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§ 1. Introduction.

Let R be an open Riemann surface, %R(R) the family of non-constant mero-
morphic functions on R and P(f) the number of values which are not taken by
f^Ίfl(R). We denote by P(R) the Picard constant of R defined by

P(R)=sup{P(f); f<Ξm(R)\.

In general we have P(/?)Ξ>2. The significant meaning of this Picard constant
lies in the following fact:

THEOREM A (Ozawa [9]). // P(R)<P(S) for another Riemann surface S,
then there is no non-trivial analytic mapping of R into S.

From now on we shall confine ourselves to finitely sheeted covering algebroid
surfaces defined as proper existence domains of algebroid functions. From the
theory of algebroid functions we have P(Rn)^2n for an n-sheeted algebroid sur-
face Rn. An n-sheeted algebroid surface Rn is called regularly branched when
it has no branched point other than those of order n—1.

Let @π be the family of entire functions having an infinite number of zeros
whose orders are coprime to n and ©£ the subfamily of @TO consisting of entire
functions orders of all zeros of which are less than n.

We denote by Rn and Rn two algebroid surfaces defined by yn=G(z) and
yn = G(z), respectively, where G(z) and G(z) belong to @£. If G{z) has the same
zeros with the same multiplicity as G(z) in \z\^r0 for a suitable positive number
r0 and has at least one distinct zero with the multiplicity from G(z) in \z\<r0,
then we call Rn a finite modification of Rn (cf. Ozawa [11]).

We now consider two w-sheeted, regularly branched algebroid surfaces Rn

and Rn and two ra-sheeted, regularly branched algebroid surfaces Sm and Sm.
Suppose that P(Rn)—2n, P(Sm)—2m and Rn and Sm are finite modifications of
Rn and Sm, respectively. In our previous paper [8] we had a perfect condition
for the existence of analytic mappings of Rn into Sm and investigated the struc-
ture of the family $(Rnt Sm) of projections of analytic mappings of Rn into Sm.
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In the present paper we shall consider the following two problems:

(A) What is P(Rn)7

(B) Are there any analytic mappings among Rn, Rny Sm and Sm?

And we shall obtain generalizations of results of the author [6].
We assume that the reader is familiar with the Nevanlinna theory of mero-

morphic functions and the usual notations such as T(r, /), N(r, a, f), N(r, a, f),
m(r, f) etc. (see e.g. [5]).

§ 2. A functional equation.

For our purpose we have to consider a functional equation. We firstly prove

THEOREM 1. Let m be a positive integer. Suppose that two non-constant
entire functions H(z) and M(z) with H(0)=M(0)—0 and four integers a, b, c and
d with 0<a^b<m and 0<c^d<m satisfy the following functional equation

(2.1) (eM(z)-γ)a(eM(z)-δ)b=F(z)(eH(z)-σ)c(eHiz)-τ)d

with four constants γ, δ, σ and τ and a meromorphic function F(z)=f1(z)mf2(z),
where fλ(z) and fz{z) are meromorphic in \z\ < + ° ° and

(2.2) T{r, fύ=o(T(r, e*)) or T{r, fύ=o(T(r, eH))

outside a set of r of finite measure. Then we have

( I ) a—c and b—d
and

(Π) one of the following four cases:

) = l , r = r , δ=σ,

(2.3)

(2.4)

(2.5)

H(z)=M(z),

H{z)=M(z),

H(z)=-M(z),

(2.6) H(z)=-M(z), F(z)=(-l)a+braδbe(a+b)M(z), γτ=δσ=l.

(2.4) and (2.6) may occur in the case a—b only.

To prove our Theorem 1 we need

LEMMA A ([10]). Let H(z) be a non-constant entire function and a a non-zero
constant. Then we have

N2(r, 0, eH—a)~m(r} f) and N^r, 0, eH—a)—o(m(rt eH)) r->oo

outside a set of r of finite measure, where N2(r, 0, /) is the counting function of
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simple zeros of the function f and Nλ(r, 0, f)=N(r, 0, f)-N(r, 0, / ) .

Proof of Theorem 1. Firstly we prove that the condition

(2.7) T(r, fύ=o(T{r, eM)) r-> oo

outside a set of r of finite measure is equivalent to the condition

(2.8) T(r, f2)=o(T(r, eH)) r->oo

outside a set of r of finite measure. Assume that the condition (2.7) is true.
Then we consider simple zeros of (eM—y){eM—δ). It follows from the functional
equation (2.1) that these are zoros of f2 or (eH—σ)c(eH—τ)d, and consequently

N2(r, 0, (eM-γ)(eM-δ))^N(r, 0, ft)+N(r, 0, {eH-σ)c{eH-τ)d).

Hence Lemma A and (2.7) imply

r, eM)) + (c+d+o(l))m(r, eH) r->oo

and so

m(r, eM) — O(rn(χ, eH))

outside a set of r of finite measure. Thus we obtain (2.8). Conversely we as-
sume that the condition (2.8) holds. Then from (2.1) we have

N2(r, 0, (eH-σ)(eH-τ))£N(r, 0, f2)+N(r, 0, (eM-γ)a(eM~δ)b).

Hence it follows from Lemma A and (2.8) that

{r, eH))+(a+b+o(l))m(r, eM) r-*oo

and so

m(r, eH) = O(m(r, eM)) r^<χ>

outside a set of r of finite measure. Hence we have (2.7).
Thus we see that the condition (2.2) can be replace by

(2.9) T(r, f2)=o(m(r, eM)) and T(r, f2)=o(m(r, eΉ)) r-^oo

outside a set of r of finite measure. Further we can deduce from the above
discussion that

(2.10) m{r, eH) = O(m(r, eM)) and m(r, eM) = 0(m(r, eH)) r->oo

outside a set of r of finite measure.
We now prove ( I ) . Assume that a<c. The functional equation (2.1) im-

plies that a simple zero zx of eM—γ is a zero of order a of G{z)=F(z){eHiz) — σ)c

(eHW—τ)d. It follows from our assumption of F(z) and a<c^b<m that zx is a
zero of f2 or a pole of f2 or a multiple zero of (eH—σ)(eH—τ). Hence Lemma
A and (2.9) yield
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m(r, eM)=o(m(r, eH)) r-+oo

outside a set of r of finite measure, which contradicts (2.10). We next assume
that a>c. Then we deduce from (2.1) that a simple zero of ^ - σ is a zero of
l//2 or a pole of l//2 or a multiple zero of (eM—γ){eM—δ). Hence Lemma A
and (2.9) imply

m(r, eH)—o{rn{r, eM)) r-+co

outside a set of r of finite measure, which contradicts (2.10). Therefore we
obtain a—c. Similarly considering simple zeros of eM—δ and eH—τ and taking
Lemma A, (2.9) and (2.10) into account we have b—ά. Thus ( I ) is proved.

From (2.1) and ( I ) we have

(2.11) (eM(z)~r)a(eM(z)-~δ)b=F(z)(eH(z)-σ

M(z)Ξ£const., H(0)=M(0)=0, F(z)=f1(z)mf2(z),

γδστ(r-δ)(σ-τ)Φθ.

Considering simple zeros of eM—γ and eH—σ, we can deduce from Lemma A
and (2.9) that

(2.12) m(r, eM)~m(r, eH) r-»oo,

that is, m(r, eM)/m(r, eH)->l as r->oo, outside a set of r of finite measure. Fur-
ther we have

T(r, F)=O(T(r, eM)+T(r, eH))=O(jn{ry eH))
and

N(r, oo, F'/F)^N(r, 0, F)+N(r, oo, F)

^M(r, 0, eM-r)+Ni(r, 0, eM-δ)+N1(rf 0, eH-σ)

+N1(r, 0, eπ-τ)+N(r, 0, fύ+N(r, oo, /8)+O(logr)

=o(m(r, eM)+m(r, eH))=o(m(r, eH))

outside a set of r of finite measure. Hence we obtain

T{r, F7F)=m(r, F'/F)+N(r, oo, F'/F)

^O(logrT(r, F))+N(r, oo, F'/i7)

= o(m(r, eH))y

and consequently

(2.13) T(r, F'/F)=o(m(r, eH)) r->oo

outside a set of r of finite measure. Since (2.12) and (2.13) valid, the proof of
Theorem in [7] can be transferred to our case, even if a+bΦm. Thus the
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proof of (Π) follows the lines of that of Theorem in [7, pp. 298-301].

§3. Known results.

Further we need some known results.

THEOREM A ([1]). Let Rn be an n-sheeted regularly branched algebroid sur-
face with P(Rn)>(3/2)n. Then we have P(Rn)=2n.

THEOREM B ([1], [8]). Let Rn be a regularly branched algebroid surface
defined by yn=G(z) (Geg*). // P(Rn)=2n, then G(z) satisfies the following func-
tional equation

G(z)=f(z)n(eH<*)-a)k(eHi*)-β)n-k,

H(z)Ξ£comt, J7(0)=0, aβ(a-β)Φθ, (k, n ) = l , l^k£n/2,

where H{z) is entire, f(z) is meromorphic, a and β two complex constants and k
is an integer.

THEOREM C ([3], [4], [8]). Let Rn and Sm be two algebroid surfaces de-
fined by yn=G(z) and um=g(w) (G, g e S J , respectively and further G(z) satisfies
the inequality with a constant η

/ Q 1 x N*(r, 0, G)
( a i ) N(r, 0, G)

for a set of r of infinite measure, where N$(r, 0, G) is the counting function of
zeros whose orders are coprime to n. If there is an analytic mapping φ of Rn

into Sm, then n—pm with a positive integer p and the projection h{z) of φ is a
single-valued entire function of z and satisfies

(3.2) g(h(z))=f(z)mG(z)k, p^kp^n-l,

where f(z) is a suitable meromorphic function and k is a suitable positive integer
which is coprime to m.

Conversely, if n—pm with a positive integer p and there is an entire function
h(z) satisfies (3.2) with a suitable meromorphic function f(z) and a suitable positive
integer k which is coprime to m, there exists an analytic mapping of Rn into Sm

whose projection is h(z).

% 4. Picard constants.

With respect to the problem (A) we have the following

THEOREM 2. Let Rn and Rn be two n-sheeted regularly branched algebroid
surfaces defined by yn=G(z) and yn=G(z), respectively, where G(z) and G(z) are
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two entire functions belonging to (£*. // P{Rn)—2n and Rn is a finite modified-
tion of Rn, then we have P(Rn)^(3/2)n.

Proof. By the definition of finite modifications of algebroid surfaces we have

(4.1)

where Q(z) is a rational function satisfying the following conditions (Ml)—(Mβ)
(Hereafter in this case we simply say that Q(z) satisfies the condition (M) with
respect to G(z) and n):

(Ml) Q(z) has a form

(M2) μ, μlf v, v3 are non-negative integers and
(M3) at and b3 are mutually distinct constants and their moduli are less than r0.
(M4) If at is not a zero of G{z), then ^<μt<n and (μl} n)=l .
(M5) If at is a zero of order k% of G(z), then ki+μt<n and (ki+μι, ri)—l.
(M6) bj is a zero of order l3 of G(z) satisfying lj—Uj—0 or 0</ ;— Vj<n, (l3—

v3i n ) = l .

Since P(Rn)=2n, Theorem B implies that G(z) satisfies

(4.2) G(z)=f1(z)n(eH'z)-a)ι(eH(z)-β)n-ί

 f

)=0, aβ(a-β)Φ0, (/, n ) = l , l ^ / g

where H{z) is an entire function, fx{z) is a meromorphic function, a and β are
two complex constants and / is an integer.

Now suppose, to the contrary, that P(Rn)>(3/2)n. Then it follows from
Theorem A and Theorem B that G{z) satisfies

(4.3) G(z)=Uz)n(eMiz)-r)k(eM^-d)n-k,

(k, n)=l, l^k^n/2,

where M(z) is entire, f2(z) is meromorphic and γ and δ are two constants. It
follows from (4.1), (4.2) and (4.3) that

(0*<*>-7O*(e*<*>-d)»-*=Q(z){^^^

Since (?C?) is a rational function, we have T{r, Q)=o(T(r, eM)) as r->oo. Hence
our Theorem 1 yields that

OU){/iU)/»U)-1}n=l or = ( - l ) V * 3 * e n J f ( f ) ,

which contradicts the condition (M). Therefore we have P(i?n)g(3/2)n.
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§ 5. Existence of analytic mappings.

Let Rn and Sm be two regularly branched algebroid surfaces defined by
yn=G(z) and um=g(w) with G(z)e=6i and g(u;)eg*, respectively. If P(Rn)=2n
and P(Sm)=2m, then it follows from Theorem B that G(z) and g{w) satisfy

(5.1) G(z)=F(z)n(eH(z)-a)ι(eH(z)-β)n-1,

#(0)=0, aβ(a-β)Φθ, (/, n ) = l , l ^ / ^
and

(5.2) r̂(u;)

L(0)=0,

where // and L are two non-constant entire functions, F and / are two mero-
morphic functions, / and k are two integers and a, β, γ and δ are four complex
constants. Further let ftn and Sm be finite modifications of Rn and Sm defined
by yn=G(z) and um=g(w) with G(z)=0(^)G(^)eg* and g(w)=q(w)g(w)<Ξ®*t re-
spectively, where

(5.3) Q(z)=U(z-aty*Π(z-bj)-vJ

and

(5.4) q(w) = U (w-at)<* fliw-dj)^
1=1 3=1

satisfy the condition (M) with respect to G(z) and n and with respect to g{w)
and m, respectively.

Now in this section we consider the problem (B), that is, whether there exist
analytic mappings among Rn, Rny Sm and §m. We have already obtained a per-
fect condition for the existence of analytic mappings of Rn into Sm in [8].
Using Lemma A we here note that G, G, g and g satisfy the condition (3.1) in
Theorem C and consequently we can apply Theorem C to analytic mappings in
this section.

Firstly we have

THEOREM 3. There exists an analytic mapping ψ of Rn into Sm if and only
if n—pm with a positive integer p and there exist an entire function h{z) and
meromorphic functions f*{z) and f*{z) satisfying one of the following equations:

(a)

(aθ #(*)=L(A(z))-L(λ(0)), q(h(z))=ff(z)m,

(b) i/(*)=-L(λ(z))+L(λ(0)), q(h(z))=f$(z)

(b7) H(z)=-L(Kz))+L(h(0)),
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Proof. Suppose that there is an analytic mapping φ of Rn into 5 m . Then
it follows from Theorem C that n—pm with a positive integer p and the projec-
tion h(z) of φ is a single-valued entire function of z and satisfies

(5.5) £(A(*))=/8(*)WG(*)',

where /8(2r) is a meromorphic function and an integer λ satisfies (λt ra) = l and
p^pλ^n—L We put lλ=am+c and (n—l)λ=bm+d, where α, 6, c and d are
four integers satisfying 0^c^7n—1, O^d^m—1. Then we have c>0 and d>0
because of (Λ, m)=l and (/, n)=l . From (5.1), (5.2), (5.4) and (5.5) we have

(5.6) (^^)_rg-^(^(0)))*(^(2)_^-i(Λ(0)))m-* = F i ^ ) ^//( 2 )_ α ) C ^H( Z )_ i 3 ) ^

where M(z)=L(h(z))-L(h(0)), F1(z)=f1(z)mUz)t f2(z)=g(Kz)y1 and/ 1 (z)=e- L ( Λ ( 0 ) )

f{h{z)Yιfz{z)F{zyKeHW-a)a{βHit)-β)\ Since ?(*) is rational, we have T(r, (̂Λ))
—0{T(r, h)) as r—>oo. Since eL U ) is transcendental, Theorem 2 in Clunie [2]
implies 7(r, h)=o(T(r, eUh))) and consequently

T(r, /,)=T(r, q(h))=o(T(r, eLυι))) = o(T(r, eM)) r->oo.

Hence /2(>?) satisfies the condition (2.2) in our Theorem 1. Applying Theorem 1
to functional equation (5.6) we have one of the following four cases:

(5.7)

(5.8)

(5.9)

(5.10)

H(z)=M(z),

H(z)=M(z),

H(z)=-M(z),

H(z)=-M(z), γβ=δa=eL(h{0)),

which correspond, respectively, to (a), (a'), (b) and (bθ in our Theorem 3 with
ftiz^fάz) in (a) and (a') and /*^) = -r*/™δ<™-*)/'»/1^)^ίA(*»-^(A(o» i n ( b ) a n d

(bθ.
Conversely, suppose that n—pm with a positive integer p and there is an

entire function h(z) satisfying one of the four cases (a), (a7), (b) and (b') Firstly
we note that for positive integers n, m, p, I and k satisfying n—pm, (/, n) —
(k, m) — \ there are integers λ, a, b, p, c and d satisfying

=k, (n-l)λ+bm=m-k, (λ, m ) = l , l ^ ^ ^ ? n -
and

Ip+cm—m—k, {n—ϊ)ρ-\-dm — ky (ρ,m)=l, l^p^m—

If h{z) satisfies (a), then we have

=f1(z)m{F(z)n(eH(z)-a)ί(eH(z)-β)n-ι}λ
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=f1(z)mG(z)λ,

where f1{z)=eUhw)f^{z)f{h{z))F{z)^KeH{z)-a)a{eH{z)-β)\ Similarly we have

g(h{z))=Uz)mG{zy,

if (a') is the case, or

g(h(z))=Uz)mG(z)z,

if (b) is the case, or

p{eH

if (bθ is the case. Hence from Theorem C there is an analytic mapping φ of
Rn into Sm whose projection is h(z).

Thus the proof of our Theorem 3 is complete.
As an immediate consequence of our Theorem 3 and Theorem 2 in [8] we

have

COROLLARY 1. // there is an analytic mapping φ of Rn into Smy then there
exists an analytic mapping of Rn into Sm whose projection is the same h{z) as that
of φ.

If we take Rn as Sm in Theorem 3, then we have H(z)=±H(h(z))+H(h(Q))
and consequently h(z) is a linear function Az+B (AΦQ). Hence there is no
meromorphic function f*(z) satisfying f*(z)n=Q(Az+ B) because of (5.3) and the
condition (M). Therefore from Theorem 3 we obtain

COROLLARY 2. There is no non-trivial analytic mapping of Rn into Rn.

From the arguments in the proof of Theorem 3 we can deduce

THEOREM 4. There exists an analytic mapping of Rn into Sm if and only if
there exist an entire function h{z), two meromorphic functions ff(z) and f%(z) and
two positive integers p and λ such that n=pmf (λ, m)=l, pSpλ^n—l and one of
the following equations holds:

(a) H(z)=L(h(z))-L(h(0)), a(h(z))=fΐ(z)mQ(z)x,

a β β a

(b) H(z)=-L(h(z))+L(h(0))> Q(h(z))=fϊ(z)mQ(z)*,
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γa=δβ=eLυι(m or γβ=δa=eMW\

It follows from our Theorem 4 and Theorem 2 in [8] that

COROLLARY 3. // there is an analytic mapping ψ of Rn into Sm> then there
exists an analytic mapping of Rn into Sm whose projection is the same h(z) as
that of ψ.

We can also deduce

THEOREM 5. There exists an analytic mapping of Rn into Sm if and only if
there exist an entire function h(z), two meromorphic functions /*(z) and f*{z) and
two positive integers p and λ such that n—pm, {λ, m) — l, p^pλ^n — 1 and one of
the following equations holds

(a)

(b)

H(z)=L(h(z))-L(h(O)), <

V — " ^L(hCO))

a βe

H{z)=-L{h(z))

ra=δβ=zeL(hW-

' or r -
β

7(z)—f*(z)

a

Q(zv=m

' or rβ=δa=eL<'ιW)

COROLLARY 4. // there is an analytic mapping ψ of Rn into Sm, then there
exists an analytic mapping of Rn into Sm whose projection is the same h{z) as
that of φ.

Now we shall give an example which shows existence of an analytic map-
ping of Rn into Sm.

EXAMPLE. n=8, m=4. Put G(z) = (e2z-l)(e2z+l)\ Q(z)=z'/(z-πi/2y, G[z)
=Q(z)G(z) and g(w)=(ewj-l)(ew+l)\ Let R8, R8 and S4 be algebroid surfaces
defined by y*=G(z), ys=G(z) and u*—g(w), respectively. Then since z—0 is a
zero of order 5 of G(z) and z—πi/2 is a zero of order 3 of G(z), it is clear that
these surf aces are regularly branched with P(R8) = 16 and P(S4)—8 (cf. Theorem
B), ^ 8 is a finite modification of R8 and satisfy (a) of Theorem 5 with

H(z)=2z, L(w) = w, h(z)=2z, n{z)=z/{z-πi/2),

Thus we see that there exists an analytic mapping of R8 into 54. However
we suppose that (μlt n)=(vJf ή) = l in (5.3). Then since (λ, m)=l and n—pmy

we have (λμt, m)=(λvj, m)—l and so there is no meromorphic function f*(z)
satisfying Q(z)λ=f*(z)m. Hence we finally deduce from Theorem 5 that

COROLLARY 5. Suppose that (μt, n) = (vJf w) = l in (5.3). Then there is no
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analytic mapping of Rn into Sm.
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