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§1. Introduction.

Let R be an open Riemann surface, M(R) the family of non-constant mero-
morphic functions on R and P(f) the number of values which are not taken by
feM(R). We denote by P(R) the Picard constant of R defined by

P(R)=sup{P(f); feMR)}.

In general we have P(R)=2. The significant meaning of this Picard constant
lies in the following fact:

THEOREM A (Ozawa [9]). If P(R)<P(S) for another Riemann surface S,
then there is no non-trivial analytic mapping of R into S.

From now on we shall confine ourselves to finitely sheeted covering algebroid
surfaces defined as proper existence domains of algebroid functions. From the
theory of algebroid functions we have P(R,)<2n for an n-sheeted algebroid sur-
face R,. An n-sheeted algebroid surface R, is called regularly branched when
it has no branched point other than those of order n—1.

Let €, be the family of entire functions having an infinite number of zeros
whose orders are coprime to n and €} the subfamily of €, consisting of entire
functions orders of all zeros of which are less than n.

We denote by R, and R, two algebroid surfaces defined by y"=G(z) and
y*=G(z), respectively, where G(z) and G(z) belong to €F. If G(z) has the same
zeros with the same multiplicity as é(z) in |z| =7, for a suitable p~ositive number
7, and has at least one distinct zero with the multiplicity from G(z) in |[z]| <r,,
then we call R, a finite modification of R, (cf. Ozawa [11]).

We now consider two n-sheeted, regularly branched algebroid surfaces R,
and R, and two m-sheeted, regularly branched algebroid surfaces S,, and S
Suppose that P(R,)=2n, P(Sn)=2m and R, and S, are finite modifications of
R, and S,,, respectively. In our previous paper [8] we had a perfect condition
for the existence of analytic mappings of R, into S, and investigated the struc-
ture of the family $(R,, Sn) of projections of analytic mappings of R, into S.
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ON FINITE MODIFICATIONS OF ALGEBROID SURFACES 297
In the present paper we shall consider the following two problems:

(A) What is P(R,)?
(B) Are there any analytic mappings among R,, R,, S, and Sn?

And we shall obtain generalizations of results of the author [6].

We assume that the reader is familiar with the Nevanlinna theory of mero-
morphic functions and the usual notations such as T(», f), N, a, f), N, a, f),
m(r, f) etc. (see e.g. [5]).

§2. A functional equation.

For our purpose we have to consider a functional equation. We firstly prove

THEOREM 1. Let m be a positive integer. Suppose that two non-constant
entire functions H(z) and M(z) with H0)=M(0)=0 and four integers a, b, ¢ and
d with 0<a<b<m and 0<c=d<m satisfy the following functional equation

(2.1) (eM(z)__r)a(eM(z)_a)b:F(z)(eH(z)__o)c(eH(n_z.)d

with four constants v, 0, ¢ and © and a meromorphic function F(z)=fi(2)™f(2),
where f1(z) and f,(z) are meromorphic in |z| <-+oo and

2.2) T(r, fa=0(T(r, e")) or T(r, f)=0(T(r, ")) r—oo
outside a set of v of finite measure. Then we have

(I) a=c and b=d
and
() one of the following four cases:

2.3) H(z)=M(), F(@=1, r=o, d=r,
2.4) Hz)=M(), F(x=1, r=t, 0=o0,
(2.5) Hz)=—M(z), F(z)=(—1)**7ote@+D*® = rg=gr=1,
(2.6) Hz)=—M(z), F(z)=(—1)**"redle@¥@ = yr=gg=].

(2.4) and (2.6) may occur in the case a=b only.
To prove our Theorem 1 we need

LEMMA A ([10]). Let H(z) be a non-constant entire function and a a non-zero
constant. Then we have

Ny(r, 0, e¥—a)~m(r, f) and Ny, 0, e?—a)=o(m(r, e¥)) 7 — 00

outside a set of r of finite measure, where Ny(r, 0, f) is the counting function of
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simple zeros of the function f and Ny(r, 0, f)=N(, 0, f)—N(r, 0, f).
Proof of Theorem 1. Firstly we prove that the condition

2.7 T(r, fo)=0(T(r, ")) r—oo

outside a set of » of finite measure is equivalent to the condition

2.8 T(r, f)=0(T(r, e?)) r—oo

outside a set of » of finite measure. Assume that the condition (2.7) is true.
Then we consider simple zeros of (e¥—7)(e®—d). It follows from the functional
equation (2.1) that these are zoros of f, or (e¥—a)%(e¥—17)¢, and consequently

Ny, 0, (e¥—1)(e”—8)<N(r, 0, f)+N(r, 0, (" —0)(e"—1)%).
Hence Lemma A and (2.7) imply
@+o()mlr, e™)<o(m(r, e™))+(c+d+o(1))m(r, e¥) ¥ — 00

and so
m(@r, e")=0(m(r, e¥)) 7 — 0

outside a set of » of finite measure. Thus we obtain (2.8). Conversely we as-
sume that the condition (2.8) holds. Then from (2.1) we have

N2(r; O; (eH—U)(eH_T))éN(ry Oy f2)+N(7', 0) (eM_r)a(eM_a)b)-
Hence it follows from Lemma A and (2.8) that
@C+o())m(r, e®)Zo(m(r, e™)+(a+b+o())m(r, e¥) r—oo
and so
m(r, e®)=0@m(r, e™)) ¥ — 00

outside a set of » of finite measure. Hence we have (2.7).
Thus we see that the condition (2.2) can be replace by

(2.9 T(r, fo=o0(m(@r, e®) and T(r, fo)=o(m(r, e¥)) 7 — 00

outside a set of » of finite measure. Further we can deduce from the above
discussion that

(2.10) m@r, e®)=00n(r, ™)) and m@r, e")=00n(r, e¥)) ¥ — 0

outside a set of » of finite measure.

We now prove (I). Assume that a<c. The functional equation (2.1) im-
plies that a simple zero z, of e¥—y is a zero of order a of G(z)=F(z2)(e?®—g)°
(e#®—7)¢, It follows from our assumption of F(z) and a<c<b<m that z, is a
zero of f, or a pole of f, or a multiple zero of (e¥—o)(e¥—7). Hence Lemma
A and (2.9) yield
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m(r, eM)=o(m(r, e™)) ¥ — 00

outside a set of » of finite measure, which contradicts (2.10). We next assume
that a>¢. Then we deduce from (2.1) that a simple zero of ¢¥—g is a zero of
1/f. or a pole of 1/f, or a multiple zero of (e¥—y)(e”—0). Hence Lemma A
and (2.9) imply

m(r, e)=o(m(r, e™)) 7 — oo

outside a set of » of finite measure, which contradicts (2.10). Therefore we

obtain a=c¢. Similarly considering simple zeros of ¢¥—¢ and ¢”—z and taking

Lemma A, (2.9) and (2.10) into account we have b=d. Thus (1) is proved.
From (2.1) and (1) we have

(2'11) (eM<z)__T)a(eM(z)_5)b=F(z)(eH(z) ___a)a(eHm__.L.)b ,
H(z)#const., M(z)#const., HO)=M0)=0, F(z)=f(2)"f:(2),
0<asb<m, yoor(yr—0o)o—1)#0.

Considering simple zeros of ¢”—7y and ¢¥—g, we can deduce from Lemma A
and (2.9) that

(2.12) m(r, e”) ~m(r, e¥) r—00,

that is, m(r, e™)/m(r, e¥)—1 as r—co, outside a set of » of finite measure. Fur-
ther we have

T(r, F)=0(T(r, e")+T(r, e")=00m(r, e¥)) r—oo
and
N(@r, oo, F'/F)S<N(r, 0, F)+N(r, co, F)

SNy, 0, e —7)+Ny(r, 0, e —08)+Ny(r, 0, e¥—0)
+Ny(r, 0, e"—2)+N(r, 0, f2)+N(r, oo, f5)+0O(log )
=o(m(r, eM)+m(r, e®))=o(m(r, e*))
outside a set of » of finite measure. Hence we obtain
T(r, F'/F)=m(r, F'/F)+N(r, o, F'/F)
=0(ogrT(r, F))+N(r, oo, F'/F)

=o(m(r, e¥)),
and consequently

(2.13) T, F'/F)=0(m(r, e¥)) r—co

outside a set of » of finite measure. Since (2.12) and (2.13) valid, the proof of
Theorem in [7] can be transferred to our case, even if a+b#m. Thus the
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proof of (II) follows the lines of that of Theorem in [7, pp. 298-301].

§3. Known results.

Further we need some known results.

THEOREM A ([1]). Let R, be an n-sheeted regularly branched algebroid sur-
face with P(R,)>(3/2)n. Then we have P(R,)=2n.

THEOREM B ([1], [8]). Let R, be a regularly branched algebroid surface
defined by y"=G(z) (G=€¥). If P(R,)=2n, then G(z) satisfies the following func-
tional equation -

G@=[@"(e" P —a) (" =)t
H(z)#const.,, H(0)=0, afla—p)#0, (k, n)=1, 1=k=n/2,

where H(2) is entive, f(z) is meromorphic, a and B two complex constants and k
is an integer.

THEOREM C ([3], [4], [8]). Let R, and S, be two algebroid surfaces de-
fined by y"=G(z) and u™=gw) (G, g=€,), respectively and further G(z) satisfies
the inequality with a constant 7

Ni(r, 0, G)
N(r, 0, G)

for a set of r of infinite measure, where N¥(r, 0, G) is the counting function of
zeros whose orders are coprime to n. If there is an analytic mapping ¢ of R,
into Sp, then n=pm with a positive integer p and the projection h(z) of ¢ is a
single-valued entirve function of z and satisfies

(3.2) gh@)=f"G@)*,  pskps=n—1,

where f(z) is a suitable meromorphic function and k is a suitable positive integer
which 1S coprime to m.

Conversely, if n=pm with a positive integer p and there is an entire function
h(z) satisfies (3.2) with a suitable meromorphic function f(z) and a suitable positive
integer k which is coprime to m, there exists an analytic mapping of R, into S,
whose projection is h(z).

3.1) =7>0

§4. Picard constants.

With respect to the problem (A) we have the following

THEOREM 2. Let R, and R, be two n-sheeted regularly branched al~gebroz'd
surfaces defined by y"=G(z) and y"=G(z), respectively, where G(z) and G(z) are
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two entire functions belonging to €%. If P(R,)=2n and ﬁn is a finite modifica-
tion of R,, then we have P(B,)<(3/2)n.

Proof. By the definition of finite modifications of algebroid surfaces we have
@0 G@)=QR)G(),

where Q(z) is a rational function satisfying the following conditions (M1)—(M6)
(Hereafter in this case we simply say that Q(z) satisfies the condition (M) with
respect to G(z) and n):

(M1) Q(z) has a form
Q@=11 —a) ITz—b)™.

M2) p, ., v, v, are non-negative integers and p+v=1.

(M3) a, and b, are mutually distinct constants and their moduli are less than r,.

(M4) If a; is not a zero of G(z), then 0<y;<n and (g, n)=1.

(M5) If a, is a zero of order k, of G(z), then k;+p;<n and (k;+p,, n)=L

(M6) b, is a zero of order [, of G(z) satisfying [;—v,=0 or 0</;—y;<n, (,—
y,, n)=1.

Since P(R,)=2n, Theorem B implies that G(z) satisfies
4.2) G@)=fi1(2)"(e" P —a)'(e” ®—p)",
H(z)#const.,, H0)=0, afla—p)+#0, ( n)=1, 1=Ii=n/2,

where H(z) is an entire function, f,(z) is a meromorphic function, @ and 3 are
two complex constants and / is an integer.

Now suppose, to the contrary, that P(R,)>(3/2)n. Then it follows from
Theorem A and Theorem B that G(z) satisfies

4.3 G@)=[2(2)" (M D —p)k(eM®—)nk,
M(z)%const., M(@0)=0, 7yo(y—o)+0, (k, n)=1, 1=k=n/2,

where M(z) is entire, f,(z) is meromorphic and 7 and 6 are two constants. It
follows from (4.1), (4.2) and (4.3) that

(MO =N D=3 = QN f(Dfs@) e P —a) (" — .

Since Q(z) is a rational function, we have T(r, Q)=o(T(r, e™)) as r—oco. Hence
our Theorem 1 yields that

Q@) {f1(@)f2)}"=1 or =(—1)"r*s*e™ @

which contradicts the condition (M). Therefore we have P(ﬁn)g(B/Z)n.
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§5. Existence of analytic mappings.

Let R, and S,, be two regularly branched algebroid surfaces defined by
y"=G(2) and u™=g(w) with G(z)=€% and gw)=E€¥, respectively. If P(R,)=2n
and P(S,)=2m, then it follows from Theorem B that G(z) and g(w) satisfy

(51) G(Z)ZF(Z)n(eH(Z)_‘a)l(e”(”_‘ﬂ)"-l,

H0)=0, afla—p)+0, (, n)=1, 1=I<n/2
and

(5.2) gw)=f(w)™(e=® —p)k(et™ —g)m-*,
LO)=0, 7é(r—0)+0, (k, m)=1, 1sk=m/2,

where H and L are two non-constant entire functions, F and f are two mero-
morphic functions, / and % are two integers and a, 3, 7 and J are four complex
constants. Further let R, and §£n be finite modifications of R, and S,, defined
by y"=G(z) and u™=gw) with G(2)=Q(2)G(z)€¥ and g(w)=j(w)g(w)=E%, re-
spectively, where

5.9 Q@=11 e—a) H(—b)™
and
5.4) glw) =11 (w—a,)* I (w—d;)

satisfy the condition (M) with respect to G(z) and n and with respect to g(w)
and m, respectively.

Now in this section we consider the problem (B), that is, whether there exist
analytic mappings among R,, ﬁn, S» and §,,,. We have already obtained a per-
fect condition for the existence of analytic mappings of R, into S, in [8].
Using Lemma A we here note that G, G, g and g satisfy the condition (3.1) in
Theorem C and consequently we can apply Theorem C to analytic mappings in
this section.

Firstly we have

THEOREM 3. There exists an analytic mapping ¢ of R, into S, if and only
if n=pm with a positive integer p and there exist an entire function h(z) and
meromorphic functions f¥(z) and f%(z) satisfying one of the following equations:

@  H@=L(h@)—LHhO), qh@)=t@", r/a=5/f=e""®,
@)  H@=L(h@)—L*©O), qh@)=,", 1/B=0/a=e" ",
(b)  H@)=—L(h@)+L(h0), qh@)=f4)", ra=if=e“*,
(")  H@=—L(h@)+L(O), qh@)=/", rp=0a=e " .
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Proof. Suppose that there is an analytic mapping ¢ of R, into S, Then
it follows from Theorem C that n=pm with a positive integer p and the projec-
tion h(z) of ¢ is a single-valued entire function of z and satisfies

(5.5) E(h(@)=fy()"G(2)*,

where f3(z) is a meromorphic function and an integer A satisfies (1, m)=1 and
p=pi=n—1. We put [A=am-+c and (n—[)A=bm-+d, where a, b, ¢ and d are
four integers satisfying 0=c<m—1, 0=d<m—1. Then we have ¢>0 and d>0
because of (1, m)=1 and (/, n)=1. From (5.1), (5.2), (5.4) and (5.5) we have

(56) (eM(z)__Te—L(h(o)))k(eM(z)_5e—L(h(0)))m—k___F1<Z)(ell(z)__a)c(eH(z)_‘B)d ,

where M(z)=L(h(2))—L(h(0)), Fi(2)=f(2)™f:(2), fo(2)=q(h(2))"* and f,(z)=e LR
f((@)fo(2)F(2)P(e"® —a)®(ef® —B)°. Since ¢(z) is rational, we have T(r, g(h))
=0(T(r, h)) as r—oo. Since eX® is transcendental, Theorem 2 in Clunie [2]
implies T(r, h)=o(T(r, e*‘™)) and consequently

T(r, fo)=T(r, gh)=0(T(r, eX™)=0(T(r, ")) y—o00.

Hence f.(z) satisfies the condition (2.2) in our Theorem 1. Applying Theorem 1
to functional equation (5.6) we have one of the following four cases:

5.7  H@=Mz), F(@)=1, ret®®=q, ge-lun=g
(5.8 H@=Mz), F@=1, rett®=g, prelr=q,
(5.9  H@)=—MGz), Fi2)=(—1mrtn-tenM@-Laon  yg=§B= gl
(G.10)  H@)=—Mz), F(a)=(—1)mym-tatemM@-Lao  pp=jg=pLh®)

which correspond, respectively, to (a), (a’), (b) and (b”) in our Theorem 3 with
f¥@)=fi(2) in (a) and (a) and f¥(z)=—7*/ ™0™ P/™f (z)et 2L in (b) and
(b’).

Conversely, suppose that n=pm with a positive integer p and there is an
entire function h(z) satisfying one of the four cases (a), (a’), (b) and (b’). Firstly
we note that for positive integers n, m, p, ! and % satisfying n=pm, ([, n)=
(k, m)=1 there are integers 4, a, b, p, ¢ and d satisfying

R+am=~k, (m—DA+bm=m—*k, A, m=1, 1=1=m—1
and
lot+ecm=m—k, (n—Dp+dm=Fk, (p, m)=1, 1=p=m—1.

If h(z) satisfies (a), then we have
g(h(z))Zq(h(z))f(h(z))m(euh(z))_r)k(euh(z))_a)m—k
ZfT(Z)mf(h(z))memL(h(o))(eH(z)__a)ll+am(eﬁ(z)_‘8)(n—l)1+bm

=f12)™{F(2)"(e"® —a) ("™ —p)"~} 2



304 KIYOSHI NIINO
=/()"G (),
where f1(z2)=eX*® f¥(2)f(h(2))F(2) ?*(e" @ —a)*(e?®—B)". Similarly we have
Eh@)=f(2)"G(2)*,
fo(2)=e" P f(2)f(h(2))F (2) ?F (¥ —a)(e” @ —p)¢
(a’) is the case, or
F(h@)=f:2)"G(2)*,
fo@)=—7kmam=-RImfE(z)f (h(2))e™ ™ F(2) 4 (" ® —a)* (" —B)°
if (b) is the case, or
Z(h(@)=f(2)"G(2)*,
[i@)y=—r*mam=PImfE(2)f(h(2)e™ " F(2) P# (e —a)(e”® — p)*

if (b IS the case. Hence from Theorem C there is an analytic mapping ¢ of
R, into S, whose projection is A(z).

Thus the proof of our Theorem 3 is complete.

As an immediate consequence of our Theorem 3 and Theorem 2 in [8] we
have

COROLLARY 1. If there s an analytic mapping ¢ of R, into S, then there
exists an analytic mapping of R, into S, whose projection is the same h(z) as that

of ¢.

If we take ﬁ,, as S, in Theorem 3, then we have H(z)=+Hh(z))FHh(0))
and consequently h(z) is a linear function Az+B (A+0). Hence there is no
meromorphic function f*(z) satisfying f*(z)"=Q(Az+ B) because of (5.3) and the
condition (M). Therefore from Theorem 3 we obtain

COROLLARY 2. There is no non-trivial analytic mapping of R, into R,.
From the arguments in the proof of Theorem 3 we can deduce

THEOREM 4. There exists an analytic mapping of R, into S, if and only if
there exist an entive function h(z), two meromorphic functions f¥(z) and f¥(z) and
two positive integers p and A such that n=pm, (A, m)=1, p=<pA=n—1 and one of
the following equations holds :

@  H@=L(h(2)—L(h0), ¢h(2)=,1=2)"Q)?,

7 0 0
— =L (D) gy r =— =L

a B B a
(b)  Hz)=—L(h(2)+L(h0)), qh(2)=f52"Q()*,
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ra:aﬁ:euh(o)) or 7”‘8:50(:8“’”0)).
It follows from our Theorem 4 and Theorem 2 in [8] that

COROLLARY 3. If there is an analytic mapping ¢ of R, into 8, then there
exists an analytic mapping of R, into S, whose projection 1s the same h(z) as

that of ¢.
We can also deduce

THEOREM 5. There exists an analytic mapping of R, into Sn if and only if
there exist an entire function h(z), two meromorphic functions f*¥(z) and f%(z) and
two positive integers p and A such that n=pm, (1, m)=1, p<pA=n—1 and one of
the following equations holds

(@ H@)=L(h@)—LO), Q@*'=ff)",

r 0 i 7 0 o
— PEACTO) R A gL

a B B a
(b)  H@=—L(h)+LH0), Q@*=fikr",

ra=0B=el®™ g yR=Fa=eL

COROLLARY 4. If there is an analytic mapping ¢ of R, into Sn, then there
exists an analytic mapping of R, into S, whose projection 1s the same h(z) as
that of ¢.

Now we shall give an example which shows existence of an analytic map-
ping of R, into S,.

ExAMPLE. n=8, m=4. Put G(z)=(*—1)(e*+1)", Qz)=2%/(z—ri/2), CN}(Z)
=Q(2)G(z) and g(w)=(e® —1)(@"’—!—1)"I Let R, ﬁg and S, be algebroid surfaces
defined by y*=G(2), ys—G(z) and u‘=g(w), respectively. Then since z=0 is a
zero of order 5 of G(z) and z=mnri/2 is a zero of order 3 of G(z), it is clear that
these surfaces are regularly branched with P(R,)=16 and P(S,)=8 (cf. Theorem
B), R, is a finite modification of R, and satisfy (a) of Theorem 5 with

H(z)=2z, Lw)=w, h@)=2z, [¥a)=z/(z—=zi/2),
Z:]_’ T:a:]_’ 5:{3:—-

Thus we see that there exists an analytic mapping of 1?8 into S,. However
we suppose that (g, n)=(v,, n)=1 in (5.3). Then since (1, m)=1 and n=pm,
we have (g, m)=(4v,, m)=1 and so there is no meromorphic function f*(2)
satisfying Q(z)*=/*(z)™. Hence we finally deduce from Theorem 5 that

COROLLARY 5. Suppose that (p,, n)=(v,, n)=1 in (5.3). Then there 1s no
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analytic mapping of R, into Sp.
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