ON FINITE MODIFICATIONS OF ALGEBROID SURFACES

Dedicated to Professor Yukio Kusunoki on his 60th birthday

By Kiyoshi Niino

§ 1. Introduction.

Let R be an open Riemann surface, $\mathfrak{M}(R)$ the family of non-constant meromorphic functions on R and $P(f)$ the number of values which are not taken by $f \in \mathfrak{M}(R)$. We denote by $P(R)$ the Picard constant of R defined by

$$
P(R)=\sup \{P(f) ; f \in \mathfrak{M}(R)\} .
$$

In general we have $P(R) \geqq 2$. The significant meaning of this Picard constant lies in the following fact:

Theorem A (Ozawa [9]). If $P(R)<P(S)$ for another Riemann surface S, then there is no non-trivial analytic mapping of R into S.

From now on we shall confine ourselves to finitely sheeted covering algebroid surfaces defined as proper existence domains of algebroid functions. From the theory of algebroid functions we have $P\left(R_{n}\right) \leqq 2 n$ for an n-sheeted algebroid surface R_{n}. An n-sheeted algebroid surface R_{n} is called regularly branched when it has no branched point other than those of order $n-1$.

Let \mathfrak{F}_{n} be the family of entire functions having an infinite number of zeros whose orders are coprime to n and \mathfrak{F}_{n}^{*} the subfamily of \mathfrak{F}_{n} consisting of entire functions orders of all zeros of which are less than n.

We denote by R_{n} and \tilde{R}_{n} two algebroid surfaces defined by $y^{n}=G(z)$ and $y^{n}=\widetilde{G}(z)$, respectively, where $G(z)$ and $\widetilde{G}(z)$ belong to \mathfrak{E}_{n}^{*}. If $G(z)$ has the same zeros with the same multiplicity as $\widetilde{G}(z)$ in $|z| \geqq r_{0}$ for a suitable positive number r_{0} and has at least one distinct zero with the multiplicity from $\tilde{G}(z)$ in $|z|<r_{0}$, then we call \tilde{R}_{n} a finite modification of R_{n} (cf. Ozawa [11]).

We now consider two n-sheeted, regularly branched algebroid surfaces R_{n} and \tilde{R}_{n} and two m-sheeted, regularly branched algebroid surfaces S_{m} and \widetilde{S}_{m}. Suppose that $P\left(R_{n}\right)=2 n, P\left(S_{m}\right)=2 m$ and \tilde{R}_{n} and \tilde{S}_{m} are finite modifications of R_{n} and S_{m}, respectively. In our previous paper [8] we had a perfect condition for the existence of analytic mappings of R_{n} into S_{m} and investigated the structure of the family $\mathscr{S}_{g}\left(R_{n}, S_{m}\right)$ of projections of analytic mappings of R_{n} into S_{m}.

In the present paper we shall consider the following two problems:
(A) What is $P\left(\tilde{R}_{n}\right)$?
(B) Are there any analytic mappings among $R_{n}, \tilde{R}_{n}, S_{m}$ and \tilde{S}_{m} ?

And we shall obtain generalizations of results of the author [6].
We assume that the reader is familiar with the Nevanlinna theory of meromorphic functions and the usual notations such as $T(r, f), N(r, a, f), \bar{N}(r, a, f)$, $m(r, f)$ etc. (see e.g. [5]).

§ 2. A functional equation.

For our purpose we have to consider a functional equation. We firstly prove
Theorem 1. Let m be a positive integer. Suppose that two non-constant entire functions $H(z)$ and $M(z)$ with $H(0)=M(0)=0$ and four integers a, b, c and d with $0<a \leqq b<m$ and $0<c \leqq d<m$ satisfy the following functional equation

$$
\begin{equation*}
\left(e^{M(z)}-\gamma\right)^{a}\left(e^{M(z)}-\delta\right)^{b}=F(z)\left(e^{H(z)}-\sigma\right)^{c}\left(e^{H(z)}-\tau\right)^{d} \tag{2.1}
\end{equation*}
$$

with four constants γ, δ, σ and τ and a meromorphic functıon $F(z)=f_{1}(z)^{m} f_{2}(z)$, where $f_{1}(z)$ and $f_{2}(z)$ are meromorphic in $|z|<+\infty$ and

$$
\begin{equation*}
T\left(r, f_{2}\right)=o\left(T\left(r, e^{M}\right)\right) \quad \text { or } \quad T\left(r, f_{2}\right)=o\left(T\left(r, e^{H}\right)\right) \quad r \rightarrow \infty \tag{2.2}
\end{equation*}
$$

outside a set of r of finite measure. Then we have
(I) $a=c$ and $b=d$
and
(II) one of the following four cases:

$$
\begin{align*}
& H(z)=M(z), \quad F(z)=1, \quad \gamma=\sigma, \quad \delta=\tau, \tag{2.3}\\
& H(z)=M(z), \quad F(z)=1, \quad \gamma=\tau, \quad \delta=\sigma, \tag{2.4}\\
& H(z)=-M(z), \quad F(z)=(-1)^{a+b} \gamma^{a} \delta^{b} e^{(a+b) M(z)}, \quad \gamma \sigma=\delta \tau=1, \tag{2.5}\\
& H(z)=-M(z), \quad F(z)=(-1)^{a+b} \gamma^{a} \delta^{b} e^{(a+b) M(z)}, \quad \gamma \tau=\delta \sigma=1 . \tag{2.6}
\end{align*}
$$

(2.4) and (2.6) may occur in the case $a=b$ only.

To prove our Theorem 1 we need
Lemma A ([10]). Let $H(z)$ be a non-constant entire function and α a non-zero constant. Then we have

$$
N_{2}\left(r, 0, e^{H}-\alpha\right) \sim m(r, f) \quad \text { and } \quad N_{1}\left(r, 0, e^{H}-\alpha\right)=o\left(m\left(r, e^{H}\right)\right) \quad r \rightarrow \infty
$$

outside a set of r of finite measure, where $N_{2}(r, 0, f)$ is the counting function of
simple zeros of the function f and $N_{1}(r, 0, f)=N(r, 0, f)-\bar{N}(r, 0, f)$.
Proof of Theorem 1. Firstly we prove that the condition

$$
\begin{equation*}
T\left(r, f_{2}\right)=o\left(T\left(r, e^{M}\right)\right) \quad r \rightarrow \infty \tag{2.7}
\end{equation*}
$$

outside a set of r of finite measure is equivalent to the condition

$$
\begin{equation*}
T\left(r, f_{2}\right)=o\left(T\left(r, e^{H}\right)\right) \quad r \rightarrow \infty \tag{2.8}
\end{equation*}
$$

outside a set of r of finite measure. Assume that the condition (2.7) is true. Then we consider simple zeros of $\left(e^{M}-\gamma\right)\left(e^{M}-\delta\right)$. It follows from the functional equation (2.1) that these are zoros of f_{2} or $\left(e^{H}-\sigma\right)^{c}\left(e^{H}-\tau\right)^{d}$, and consequently

$$
N_{2}\left(r, 0,\left(e^{M}-\gamma\right)\left(e^{M}-\delta\right)\right) \leqq N\left(r, 0, f_{2}\right)+N\left(r, 0,\left(e^{H}-\sigma\right)^{c}\left(e^{H}-\tau\right)^{d}\right) .
$$

Hence Lemma A and (2.7) imply

$$
(2+o(1)) m\left(r, e^{M}\right) \leqq o\left(m\left(r, e^{M}\right)\right)+(c+d+o(1)) m\left(r, e^{H}\right) \quad r \rightarrow \infty
$$

and so

$$
m\left(r, e^{M}\right)=O\left(m\left(r, e^{H}\right)\right) \quad r \rightarrow \infty
$$

outside a set of r of finite measure. Thus we obtain (2.8). Conversely we assume that the condition (2.8) holds. Then from (2.1) we have

$$
N_{2}\left(r, 0,\left(e^{H}-\sigma\right)\left(e^{H}-\tau\right)\right) \leqq N\left(r, 0, f_{2}\right)+N\left(r, 0,\left(e^{M}-\gamma\right)^{a}\left(e^{M}-\delta\right)^{b}\right) .
$$

Hence it follows from Lemma A and (2.8) that

$$
(2+o(1)) m\left(r, e^{H}\right) \leqq o\left(m\left(r, e^{H}\right)\right)+(a+b+o(1)) m\left(r, e^{M}\right) \quad r \rightarrow \infty
$$

and so

$$
m\left(r, e^{H}\right)=O\left(m\left(r, e^{M}\right)\right) \quad r \rightarrow \infty
$$

outside a set of r of finite measure. Hence we have (2.7).
Thus we see that the condition (2.2) can be replace by

$$
\begin{equation*}
T\left(r, f_{2}\right)=o\left(m\left(r, e^{M}\right)\right) \quad \text { and } \quad T\left(r, f_{2}\right)=o\left(m\left(r, e^{H}\right)\right) \quad r \rightarrow \infty \tag{2.9}
\end{equation*}
$$

outside a set of r of finite measure. Further we can deduce from the above discussion that

$$
\begin{equation*}
m\left(r, e^{H}\right)=O\left(m\left(r, e^{M}\right)\right) \quad \text { and } \quad m\left(r, e^{M}\right)=O\left(m\left(r, e^{H}\right)\right) \quad r \rightarrow \infty \tag{2.10}
\end{equation*}
$$

outside a set of r of finite measure.
We now prove (I). Assume that $a<c$. The functional equation (2.1) implies that a simple zero z_{1} of $e^{M}-\gamma$ is a zero of order a of $G(z) \equiv F(z)\left(e^{H(z)}-\sigma\right)^{c}$ $\left(e^{H(z)}-\tau\right)^{d}$. It follows from our assumption of $F(z)$ and $a<c \leqq b<m$ that z_{1} is a zero of f_{2} or a pole of f_{2} or a multiple zero of $\left(e^{H}-\sigma\right)\left(e^{H}-\tau\right)$. Hence Lemma A and (2.9) yield

$$
m\left(r, e^{M}\right)=o\left(m\left(r, e^{H}\right)\right) \quad r \rightarrow \infty
$$

outside a set of r of finite measure, which contradicts (2.10). We next assume that $a>c$. Then we deduce from (2.1) that a simple zero of $e^{H}-\sigma$ is a zero of $1 / f_{2}$ or a pole of $1 / f_{2}$ or a multiple zero of $\left(e^{M}-\gamma\right)\left(e^{M}-\delta\right)$. Hence Lemma A and (2.9) imply

$$
m\left(r, e^{H}\right)=o\left(m\left(r, e^{M}\right)\right) \quad r \rightarrow \infty
$$

outside a set of r of finite measure, which contradicts (2.10). Therefore we obtain $a=c$. Similarly considering simple zeros of $e^{M}-\delta$ and $e^{H}-\tau$ and taking Lemma A, (2.9) and (2.10) into account we have $b=d$. Thus (I) is proved.

From (2.1) and (I) we have

$$
\begin{align*}
& \left(e^{M(z)}-\gamma\right)^{a}\left(e^{M(z)}-\delta\right)^{b}=F(z)\left(e^{H(z)}-\sigma\right)^{a}\left(e^{H(z)}-\tau\right)^{b}, \tag{2.11}\\
& H(z) \not \equiv \text { const., } \quad M(z) \not \equiv \text { const. }, \quad H(0)=M(0)=0, \quad F(z)=f_{1}(z)^{m} f_{2}(z), \\
& 0<a \leqq b<m, \quad \gamma \delta \sigma \tau(\gamma-\delta)(\sigma-\tau) \neq 0 .
\end{align*}
$$

Considering simple zeros of $e^{M}-\gamma$ and $e^{H}-\sigma$, we can deduce from Lemma A and (2.9) that

$$
\begin{equation*}
m\left(r, e^{M}\right) \sim m\left(r, e^{H}\right) \quad r \rightarrow \infty, \tag{2.12}
\end{equation*}
$$

that is, $m\left(r, e^{M}\right) / m\left(r, e^{H}\right) \rightarrow 1$ as $r \rightarrow \infty$, outside a set of r of finite measure. Further we have

$$
T(r, F)=O\left(T\left(r, e^{M}\right)+T\left(r, e^{H}\right)\right)=O\left(m\left(r, e^{H}\right)\right) \quad r \rightarrow \infty
$$

and

$$
\begin{aligned}
N\left(r, \infty, F^{\prime} / F\right) \leqq & N(r, 0, F)+N(r, \infty, F) \\
\leqq & N_{1}\left(r, 0, e^{M}-\gamma\right)+N_{1}\left(r, 0, e^{M}-\delta\right)+N_{1}\left(r, 0, e^{H}-\sigma\right) \\
& +N_{1}\left(r, 0, e^{H}-\tau\right)+N\left(r, 0, f_{2}\right)+N\left(r, \infty, f_{2}\right)+O(\log r) \\
= & o\left(m\left(r, e^{M}\right)+m\left(r, e^{H}\right)\right)=o\left(m\left(r, e^{H}\right)\right)
\end{aligned}
$$

outside a set of r of finite measure. Hence we obtain

$$
\begin{aligned}
T\left(r, F^{\prime} / F\right) & =m\left(r, F^{\prime} / F\right)+N\left(r, \infty, F^{\prime} / F\right) \\
& \leqq O(\log r T(r, F))+N\left(r, \infty, F^{\prime} / F\right) \\
& =o\left(m\left(r, e^{H}\right)\right)
\end{aligned}
$$

and consequently

$$
\begin{equation*}
T\left(r, F^{\prime} / F\right)=o\left(m\left(r, e^{H}\right)\right) \quad r \rightarrow \infty \tag{2.13}
\end{equation*}
$$

outside a set of r of finite measure. Since (2.12) and (2.13) valid, the proof of Theorem in [7] can be transferred to our case, even if $a+b \neq m$. Thus the
proof of (II) follows the lines of that of Theorem in [7, pp. 298-301].

§ 3. Known results.

Further we need some known results.
THEOREM A ([1]). Let R_{n} be an n-sheeted regularly branched algebroid surface with $P\left(R_{n}\right)>(3 / 2) n$. Then we have $P\left(R_{n}\right)=2 n$.

ThEOREM B ([1], [8]). Let R_{n} be a regularly branched algebroid surface defined by $y^{n}=G(z)\left(G \in \mathfrak{F}_{n}^{*}\right)$. If $P\left(R_{n}\right)=2 n$, then $G(z)$ satisfies the following functional equation.

$$
\begin{aligned}
& G(z)=f(z)^{n}\left(e^{H(z)}-\alpha\right)^{k}\left(e^{H(z)}-\beta\right)^{n-k}, \\
& H(z) \not \equiv \text { const. }, \quad H(0)=0, \quad \alpha \beta(\alpha-\beta) \neq 0, \quad(k, n)=1, \quad 1 \leqq k \leqq n / 2
\end{aligned}
$$

where $H(z)$ is entire, $f(z)$ is meromorphic, α and β two complex constants and k is an integer.

Theorem C ([3], [4], [8]). Let R_{n} and S_{m} be two algebroid surfaces defined by $y^{n}=G(z)$ and $u^{m}=g(w)\left(G, g \in \mathfrak{E}_{n}\right)$, respectively and further $G(z)$ satisfies the inequality with a constant η

$$
\begin{equation*}
\frac{N_{n}^{*}(r, 0, G)}{N(r, 0, G)} \geqq \eta>0 \tag{3.1}
\end{equation*}
$$

for a set of r of infinite measure, where $N_{n}^{*}(r, 0, G)$ is the counting function of zeros whose orders are coprime to n. If there is an analytic mapping ψ of R_{n} into S_{m}, then $n=p m$ with a positive integer p and the projection $h(z)$ of ψ is a single-valued entire function of z and satisfies

$$
\begin{equation*}
g(h(z))=f(z)^{m} G(z)^{k}, \quad p \leqq k p \leqq n-1, \tag{3.2}
\end{equation*}
$$

where $f(z)$ is a suitable meromorphic function and k is a suitable positive integer which is coprime to m.

Conversely, if $n=p m$ with a positive integer p and there is an entire function $h(z)$ satisfies (3.2) with a suitable meromorphic function $f(z)$ and a suitable positive integer k which is coprime to m, there exists an analytic mapping of R_{n} into S_{m} whose projection is $h(z)$.

§ 4. Picard constants.

With respect to the problem (A) we have the following
Theorem 2. Let R_{n} and \tilde{R}_{n} be two n-sheeted regularly branched algebroid surfaces defined by $y^{n}=G(z)$ and $y^{n}=\tilde{G}(z)$, respectively, where $G(z)$ and $\tilde{G}(z)$ are
two entire functions belonging to \mathfrak{E}_{n}^{*}. If $P\left(R_{n}\right)=2 n$ and \tilde{R}_{n} is a finite modification of R_{n}, then we have $P\left(\widetilde{R}_{n}\right) \leqq(3 / 2) n$.

Proof. By the definition of finite modifications of algebroid surfaces we have

$$
\begin{equation*}
\tilde{G}(z)=Q(z) G(z), \tag{4.1}
\end{equation*}
$$

where $Q(z)$ is a rational function satisfying the following conditions (M1)-(M6) (Hereafter in this case we simply say that $Q(z)$ satisfies the condition (M) with respect to $G(z)$ and n):
(M1) $Q(z)$ has a form

$$
Q(z)=\prod_{\imath=1}^{\mu}\left(z-a_{\imath}\right)^{\mu_{i}} \prod_{j=1}^{\nu}\left(z-b_{\jmath}\right)^{-\nu_{j}} .
$$

(M2) μ, μ_{2}, ν, ν, are non-negative integers and $\mu+\nu \geqq 1$.
(M3) a_{\imath} and b_{\jmath} are mutually distinct constants and their moduli are less than r_{0}.
(M4) If a_{i} is not a zero of $G(z)$, then $0<\mu_{i}<n$ and $\left(\mu_{i}, n\right)=1$.
(M5) If a_{\imath} is a zero of order k_{\imath} of $G(z)$, then $k_{i}+\mu_{i}<n$ and $\left(k_{i}+\mu_{\imath}, n\right)=1$.
(M6) b_{j} is a zero of order l_{j} of $G(z)$ satisfying $l_{j}-\nu_{j}=0$ or $0<l_{j}-\nu_{j}<n, \quad\left(l_{j}-\right.$ $\left.\nu_{\jmath}, n\right)=1$.

Since $P\left(R_{n}\right)=2 n$, Theorem B implies that $G(z)$ satisfies

$$
\begin{align*}
& G(z)=f_{1}(z)^{n}\left(e^{H(z)}-\alpha\right)^{l}\left(e^{H(z)}-\beta\right)^{n-l}, \tag{4.2}\\
& H(z) \not \equiv \text { const. }, \quad H(0)=0, \quad \alpha \beta(\alpha-\beta) \neq 0, \quad(l, n)=1, \quad 1 \leqq l \leqq n / 2,
\end{align*}
$$

where $H(z)$ is an entire function, $f_{1}(z)$ is a meromorphic function, α and β are two complex constants and l is an integer.

Now suppose, to the contrary, that $P\left(R_{n}\right)>(3 / 2) n$. Then it follows from Theorem A and Theorem B that $\tilde{G}(z)$ satisfies

$$
\begin{align*}
& \tilde{G}(z)=f_{2}(z)^{n}\left(e^{M(z)}-\gamma\right)^{k}\left(e^{M(z)}-\delta\right)^{n-k}, \tag{4.3}\\
& M(z) \not \equiv \text { const. }, \quad M(0)=0, \quad \gamma \delta(\gamma-\delta) \neq 0, \quad(k, n)=1, \quad 1 \leqq k \leqq n / 2,
\end{align*}
$$

where $M(z)$ is entire, $f_{2}(z)$ is meromorphic and γ and δ are two constants. It follows from (4.1), (4.2) and (4.3) that

$$
\left(e^{M(z)}-\gamma\right)^{k}\left(e^{M(z)}-\delta\right)^{n-k}=Q(z)\left\{f_{1}(z) f_{2}(z)^{-1}\right\}^{n}\left(e^{H(z)}-\alpha\right)^{l}\left(e^{H(z)}-\beta\right)^{n-l} .
$$

Since $Q(z)$ is a rational function, we have $T(r, Q)=o\left(T\left(r, e^{M}\right)\right)$ as $r \rightarrow \infty$. Hence our Theorem 1 yields that

$$
Q(z)\left\{f_{1}(z) f_{2}(z)^{-1}\right\}^{n}=1 \quad \text { or } \quad=(-1)^{n} \gamma^{k} \delta^{k} e^{n M(z)},
$$

which contradicts the condition (M). Therefore we have $P\left(\tilde{R}_{n}\right) \leqq(3 / 2) n$.

§ 5. Existence of analytic mappings.

Let R_{n} and S_{m} be two regularly branched algebroid surfaces defined by $y^{n}=G(z)$ and $u^{m}=g(w)$ with $G(z) \in \mathfrak{E}_{n}^{*}$ and $g(w) \in \mathfrak{E}_{m}^{*}$, respectively. If $P\left(R_{n}\right)=2 n$ and $P\left(S_{m}\right)=2 m$, then it follows from Theorem B that $G(z)$ and $g(w)$ satisfy

$$
\begin{align*}
& G(z)=F(z)^{n}\left(e^{H(z)}-\alpha\right)^{l}\left(e^{H(z)}-\beta\right)^{n-l}, \tag{5.1}\\
& H(0)=0, \quad \alpha \beta(\alpha-\beta) \neq 0, \quad(l, n)=1, \quad 1 \leqq l \leqq n / 2
\end{align*}
$$

and

$$
\begin{align*}
& g(w)=f(w)^{m}\left(e^{L(w)}-\gamma\right)^{k}\left(e^{L(w)}-\delta\right)^{m-k}, \tag{5.2}\\
& L(0)=0, \quad \gamma \delta(\gamma-\delta) \neq 0, \quad(k, m)=1, \quad 1 \leqq k \leqq m / 2,
\end{align*}
$$

where H and L are two non-constant entire functions, F and f are two meromorphic functions, l and k are two integers and α, β, γ and δ are four complex constants. Further let \widetilde{R}_{n} and \widetilde{S}_{m} be finite modifications of R_{n} and S_{m} defined by $y^{n}=\tilde{G}(z)$ and $u^{m}=\tilde{g}(w)$ with $\tilde{G}(z)=Q(z) G(z) \in \mathfrak{F}_{n}^{*}$ and $g(w)=\tilde{q}(w) g(w) \in \mathfrak{F}_{m}^{*}$, respectively, where

$$
\begin{equation*}
Q(z)=\prod_{\imath=1}^{\mu}\left(z-a_{\imath}\right)^{\mu_{i}} \prod_{j=1}^{\nu}\left(z-b_{j}\right)^{-\nu_{j}} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=\prod_{\imath=1}^{\sigma}\left(w-a_{\imath}\right)^{\sigma_{i}} \prod_{j=1}^{\tau}\left(w-d_{j}\right)^{-\tau_{j}} \tag{5.4}
\end{equation*}
$$

satisfy the condition (M) with respect to $G(z)$ and n and with respect to $g(w)$ and m, respectively.

Now in this section we consider the problem (B), that is, whether there exist analytic mappings among $R_{n}, \tilde{R}_{n}, S_{m}$ and \tilde{S}_{m}. We have already obtained a perfect condition for the existence of analytic mappings of R_{n} into S_{m} in [8]. Using Lemma A we here note that G, \tilde{G}, g and \tilde{g} satisfy the condition (3.1) in Theorem C and consequently we can apply Theorem C to analytic mappings in this section.

Firstly we have
Theorem 3. There exists an analytic mapping ψ of R_{n} into \tilde{S}_{m} if and only if $n=p m$ with a positive integer p and there exist an entire function $h(z)$ and meromorphic functions $f_{1}^{*}(z)$ and $f_{2}^{*}(z)$ satisfying one of the following equations:
(a) $\quad H(z)=L(h(z))-L(h(0)), \quad q(h(z))=f_{1}^{*}(z)^{m}, \quad \gamma / \alpha=\delta / \beta=e^{L(h(0))}$,
($\left.\mathrm{a}^{\prime}\right) \quad H(z)=L(h(z))-L(h(0)), \quad q(h(z))=f_{1}^{*}(z)^{m}, \quad \gamma / \beta=\delta / \alpha=e^{L(h(0))}$,
(b) $\quad H(z)=-L(h(z))+L(h(0)), \quad q(h(z))=f_{2}^{*}(z)^{m}, \quad \gamma \alpha=\delta \beta=e^{L(h(0))}$,
(b') $\quad H(z)=-L(h(z))+L(h(0)), \quad q(h(z))=f_{2}^{*}(z)^{m}, \quad \gamma \beta=\delta \alpha=e^{L(h(0))}$.

Proof. Suppose that there is an analytic mapping ψ of R_{n} into \tilde{S}_{m}. Then it follows from Theorem C that $n=p m$ with a positive integer p and the projection $h(z)$ of ψ is a single-valued entire function of z and satisfies

$$
\begin{equation*}
\tilde{g}(h(z))=f_{3}(z)^{m} G(z)^{\lambda}, \tag{5.5}
\end{equation*}
$$

where $f_{3}(z)$ is a meromorphic function and an integer λ satisfies $(\lambda, m)=1$ and $p \leqq p \lambda \leqq n-1$. We put $l \lambda=a m+c$ and $(n-l) \lambda=b m+d$, where a, b, c and d are four integers satisfying $0 \leqq c \leqq m-1,0 \leqq d \leqq m-1$. Then we have $c>0$ and $d>0$ because of $(\lambda, m)=1$ and $(l, n)=1$. From (5.1), (5.2), (5.4) and (5.5) we have

$$
\begin{equation*}
\left(e^{M(z)}-\gamma e^{-L(h(0))}\right)^{k}\left(e^{M(z)}-\delta e^{-L(h(0))}\right)^{m-k}=F_{1}(z)\left(e^{H(z)}-\alpha\right)^{c}\left(e^{H(z)}-\beta\right)^{d}, \tag{5.6}
\end{equation*}
$$

where $M(z)=L(h(z))-L(h(0)), F_{1}(z)=f_{1}(z)^{m} f_{2}(z), f_{2}(z)=q(h(z))^{-1}$ and $f_{1}(z)=e^{-L(h(0))}$ $f(h(z))^{-1} f_{3}(z) F(z)^{p \lambda}\left(e^{H(z)}-\alpha\right)^{a}\left(e^{H(z)}-\beta\right)^{b}$. Since $q(z)$ is rational, we have $T(r, q(h))$ $=O(T(r, h))$ as $r \rightarrow \infty$. Since $e^{L(z)}$ is transcendental, Theorem 2 in Clunie [2] implies $T(r, h)=o\left(T\left(r, e^{L(h)}\right)\right)$ and consequently

$$
T\left(r, f_{2}\right)=T(r, q(h))=o\left(T\left(r, e^{L(h)}\right)\right)=o\left(T\left(r, e^{M}\right)\right) \quad r \rightarrow \infty
$$

Hence $f_{2}(z)$ satisfies the condition (2.2) in our Theorem 1. Applying Theorem 1 to functional equation (5.6) we have one of the following four cases:

$$
\begin{align*}
& H(z)=M(z), \quad F_{1}(z)=1, \quad \gamma e^{-L(h(0))}=\alpha, \quad \delta e^{-L(h(0))}=\beta \tag{5.7}\\
& H(z)=M(z), \quad F_{1}(z)=1, \quad \gamma e^{-L(h(0))}=\beta, \quad \gamma e^{-L(h(0))}=\alpha, \tag{5.8}\\
& H(z)=-M(z), \quad F_{1}(z)=(-1)^{m} \gamma^{k} \delta^{m-k} e^{m(M(z)-L(h(0)))}, \quad \gamma \alpha=\delta \beta=e^{L(h(0))}, \tag{5.9}\\
& H(z)=-M(z), \quad F_{1}(z)=(-1)^{m} \gamma^{m-k} \delta^{k} e^{m(M(z)-L(h(0)))}, \quad \gamma \beta=\delta \alpha=e^{L(h(0))}, \tag{5.10}
\end{align*}
$$

which correspond, respectively, to (a), (a^{\prime}), (b) and (b^{\prime}) in our Theorem 3 with $f_{1}^{*}(z)=f_{1}(z)$ in (a) and (a^{\prime}) and $f_{2}^{*}(z)=-\gamma^{k / m} \delta^{(m-k) / m} f_{1}(z) e^{L(h(2))-2 L(h(0))}$ in (b) and (b').

Conversely, suppose that $n=p m$ with a positive integer p and there is an entire function $h(z)$ satisfying one of the four cases (a), (a^{\prime}), (b) and (b). Firstly we note that for positive integers n, m, p, l and k satisfying $n=p m,(l, n)=$ $(k, m)=1$ there are integers λ, a, b, ρ, c and d satisfying

$$
l \lambda+a m=k, \quad(n-l) \lambda+b m=m-k, \quad(\lambda, m)=1, \quad 1 \leqq \lambda \leqq m-1
$$

and

$$
l \rho+c m=m-k, \quad(n-l) \rho+d m=k, \quad(\rho, m)=1, \quad 1 \leqq \rho \leqq m-1 .
$$

If $h(z)$ satisfies (a), then we have

$$
\begin{aligned}
\tilde{g}(h(z)) & =q(h(z)) f(h(z))^{m}\left(e^{L(h(z))}-\gamma\right)^{k}\left(e^{L(h(z))}-\delta\right)^{m-k} \\
& =f_{1}^{*}(z)^{m} f(h(z))^{m} e^{m L(h(0))}\left(e^{H(z)}-\alpha\right)^{l \lambda+a m}\left(e^{H(z)}-\beta\right)^{(n-l) \lambda+b m} \\
& =f_{1}(z)^{m}\left\{F(z)^{n}\left(e^{H(z)}-\alpha\right)^{l}\left(e^{H(z)}-\beta\right)^{n-l}\right\}^{2}
\end{aligned}
$$

$$
=f_{1}(z)^{m} G(z)^{\lambda},
$$

where $f_{1}(z)=e^{L(h(0))} f_{1}^{*}(z) f(h(z)) F(z)^{-p \lambda}\left(e^{H(z)}-\alpha\right)^{a}\left(e^{H(z)}-\beta\right)^{b}$. Similarly we have

$$
\begin{aligned}
& \tilde{g}(h(z))=f_{2}(z)^{m} G(z)^{\rho} \\
& f_{2}(z)=e^{L(h(0))} f_{1}^{*}(z) f(h(z)) F(z)^{-p \rho}\left(e^{H(z)}-\alpha\right)^{c}\left(e^{H(z)}-\beta\right)^{d}
\end{aligned}
$$

if (a^{\prime}) is the case, or

$$
\begin{aligned}
& \tilde{g}(h(z))=f_{3}(z)^{m} G(z)^{\lambda}, \\
& f_{3}(z)=-\gamma^{k / m} \delta^{(m-k) / m} f_{2}^{*}(z) f(h(z)) e^{-H(z)} F(z)^{-p \lambda}\left(e^{H(z)}-\alpha\right)^{a}\left(e^{H(z)}-\beta\right)^{b}
\end{aligned}
$$

if (b) is the case, or

$$
\begin{aligned}
& \tilde{g}(h(z))=f_{4}(z)^{m} G(z)^{\rho}, \\
& f_{4}(z)=-\gamma^{k / m} \delta^{(m-k) / m} f_{2}^{*}(z) f(h(z)) e^{-H(z)} F(z)^{-p \rho}\left(e^{H(z)}-\alpha\right)^{c}\left(e^{H(z)}-\beta\right)^{d}
\end{aligned}
$$

if (b^{\prime}) is the case. Hence from Theorem C there is an analytic mapping ψ of R_{n} into \tilde{S}_{m} whose projection is $h(z)$.

Thus the proof of our Theorem 3 is complete.
As an immediate consequence of our Theorem 3 and Theorem 2 in [8] we have

Corollary 1. If there is an analytic mapping ψ of R_{n} into \tilde{S}_{m}, then there exists an analytic mapping of R_{n} into S_{m} whose projection is the same $h(z)$ as that of ψ.

If we take \tilde{R}_{n} as \tilde{S}_{m} in Theorem 3, then we have $H(z)= \pm H(h(z)) \mp H(h(0))$ and consequently $h(z)$ is a linear function $A z+B(A \neq 0)$. Hence there is no meromorphic function $f^{*}(z)$ satisfying $f^{*}(z)^{n}=Q(A z+B)$ because of (5.3) and the condition (M). Therefore from Theorem 3 we obtain

Corollary 2. There is no non-trivial analytic mapping of R_{n} into \tilde{R}_{n}.
From the arguments in the proof of Theorem 3 we can deduce
THEOREM 4. There exists an analytic mapping of \tilde{R}_{n} into \tilde{S}_{m} if and only if there exist an entire function $h(z)$, two meromorphic functions $f_{1}^{*}(z)$ and $f_{2}^{*}(z)$ and two positive integers p and λ such that $n=p m,(\lambda, m)=1, p \leqq p \lambda \leqq n-1$ and one of the following equations holds:
(a) $\quad H(z)=L(h(z))-L(h(0)), \quad q(h(z))=f_{1}^{*}(z)^{m} Q(z)^{\lambda}$,

$$
\frac{\gamma}{\alpha}=\frac{\delta}{\beta}=e^{L(h(0))} \quad \text { or } \quad \frac{\gamma}{\beta}=\frac{\delta}{\alpha}=e^{L(h(0))},
$$

(b) $\quad H(z)=-L(h(z))+L(h(0)), \quad q(h(z))=f_{2}^{*}(z)^{m} Q(z)^{\lambda}$,

$$
\gamma \alpha=\delta \beta=e^{L(h(0))} \text { or } \quad \gamma \beta=\delta \alpha=e^{L(h(0))} .
$$

It follows from our Theorem 4 and Theorem 2 in [8] that
Corollary 3. If there is an analytic mapping ψ of \tilde{R}_{n} into \tilde{S}_{m}, then there exists an analytic mapping of R_{n} into S_{m} whose projection is the same $h(z)$ as that of ψ.

We can also deduce
Theorem 5. There exists an analytic mapping of \tilde{R}_{n} into S_{m} if and only if there exist an entire function $h(z)$, two meromorphic functions $f_{1}^{*}(z)$ and $f_{2}^{*}(z)$ and two positive integers p and λ such that $n=p m,(\lambda, m)=1, p \leqq p \lambda \leqq n-1$ and one of the following equations holds
(a) $\quad H(z)=L(h(z))-L(h(0)), \quad Q(z)^{\lambda}=f_{1}^{*}(z)^{m}$,

$$
\frac{\gamma}{\alpha}=\frac{\delta}{\beta} e^{L(h(0))} \quad \text { or } \quad \frac{\gamma}{\beta}=\frac{\delta}{\alpha} e^{L(h(0))},
$$

(b)

$$
\begin{aligned}
& H(z)=-L(h(z))+L(h(0)), \quad Q(z)^{\lambda}=f_{2}^{*}(z)^{m}, \\
& \gamma \alpha=\delta \beta=e^{L(h(0))} \quad \text { or } \quad \gamma \beta=\delta \alpha=e^{L(h(0))} .
\end{aligned}
$$

Corollary 4. If there is an analytic mapping ψ of \tilde{R}_{n} into S_{m}, then there exists an analytic mapping of R_{n} into S_{m} whose projection is the same $h(z)$ as that of ψ.

Now we shall give an example which shows existence of an analytic mapping of \tilde{R}_{n} into S_{m}.

EXAMPLE. $\quad n=8, m=4$. Put $G(z)=\left(e^{2 z}-1\right)\left(e^{2 z}+1\right)^{7}, Q(z)=z^{4} /(z-\pi i / 2)^{4}, \quad \tilde{G}(z)$ $=Q(z) G(z)$ and $g(w)=\left(e^{w}-1\right)\left(e^{w}+1\right)^{3}$. Let R_{8}, \tilde{R}_{8} and S_{4} be algebroid surfaces defined by $y^{8}=G(z), y^{8}=\tilde{G}(z)$ and $u^{4}=g(w)$, respectively. Then since $z=0$ is a zero of order 5 of $\tilde{G}(z)$ and $z=\pi i / 2$ is a zero of order 3 of $\tilde{G}(z)$, it is clear that these surfaces are regularly branched with $P\left(R_{8}\right)=16$ and $P\left(S_{4}\right)=8$ (cf. Theorem B), \tilde{R}_{8} is a finite modification of R_{8} and satisfy (a) of Theorem 5 with

$$
\begin{aligned}
& H(z)=2 z, \quad L(w)=w, \quad h(z)=2 z, \quad f_{1}^{*}(z)=z /(z-\pi i / 2), \\
& \lambda=1, \quad \gamma=\alpha=1, \quad \delta=\beta=-1 .
\end{aligned}
$$

Thus we see that there exists an analytic mapping of \tilde{R}_{8} into S_{4}. However we suppose that $\left(\mu_{2}, n\right)=\left(\nu_{\nu}, n\right)=1$ in (5.3). Then since $(\lambda, m)=1$ and $n=p m$, we have $\left(\lambda \mu_{2}, m\right)=\left(\lambda \nu_{0}, m\right)=1$ and so there is no meromorphic function $f^{*}(z)$ satisfying $Q(z)^{\lambda}=f^{*}(z)^{m}$. Hence we finally deduce from Theorem 5 that

Corollary 5. Suppose that $\left(\mu_{2}, n\right)=\left(\nu_{1}, n\right)=1$ in (5.3). Then there is no
analytic mappıng of \tilde{R}_{n} into S_{m}.

References

[1] Aogai, H., Picard constant of a finitely sheeted covering surfaces. Kōdai Math. Sem. Rep. 25 (1973), 219-224.
[2] Clunie, J., The composition of entire and meromorphic functions. Mathematical Essays dedicated to A. J. Macintyre (Ohio Univ. Press, 1970), 75-92.
[3] Hiromi, G., and H. Mutō, On existence of analytic mappings, II. Kōdai Math. Sem. Rep. 19 (1967), 439-450.
[4] Mutō, H., On analytic mappings among algebroid surfaces. Kōdai Math. Sem. Rep. 21 (1969), 191-204.
[5] Nevanlinna, R., Analytic functions. Springer-Verlag, (1970), pp. 373.
[6] Ninno, K., On finite modifications of two- or three-sheeted covering open Riemann surfaces. Kōdai Math. Sem. Rep. 19 (1967), 415-424.
[7] Nino, K., On the functional equation $\left(e^{M}-\gamma\right)^{k}\left(e^{M}-\delta\right)^{m-k}=f^{m}\left(e^{H}-\sigma\right)\left(e^{H}-\tau\right)^{m-k}$. Aequationes Math. 22 (1981), 293-301.
[8] Nino, K., On analytic mappings between two algebroid surfaces. Complex Variables Theory Appl. 2 (1983-84), 283-293.
[9] Ozawa, M., On complex analytic mappings. Kōdai Math. Sem. Rep. 17 (1965), 93-102.
[10] Ozawa, M., On ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 103-108.
[11] Ozawa, M., On a finite modification of an ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 19 (1967), 312-316.

Faculty of Technology
Kanazawa University
2-40-20, Kodatsuno
Kanazawa 920
Japan

