo we obtain (a—ΐ)D(uκ, go)^0, or,

(7) D(uK,g0)£0.

Subtracting (6) from (7) gives D(uK)^0, which means that c(K)=0.

5. We are ready to establish a preliminary version of the Dirichlet principle
on the Royden compactification.

PROPOSITION. Given a compact set KaA with c(K)>0 and feM(R), consider
the family

%f={φe-M(R)', φ=f q.e. on K).

There exists a unique harmonic function h f ^ f satisfying (1).

Here and throughout, we say that a property holds q. e. on a set if it holds
on the set except for a subset of capacity 0.

The uniqueness of hf follows from (1). Indeed, as in the proof of Lemma
3 it is easy to see that if a function Λ'eg/ satisfies (1), then D(h', ψ)=0 for
every ψtΞM(R) with ψ=0 q.e. on K. Thus D(h', h'-hf)=0, and by symmetry,
D(hf, hf—hf)=0. This implies that hr—hf is a constant, which must be 0
since h'—hf=§ on a nonempty subset of K.

For the proof of the existence choose a minimizing sequence {/z ĵcf?/. We
may assume that hn is harmonic on R and that mmκf^hn^vnmκf. Thus by
the Harnack principle a subsequence, again denoted by {hn}, has hf—B—Y\mhn.
Since §/ is convex, {hn} is D-Cauchy and hence we even have hf=BD—\imhn.
In particular, hf satisfies (1). It remains to show that A/eg/.

For each n, we may choose KndK such that hn\Kn—f\Kn and c(Kn)=0.
Set Kco=VjKn and F=K-K^ Then c(/£Όo)=0 and

(8) hn\F=f\F, for every n.

We complete the proof by showing that if E is a nonempty compact subset
of \pGF; hf(p)φf(p)}, which is an iVset in R*, then c(E)=0. Since any such
E is the union of a compact set in {p^F; hf(p)>f(p)} with one in {p^F;
hf(p)<f{p)}, we may assume that it is contained in the latter, as the other
situation is entirely analogous. Set m=minE(f—hf). Clearly, m>0. Also define
vn—l—{f—hn) and vo—l—(/—hf). Then {D(vή)} is bounded, vo=β—limv»,
v » | £ = l and max^vo=l—m<l. By replacing vn by (vnΠl)Uθ, and v0 by (v0Γ\l)
WO, we can ensure that 0^ι>n^l without disturbing the above properties.

Let W<BM(W;3W) such that 0<^w<l and w | Δ = l and set gn=wvn, go=wvo.
We see that gn, go<sM(W dW), \D(gn)} is bounded, 0 ^ n ^ l , go=B-\imgn,
gn\E=l and max£go=(l—m)Uθ<l. Thus by Proposition 4, we arrive at
c(E)=0.
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6. The mapping of / to the minimizing function given by Proposition 5 is
linear. In addition, it is order preserving according to the following

LEMMA. Consider a compact KaA with c(K)>o and f, g^M(R). If f^g
q.e. on K, then hf^hg.

For the proof assume that the open set 0*={p^R* hg{p)>hf{p)} is not
empty. Then O*Γ\K has capacity 0. Consider the function

[hg on O*Γ\R,
h'=\

[hf on R—O*.

Since h'—f q.e. on K, h'<B%f. Thus, D(h')>D(hf), which implies that

/ Q \ Γ) / I, \ \ Γ) ί h \
\ *s ) DO*Γ\R\'^g) ̂ U0*Γ\R\'*' f )

The function
[hf on O*Γ\R,

h"=\
{hg on R—O*.

belongs to %g and in view of (9) we must have D{hg)>D{h"). This contradic-
tion establishes the assertion.

7. Our goal is to extend the Dirichlet principle given in Proposition 5 to
the case of an arbitrary Dirichlet function / (cf. [2]) on R. For this purpose
we first consider the extended Royden class M(R) (cf. [7]), the set of con-
tinuous Dirichlet functions on R, and establish the Dirichlet principle for a non-
negative / ε M ( ί ) ,

First note that for /εM(fi), the set S={p(ΞR*; |/|(/>) = oo} has capacity 0.
To see this simply note that 5 is a compact subset of Δ and apply Proposition
4 with gn=(\f\Γ\l)/n and g 0 = 0 .

LEMMA. Given a compact set K(ZA with c(K)>0 and a nonnegattve f^M(R),
consider the family

^f — {φ^M(R) φ—f q.e. on K).

There exists a unique harmonic function hf&$f satisfying (1).

The proof of the uniqueness is as in Proposition 5. For the existence let
uk^$ίfr\k, ( έ = l , 2, •••) be the function which minimizes the Dirichlet integral.
Then Lemma 6 implies that 0^uk^uk+1. By the Harnack principle either C-lim uk

is oo or a harmonic function hf. Assume that co is the limit. Fix a compact
set EcK such that c(E)>0 and uk=fΓ\k on E. Note that D(uk)£D(fnk)<
D(f). Define
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Then it is easy to see that O^z ^ l , {D(yk)} is bounded, vk\E=l and 0=B
—limt;*. Let w^M(W;dW) such that 0£w£l and w\A=l and set gk=wvk,
go^O. By Proposition 4 we arrive at the contradiction that c(E)—0 and we
have established that hf=C—limuk^HD(R).

Since hf^uk, hf\K^fΓ\k\K and consequently, hf\K^f\K. We claim that
in fact hf—f q. e. on K. To show this we take a nonempty compact set
E(Z{p(=K; f(p)<hf(p)<oo} and show that c(E)=0. For this purpose set
m=minEhf—f, and

We again have 0^ι>*^l, {#(1^)} bounded, z ; Λ | £ = l and vo=B—\imvk. Set
gk=wvk, go=wvo. Since m a x ^ 0 = ( l — W Ϊ ) W 0 < 1 , Proposition 4 implies that
c(E)=0.

Having established that hf<=%f, we still need to show that hf satisfies (1).
Let {hn}C2%f be a minimizing sequence. Then hnΓ\k^fC\k and consequently
D(uk)£D(hnr\k)£D(hn). By Fatou's lemma we obtain D(hf)<D(hn), which on
letting n—>oo implies (1).

8. We are ready to establish the main result.

THEOREM. Given a compact set KcA with c(K)>0 and a Dirichlet function
f an R, consider the family

iSf — iφ'yφ *'s β Dirichlet function, φ=f q.e. on K}.

There exists a unique harmonic function hf^%f satisfying (1).

If / is not continuous on R, then we replace it by its harmonic projection
on R without disturbing $f (cf. [2]), i.e., we may assume that /eM(fi).
Moreover, since taking the harmonic projection does not increase the Dirichlet
integral, we may also assume that τ$fCM(R). For each positive integer n con-
sider the minimizing function Wn^Sc/u-ronn. By Lemma 7 we may also consider
the minimizing function Λι/m»^§rι/ιnπ. We have seen in the proof that h{f[,
the minimizing function in gf,/,, satisfies h\f\^hιf]ίΛn. Thus by Lemma 6

(10) —hlfι£-hιfιnn£un£hιfiΓ\n£hιfι.

By the Harnack principle hf=C—\ϊmun exists and is harmonic. Let {
be a minimizing sequence. Then by Fatou's lemma

(11) f

in particular, hf&M(R).
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We now show that hf<=i$f. By letting n->oo in (10) we see that \hf\ ^h\f].

Thus, \hf\\ K< \f\\K. Since / is finite q. e. on K, it suffices to show that any

nonempty compact set Ecz{p^K; hf(p)<f(p)<00} has capacity 0. Set m—

mmEf—hf,axιά

We see that 0^vn^l, {D(vn)} is bounded, vn\E=l and vo=B—\imvn. Set

gn—wvn, go=wvo. Since m3XEgo=(l—m){Jθ<l, Proposition 4 implies that

c(E)=0.

Finally, letting &->oo in (11) establishes (1) and completes the proof.
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