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HELICAL IMMERSIONS AND NORMAL SECTIONS

BY YI HONG AND CHORNG-SHI HOUH

1. Introduction.

Let / : Mn->Mn+p be an isometric immersion of a connected n-dimensional
Riemannian manifold M into a Riemannian manifold M of dimension n+p. If
7"./=[0, 1]->M is a curve on M then σ—f°γ is a curve on M. Let σ be
parametrized by its arc length, σ{1) — σ be the unit tangent vector and ΐC1=
||V,σ(1)||.V denotes the covariant differentiation of M. If Kx vanishes on [0, 1]
then σ is called of order 1. If Kx is not identically zero, then we define <τ(2)

by Ίhσ^^Ktf™ on the set / ^ { s e f f i 1] iK^ΦQ}. Let tf2=||Ϋ;σ(2)+#itf(1)||.
If UΓ2Ξ0 on Ix then <r is called of order 2. If ΛΓ2 is not identically zero on Ix

then we define σ(3) by Vάσ(2) = —K1σ
il)JrK2σ

{s\ Inductively we put Kd=
Wlya^+Ka^a^-vW. If Kd=Q on Id^ then <τ is called of order d. It follows
that if the curve σ is of order d we have the Frenet formula ([9]):

(1.1)

where

VΛ(<7(

•> σκ

0 - ^ 0

Kx 0 -K2

0 ^ 2 0 *

0 ''••

•0

0

-i 0 _

ϋft, iίΓ2, •••, Ka-ι are called_ the Frenet curvatures of σ. If, for each geodesic γ
on My the curve f°γ on M has constant Frenet curvatures of order d, and they
are independent of γ, then / is called a helical immersion of order d. In most
cases the ambient space is considered as a Riemannian manifold of constant
sectional curvature c, denoted by Mn+P(c). Sakamoto [9] and Nakagawa [8]
have investigated helical immersions. The concept "helical immersion" originates
from Besse [2] it is important in the theory of harmonic manifolds.

Another important concept used in this paper called normal sections, origi-
nated from Chen [3]. In [3], [4], [7], submanifolds in Em with (pointwise)
planar normal sections were investigated. Chen and Verheyen [5] proved that
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a helical submanifold in Em has geodesic normal sections. Verheyen [10] proved
its inverse.

For a submanifold Mn immersed in a space form Mn+P(c), we can also define
normal sections. For a point x in M and a unit vector t^TxMt the vector t
and the normal space NXM determine a (£+l)-dimensional subspace E(x, t) of
TXM, which determines a (£+l)-dimensional totally geodesic submanifold Mo.
The intersection of M and Mo gives rise a curve γ(s) (in a neighborhood of x),
called the normal section of M at x in the direction ί.

For any two vector fields X, Y tangent to M, the second fundamental form
h is given by h(X, Y)—1XY—1XY where 7 is the covariant differentiation in M.
For any vector field ξ normal to M, put %xξ=z-~AξX+Vxξ9 where — AζX and
lxξ denote the tangential and normal components of 7*?, respectively.

The covariant differentiation D on the Whitney sum T(M)@N(M) is defined
as follows (see [8]): For any N(M)-valued tensor field T of type (1, k), C°°-vectoi
fields X, Xϊy X2, '", Xk tangent to M, put

(1.2) DT(X, Xlf X%9 ..., Xh)=(DzTXXu - , X
k)

Xk))- Σ T(X1} - . , lxX7i ..., Xk).

We have the Ricci identity:

(1.3) (D*T)(X, Y, Xu - , Xk)-(D>T)(Y, X, Xu - , Xk)

^R^X, Y)T(XU - , Xh)- Σ T(XS, ..., R(X, Y)Xr, - , Xk)
T = l

where R±(X, Y)—lxVγ—V^7i—^ιχ,Y1 is the normal curvature tensor, R is the
curvature tensor of M.

The following identity is well known ([2]):

(1.4) </m, Y)ξ, η> V

The following algebraic Lemma is a main tool in this paper.

LEMMA 1.1. Let Tly T2 be tensors of (q, p)-type on a vector space V. Suppose
for all v<=V

(1.5) T&η^Tάv, v, - , i ; ) =

then for vlf •••, vp^V,

(1.6) Σ Tiivew, ••«, vσ(p))— Σ T2(vσ(1), - , vσ(p)),
σ^Sp σ^Sp

where Sp is the symmetric group on p letters.

Proof. Let λu •••, λp be real parameters. Take v—^Σn^iλiVi in (1.5). We
have



HELICAL IMMERSIONS AND NORMAL SECTIONS 173

Σ λ t l λ t 2 -" λ l p T 1 ( v i l , v i 2 , •••, Vip)=-Έ λ t l ••• λ l p T 2 ( v i v v i v •••, v i p ) .

Comparing the coefficients of λ1 λ2' 'λp on both sides we have (1.6).
In § 2 we discuss the relation between helical immersion and normal section.

In § 3 we consider helical immersed surfaces.

2. Helical immersions and normal sections.

The following theorem is a generalization of a theorem of Sakamoto ([9]).

T H E O R E M 2.1. Let f be an isometric immersion Mn->Mn+p(c). For all
geodesies γ on M suppose a — f°y have constant curvatures Kly K2r ••• K3 (j^d—l,
d the order of a), then we have the Frenet frames:

HI 21

OF,) σ «> = (A-1.. / f ι I ) - 1 Σ
HI 21-1

Σ
10

where X=γ, at t=l, aι>t.2l=: Σ K2

tlK
2

ti-K2

tι for />0, where Ax is the

collection of subsets of {2, 3, •••, i— 2}, any two numbers in such subsets have dif-
ference at least 2.

Also, for 2^k,l^2] + l,$S7^k-l, 6 + / g 2 ; + 3 , X,Y^UXM, the unit
tangent sphere at x,

(2.1) <(Dk-2h)(Xr, Y, X*-*-1), (Dι-2h)(Xι)>

(-lYk-n/2v(k+l)/2<X, r>, k+l=even,

0 k+l=odd.

Where vι=\\(Dι-2h)(Xι)f only depend on Ku •••, Kt-l9 and for k^

X, if k=even,
(2.2) W h ) ( χ ) \

0 , if k=odd.

Proof. For ; = 1, iiΓi^constant implies that \\h(X, X)\\=K! is a constant. So

wx, x\ h(x, Y)>=κχx, y>

and σ(1)=X, σ^^K^HX, X). This proves (Fj), (F2). Also

<(Dh)(X2, Y\ h(X2)> = l/2Y<h(X2), h(X2)>=0,

, h(X, F)> = -<MZ 2 ), (Dh)(X2, K)>=0

where X, Ϋ denote the vector fields adapted to X, Y, i. e. 1XΫ, 1YX, 1YΫ are 0.
Suppose the theorem is true for / — I . Assume that Klf •••, K3 are constant.
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By inductive hypothesis we have (FJ, (F2), - , (F, ), also (2.1) for
2£k, l^2j-I, (2.2) for k^Λj-1. Then

ίj/21-l

+K).ι(K1 - /f ί-,)- l W

{!^
1fl ί-1.J-1-,,(/y-

Since σ o + 1 ) is orthogonal to X and A(Dj-tι-2kUX)-2t)XAX=0, we have

where aj+1j+1—aJ>j^=l, and for />0 and /—2/>l

(2.3) cij+1>j+1-2i=:Kj-1aj-.ltj+1-2i-\-(ij,j-2i

=κu Σ /C;1 ..JK:?1_1+ Σ

If y is odd and /—2/=l we have a^^^K^a^^^KlKl ••• UΓJ-L This proves
(Fy+1). By <<τ0+1), σ o + 1 ) > = l and (FJ+1) we have

1 / 2 3 1 [ ; + l / 2 ] l

Σ α ^ . j ^ . M ^ - ' - 'ήKX^1-11), Σ β ί + l i y + 1- t ι(ί^-1

ί=0 i0

But ((Dk-2h)(Xk), (D'-'hXX^y are constants, depending on Kl9 —, K^ for
* + ί ^ 2 ; + l , hence ^+i=<(JD

;-1Λ)(A'J+1), (DJ-1h)(XJ+1)> is a constant, depending
on /£, •••, ϋi,.

For every /, 2 ^ / ^ y + l

So we have

(2.4) <(D2

Again,

But
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Therefore

(2.5)

To prove (2.1) is true for * + / = 2 / + 2 , 2/+3, 2^k, / ^ 2 / + l , by (2.4) and
(2.5) we need only to consider the case {X, Γ>=0.

Differentiating

r, f, i2j-;-r), (Dl

along the directions of X and F respectively we have

<(D23~2h)(Xr, Y, X2*-1-1), h(X2)>
r-\ Y, X23-1-*), (Dh)(X3)>=

Z2^1"7-), (Drh)(Xr+2)>

2 j-3- r, F, Z r + 2 )>.

By Ricci identities for any 4^fe^2/+l, 2 ^ / ^ 2 / - l ,

F, Z*-2)

f(^*"4A)(Xe, i?(X, Y)X,
5 = 0

Since <i?(Z, Y)X, X>=0,

<(Dk-4h)(Xs, R(X, Y)X, Xk-3~s), (Dι-2

By (2.2)
<R1(X, Y){Dk-*h){Xk~2), (Dι-2h)(Xι)>

Hence

(2.6) {{Dk~2h){Y, X"-1), (Dι-2h)(Xι)> = «Dk-2h)(X, Y, Xk~2), (Dι-2h)(Xι)>

and then

, Y, X2j-2~η, (

2j~2~r), (Dr+1h)(Xr+s)>

, Y, X2j-z-r), (^+ 1A)(Z^+ 3)>=

, Y), (D2j-2h)(X2j)>.

Thus we have

<(D2j-2h)(Xr, Y, X23-1-?), h(X2)> = <(D2j-2h)(X2j), h{X,
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On the other hand if we write the identity {{D23~2h){X2j), h(X2)}=(-l)3+1vj+1

into the form

=(-iy+lvj+1«x, xyy+l,

by Lemma 1.1 we have

2Έ<(D23"2h)(X^ Y, X23^1), h(X2)>+2<(D2>-2h)(X2J), h(X, F)>=0.

Hence we have

(2.7) i{D23'2h){X\ Yy X23-?-1), h{X2)y = ((D*i-2h)(X2j)y h(X, F)>=0.

This shows that for 0^sg2/-2, 0 ^ r ^ 2 / - l - s

(2.8) <(D2>-2-sh)(Xr, Y, X2j-X-S'r)y (Dsh)(Xs+2)>=0.

Now

φ-\ f, f *>-η, h(X2)}

-\ Y, X2j~η, (Dh)(XB)>

-\ Y, X23-?), (Dh)(Xz)>= .»

'hW, X23'r), {Drh){Xr+2)}

'hXX, Y, X23-?-1), (Drh)(Xr+2)>

By (2.5) and Lemma 1.1 we have

Σ <(D*3~ιh){Xr, F, X2 ;-0,
o

Since />1,

i{D23~ιh){X\ Y, X23'r),

and for 0^s^2/-2, 0^r^2/-l-s,

(2.9) <ίD23-ι-'h)(Xr, Y,

This proves (2.1) for k+ί=2j+2, 2 ;+3. (2.2) is a consequence of (2.1).

Remark. In proving (FJ+1), (2.4) and (2.8) we only need the assumption that
Kj is a function of the point x, not depending on the direction X.

C O R O L L A R Y 2.2. // for every geodesic γ the Frenet curvatures Klf •••, K3 of
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σ=f°γ are constants, then σ(2), •••, σϋ+1)(=NxM. Especially if Klf •••, Kd-1 are

constants then f is an immersion with geodesic normal sections.

Proof. The first conclusion follows from theorem 2.1. For the second
conclusion assume Ku •••, Kd^ are constants then <r(2), •••, σcd)^NxM. By the
theory of ordinary differential equations we know that the geodesic γ is contained
in the totally geodesic submanifold Mo, whose tangent space at x is spanned by
σa\ σ(2), •••, σu\ which is contained in E(x, X). This means σ is a normal
section of M at x in the direction X.

The second assertion, i. e. a helical submanifold has geodesic normal sections
was proved by Chen and Verheyen ([5]). The inverse of theorem 2.1 is also
true.

THEOREM 2.3. Let f: Mn-+Mn+P(c) be an isometric immersion, ^ l . // at
each point x<=M, for every unit vector X<=UX(M), Λωk-2h)(χk)XAX—0 for
2^k^2j+l, then the Frenet curvatures Klf K2, •••, K3 are constants, and so (2.1),
(2.2) hold.

Proof. If Λh(X2)X=μ1X holds for some μ1 (μx may depend on X), then for
Y^UXM, <h(X2), h{Xy Y)>=μi<X, F>. This implies that AΓf=||Λ(^2)||2=i«1 is
constant on UXM. By the assumption Λωh)(X3)X=μ2X for some μ2. So for

, h(X, Y)y=μ2(X, Y>

9 γ>-i/2Yμi.

Since Y is arbitrary and X can be chosen such that <Z, 7>=0 we see that
Yμi—^y μι is a constant on M. By Lemma 1.1, we also have

<{Dh){x\ Y), h(xη>=o.

It is easy to see μ2=0. This proves the theorem in case / = 1 .
Suppose the theorem is true for / — I . Assume that A{Dk-2h){χk)X—μk-ιX

for 2^k^2j+l, X<ΞUXM. By inductive hypothesis, Ku •••, KJ-1 are constants
and so μlf μ2, •••, μ2j-2 are constants. By differentiating the identity (when
Y<=UXM):

-1), h(X, Ϋ)>=0

along the direction of X we have

(2.10) W-'hXX*'1), (Dh)(X\ Y)} = -

Suppose we have proved that for 0^γ^i—l, 2^i

(2.11) ({D*-2h){Xr, Y, X*-i-t
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Then by differentiating

({Dk-2h)(xr, Ϋ, xk-ι~η, (D*>-i-kh)(x*j-k+1)>

along the direction of X we have

+1, Y, X'-'-η, (D2j-1-kh)(X2j~k+1)>
r, Yy X"-*-1),

and thus

<{Dk-ιh)(Xr+\ Y, X*-?-1), (Dt>-1'kh)(X*>-k+1)>=(-Dk+1μtj-i<X, Y>

for O^γ^k — 1. Besides by Ricci identity

(D^hXX, Y, X'-^-iD'^hXY, Xk)

=Rλ(X, Y){Dk-*h)(Xk-1)-ki£{Dk-*h)(Xs, R(X, Y)X, Xk~s~2)
s=o

Using the same argument as before we see

<{Dk'ιh){X9 Y, Xk~ι), (D2'-k-1h)(X2j~k+1)y

= ({Dk-ιh){Y, Xk), (Dv-^MX*'-**1)).

This completes the induction of (2.11). Especially for Y—X and k—j we have

(2.12) ^ + i=ll(β J

Now let X, YSΞUXM we can choose Z<=UXM such that <Z, Z>=0 and for
some αε[0, 2τr], Y=Xcos α+Zsin a. For ίe[0, 2π] let r ^
then

=2Σ,<(DJ-1h)(Yr

t, -Xsint+Zcost, FΓO,

t, -ΛΓsinί+Zcos/>=0

Hence ||(^-1/z)(FΓ1)IΓ is constant for ίe[0, 2π], so

This proves /i2j-i and vj+1 are constant on ί/^M.
Now for any X, Y(ΞUXM with <Z, 7 ) = 0 we have

\ h(X, Y)>=μtJ<X, r > = 0
and
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), (Dh)(X2, F)>

), h{X, Ϋ)y-{(D2j-1h)(X2'+1)> h(X, F)>

^(Xμ^KX, y>=0.

Suppose we have proved that for l^g^2j—2, OSϊ^q, 0 ^ s ^ ^ + l

(2.13) ((D^-rhXX23-7*1), (Drh)(Xs, Y, Xr+1~s))=01

then for O^s^q+1,

^1), (Dqh)(Xs, Y, X«+1-s)>

)f (D«h)(Xs, Ϋ, X«+1-s)>

*), (D 5 + 1/z)(Z s + 1, Y, X«+1~s)y

), (Dq+1h)(Xs+1, Y, Xq+1~s)}.

Again, since

(Dq+1h)(X, Y, Xq+1)-(Dq+1h)(Y, Xq+2)

=Rλ(X, YXD^'hXX^1)- j±(Dq-ιh){Xr

y R(X, Y)X, Xq~r),
r=o

as before we can show that

), (Dq+1h)(Y, Xq+2)}

), (Dq+1h)(X, Y, Xq+1)}=0.

This completes the induction of (2.13). Putting γ=j we have

<{D>-ιh)(X>+1\ (DJh)(Y, Xj+1)}=0,
hence we obtain

+1)f (D'h)(Y, Xj+1)>=0,

it proves that μ2j.1 (and also vj+1) is a constant on M. It follows that μ2j~0.
Thus by (2.10)-(2.13) we have (2.1). By inductive hypothesis Klf •-, K3.λ are
constants and (Fi), •••, (Fj) hold. As in Theorem 2.1 we have

where aj+lij+1-2ι are constants depending on Klf •••, K3-x. Since for γΛ-sS.2]— 2
<(Drh)(Xr+2), (Dsh)(Xs+2)} are all constants we see that /Γ, must be a constant.
The theorem is proved.

COROLLARY 2.4. An isometric immersion f: Mn-+Mn+P(c) is a helical immer-
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sion if and only if M has geodesic normal sections.

Proof, If every geodesic γ is a normal section, i.e. contained in a totally
geodesic submanifold Mo with TXMO-E(x, X), X=γ, then I E T X ( M 0 ) , V X Z =
h(X, X)^TxMo and lxh{Xy X)^TxMOf •«• , ̂ (D^hXX^TMo for all i. This
means A{Dι-2h){Xι)X/\X—^ for all X<BUXM. By theorem 2.3 the Frenet curva-
tures are all constants.

COROLLARY 2.5. Let f :Mn-+Mn+p(c) be an isometric immersion with every
geodesic being of order d. Then:

(a) // d is even and the Frenet curvatures Kly K2, •••, Kul2)-λ are constants
then f is helical, Klf K2, •••, Kd-χ are constants.

(b) // d is odd and the Frenet curvatures Klf K2, •••, K(d.3)/2 are constants
and /ί(d-i>/2 is constant on every unit sphere UXM then f is helical.

Proof, (a). If Klf K2, •••, K(d/2)-1 are constants by Theorem 2.1 for k^d—1,
X<ΞUXM, A(Dk-2jl)(Xk)XAX=0. Using this fact we can easily show that the
Frenet frames σω, σi2), •••, σu\ where σ^f^γ, γ being the geodesic issued
from x and tangent to X, are linear combinations of X, h(X2), •••, (Dd~2h)(Xd).
Hence σω, σ(2), •••, σ{d)<^E(x, X). By the theory of differential equations a is
contained in the totally geodesic submanifold Mo having E(x, X) as tangent
space at x. Thus γ is a geodesic normal section and / is helical.

(b). By the remark after Theorem 2.1 and the same argument in (a) / is
also helical.

Chen and Verheyen proved this corollary in the case d=3, 4. ([5]). Also
see Nakagawa [8].

Next we consider some problems related to the order d.

THEOREM 2.6. Let M be a compact submanifold in Em having geodesic
normal sections, then the order of M is even.

Proof. By Corollary 4 in [5] the geodesies on M are closed curves. But
these curves are helices and a helix of odd order in Em cannot be closed. See
D. Ferus and S. Schirrmacher [6].

THEOREM 2.7. Let M be a spherical submanifold in En+P having geodesic
normal sections then the order of M is even {in En+P).

Proof. Suppose a geodesic γ of M is of odd order 2m+1. Then there are
constants γ0> γly •••, γm, aly •••, am and orthogonal vectors e0, el9 •••, e2mGEn+p

such that

γ(t)~γoteo+ Σ 7iίe2t-i cos a5t-\-e2x sin a-t\ .

Since M is contained in some sphere with center x,
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(Tot—XoY+Έ ί(ϊι cos ait-x2ι-1)
2+(rι sin ait-x2lf]=R2

where xk — (.x, ek}, R is a constant. But this implies that γQ=0 which is a
contradiction.

In order to classify helical submanifolds in spaces of constant curvature, an
important problem is to determine the upper bound of the dimension of the
ambient spaces. By Sakamoto [9] a helical submanifold M immersed into a
sphere is also a helical submanifold of a Euclidean space. By the proposition 5.6
in Sakamoto [9] we know that if MncEm is a helical submanifold of order d
then Mn is contained in the linear subspace

Od

x=Sp{X, (Dk~>h)(Xlf - , X k ) ; X, Xu - , Xk^TxM, ft = 2 , 3, - , d } .

We have

LEMMA 2.8. Let MndMn+p(c) be an immersion. Then for / ^ l

Proof. For j = l we have

Ox=Sp{X, X^TXM}=-TX

)S o d i m θ i = ? 2 . Suppose that we have d i m O Γ ^ f •_-, ) —1 Noticing that

Ox=-Sp{Oχ-\ V\ where J

-,Xj); X» ~ ,

if we can show that (where elf •••, en are basis vectors for TXM)

(2.14) VdSp{(D^2h)(ek^ el*, - , e*») kx + k2+ ••• + * „ = ; ; Of1},

since there are ( ) vectors in the set {(DJ~zh)(ek

1

1

) el2, •••, ekn)}, then we

To prove (2.14) notice that

V=Sp{(D>-2h)(elv et2, - , ^ ) ^ t2, - , ^ = 1 , 2, - , n}.

We only need to show that for any γ, l^γ^j—3,

(2.15) (&-2h)(eliy eι2, - , eXγ, elγ+1, - , e v ))

Extending elf •••, e n to vector fields elf -•-, enin a neighborhood of x such that
at x, V e ί £ * = 0 for all /, ft,
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( D J - 2 h ) ( e l v el2, — , elγ, elγ+1, •••, e t j )

-(D>-*h)(e%1, ~',etr+1, elγ, - , e τ j )

γ+1, e l γ 1 •••,

.)] .

But Rλ(elr, elγ+1)(Dι-r-3h)(etr+2, --, etj) is a linear combination of h(et, eL),
l^g/, /<Ξn, in fact if f is orthogonal to all h(et, e{), 1^/, /^w, then

hence i4€=0 and < ^ ( ^ r , ^ r + 1 ) 9 , ί>=<W,, ^ ] ^ r , S + 1 > = 0 for all η^NxM.
Thus all terms in the last expression are in OJ

X~\ This proves (2.15).
Thus we have

THEOREM 2.9. Let MndEm be a helical immersion of order d then Mn is

contained in a linear subspace V of Em with d i m F ^ ί , / *̂

§3. Surface with geodesic normal sections.

Chen and Verheyen [5] studied surfaces with geodesic normal sections, they
showed that in Eδ the only surfaces with geodesic normal sections are (i) a
2-plane E2 (ii) an ordinary 2-sphere in a 3-ρlane (iii) the Veronese surfaces in
E5. They also gave some partial results in E6.

In this section we will prove the following theorems.

THEOREM 3.1. Let M2 be a surface with constant curvature immersed in E\
then M2 has geodesic normal sections if and only if M is contained in one of the
followings.

( i ) a 2-plane E2

(ii) an ordinary 2-sphere in a 3-plane
(iii) the Veronese surface in a 5-plane
(iv) the 3rd standard immersion of a 2-sphere S2dE\

THEOREM 3.2. There is no surface M2 helically immersed into Em of order 3.

First we prove the following lemma.

L E M M A 3.3. Let M2cEm be a helical immersion^ {ely e2} are orthonormal
vectors in TXM, I G M β=z\\h(e1} e2)\\. Then

(3.1) <{Dh)(eϊ), h(eΐ)>=<(Dh)(el), h(e1} *2)>=<(0A)(eϊ, e%\ A(ef)>=0,
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(3.2) <(DhM), h{el)> = -3βe1β 9

(3.3) <(Dh)(el e2), h(elf et)>=βeφ ,

(3.4) <{Dh)(el,ez), h(el)> = -βe2β.

Proof. (3.1) is proved in theorem 2.1. Using Lemma (1.1) to <(DhM), h{e\)>
=0 we have

(3.5) <(Dh)(e\), λ(eί)>+6<(DΛ)(eϊ, e2), h(elf e2)}+3((Dh)(eί} el), A(eϊ)>=

and

(3.6) <(Dh)(el), A(e|)>+<(ZM)(ef, e1)ί h(el)>

where ê , e2 denote the vector fields adapted to elf e2 and

(3.7) <(Dh)(el *.), h(elf e,)> = y e j Afo, W ^ j S .

Combining (3.5)-(3.7) we get (3.2)-(3.4).
Now we prove theorem 3.1. Let M2 be a surface with constant Gauss

curvature K, helically immersed in E\ If the immersion is of order 1 or 2, by
theorem 2.8, M 2 is contained in a 5-dimensional linear subspace of E7, thus by
the result of Chen and Verheyen M2 is of case (i), (ii) or (iii). Suppose the
immersion / is of order at least 3 then Ku K2>0. Using the notations in [5],
i.e. α = | | # | | , ξs—(l/a)H, H being the mean curvature vector, ξi—l/2β(h(el)—
h(eί)), ξ5=l/βh(e1} e2), by lemma 3.3 (Dh)(e\) is orthogonal to £8, &, fβ since β
is a constant. We may assume that aβφO since the case α/3=0 has been dis-
cussed in [5]. But WiDhXeΌ^KiKt so we may assume (Dh)(e\)=KxK£ι then
ξ6 is a unit vector orthogonal to ξs, ξ4 and ξδ. Thus we can find a unit vector
ξ7 such that ξ3, ξif ξδ, ξ6 and ζ7 form an orthonormal basis for NXM. Since
{Dh){e\, e2), (Dh)(elf el) and (Dh)(eϊ) are all orthogonal to ξ8, f4, f6 and ||(DA)(e|)||
=/?!«•„ <{Dh)(e\)} (DhM, ^2)>=0, <(Dh)(el), (Dh)(el9 β|)>-0. We may assume
that there are 0e[O, 2ττ] and real numbers α, 6 such that

(3.8)

(3.9) (^A)^!, eD^K.KMzos θξQ-$m θξΊ)

(3.10) (DA)(βi)=ϋC1/i:8(sin ̂ 6 + c o s 0f7).

Using lemma 1.1 to ({Dh){e*), (Dh)(e3)}=KίK2

2((ef e>Y for all e<=TxM,

(3.11) 2<(Z)A)(*5), (Z)A)(βl, βϊ)>+3<(DA)(ef, β2), (Z)A)(ef, ^2)>-/Γf/r|,

(3.12) <(Dh)(el), (Dh)(el)}+9<(DhM, e2), (Dh)(elf eϊ)>=0,

(3.13) 2<(Dh)(el e2), (Dh)(el)}-h3((Dh)(eu el), (Dh)(ely e\y>=K\Kl.
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Combining all the equations (3.8)-(3.13) we have four solutions:
Casel. ft=-l, α = - l , 0 = 0 ; Case 2. 6=1/3, 0=1/3, 0 = 0 ; Case 3. δ = β = l ,

0 = π; Case 4. b—a — —1/3, 0=7r. If we replace f7 by — ξ7 then Case 3 reduces
to Case 1 and Case 4 reduces to Case 2. Thus we have basically two possible
cases:

(3.14) Casel: {DhXeD^K^, (Dh)(ei et)=-

(Dh)(eu e\)=-KxK£<9 {Dh)(el)=

(3.15) Case 2: (DhXe^K^ξ,, (Dh)(el, e^ί^

(Dh)(eu eD

We first consider case 2. Choose {elf e2} to be orthonormal vector fields. Then
{elf e2, ξs, ζi, fδ, ξ6, ζi} is a moving frame of E\ Let ω\ be the connection form.
Then

— Ίχ- KλK2ζ&+-g-K1K2ξ6 — -o~~Kλ

Thus we have

Similarly we have

(3.18) τ71ζδ—2ω2ξ4

Ji—^-^-(ύ^fβ+ω1^)

The Ricci equation (1.4) can be rewritten as following:

v

=Σ
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-Έ<oϊ(X)ω°v(Y)ξ,-Σo>yΛlX, YDS,
yz y

=Σ
y

+ Σ { ω ϊ v
z

=2 Σ (dωl(X, Y)+Έ (ωϊΛω*x)(X, Y))ξy .
y z

So we can write

(3.19) ^ ? + Σ ^ Λ ^ = | [ 4 , Λζy]

where [̂ 4̂ , Aξy] denotes a 2-form, having (lAζχ, Aξy](X), Y} as its value at
X, Y. Let *=6, y=7 then

(3.20) dωl+ωlΛωl+ωlΛωi+ωlΛωl=~lAζ6, Aξl]=0.

On the other hand

κ\κ\xv

Q JΓ2Z<^2

e2), (Dh){e\}

K\K\ 9 w l χ β l /

βi, el))

Thus α)J=ωf and (3.16)-(3.20) gives

Thus we have K=0. Let ^ = 4 , ̂ = 5 then
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On the other hand [^4ί4, Aξ^\—iβ2ω^Aωι

y this is a contradiction. Thus case 2
is impossible.

Next we consider case 1. Similar computation as in case 2 we have

(3.21) 7 1 f , = 0 ,

(3.22) ^ξά=2ωlξ5+^ψ^(ω^-ω%),
P

(3.23) 7^5
P

and

ή, e2)

AiA2

Similarly,

Thus we have

(3.24) V Έ β = -

(3.25) V 1 ^ - -

Putting x=4, 3^=5 in (3.19)

l, e2), (Dh)(e\, e2)}

P

? Λ ωj

—α> 2Λ

Thus we have

(3.26)

Putting x=6, 3? = 7 in (3.19)

ίίωs+ωl Λωi+ωlΛωt



HELICAL IMMERSIONS AND NORMAL SECTIONS 187

Thus we have — 3K+{2K\Kl)/βz=0. Taking account of (3.26) we have

(3.27) K\=¥-K, β*=jK, Kt=~K.

Let γ be the geodesic issued from l e M and σ=f°γ as its image in E~
Choosing βi such that e^ — d along y,

i

So

so

Thus we have Ksσ
w=^-((KιK1)/β)ξi+(K,/K1)(aζs+βξi)=(K2a/Kιβ)φζs-aξi)

and

(3.28) K3

and Ίeiσ
U) ——KzζQ—— K3σ

lft). Thus γ is a helix of order 4. But ex can be
chosen as any unit vector in TXM, this means / is of order 4.

Now if we regard {f3, f4, £5, f6, £7} as a 5-plane bundle £ on M2, then
(3.21)-(3.25) define a connection on E, equipped with the second fundamental
form h and associated second fundamental tensor A. It is easy to check that
they satisfy the equations of Gauss, Ricci, and Codazzi. Thus by the funda-
mental theorem of submanifold [2] we can conclude that there is an immersion
M2-^E7 with normal bundle E, and up to a motion, this immersion is unique.

We can also write this immersion explicitly. Let eu e2, f3, £4, £5, £6> £7 be
the frame at x, γe be the geodesic issued from x, having tangent vector|J<? —
*! cos 0 + e 2 sin 0, O^0<2τr, σe=f°re. Then

= ^ = ^ cos θ+e2 sin θ ,

αe8+j3 cos 20£4+jS sinί ( )
(3.29)

σ^(Q)=(l/K1K2)(Dh)<ie3)=ξQ cos 3 0 - $ 7 sin 30 ,

- α cos 2 0 ί 4 - α sin 20f5).

Since σ(

e

Ό, af\ σ(

e

B) and σi4) satisfy the Frenet equations and the initial condi-
tion (3.29), by solving these equations we get the helical immersion of the
sphere S2dE7, which is the 3-rd standard immersion of S2dE7:
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/(0, ι>)=(#/16)(sin v+5 sin Zυ){e1 cos θ+e2 sin θ)

-(RV 6"/48)(3 cos v+5 cos 3v)ξ3

+(/?VIU/16)(cos t -cos 3v)(f 4 cos 2θ+ξδ sin 2/9)

-(/?VΪ5/16)(sin v-1/3 sin 3v)(ξ6 cos 30-£ 7 sin 30),

where R=1/VK is the radius of S2 and (0, v) is the spherical coordinate on S2.
Thus Theorem 3.1 is proved.

Now we turn to theorem 3.2.

LEMMA 3.4. Let f: M2dEm be a helical immersion of order 3. {e1} e2} ts
an orthonormal basis for TXM, x^M. Then

(3.30) (

(3.31) (D*h)(el, e 2 ) = φ

(3.32) (D2h)(e2, e\)={-l/2)(?>K2+Kl-l2β2)h(ely et),

(3.33) (D2hM, e2

2)=((-l/6)Kl-(l/2)K2+2β2)h(e2)

+{{-l/$)Kl+{l/2)K\-2β2)h{eϊ).

Proof. Let ^ be a geodesic issued from x with tangent vector e and the
Frenet frame for σ=f*γ be σ α \ σ(2\ σ(3). By theorem 2.1, σω=e, σi2) =
(1/KJhie2), σ(s) = (K1K2)-\Dh)(es). And the Frenet formula gives Veσ

(3) = -tf2<r(2),
i.e.

(K1K2)-\D2h)(e*)=(-K2VK1)h(e2),
or

( D 2 / ι ) ( θ - - ^ i ^ ^ 2 ) .

Since this is true for all unit vectors e<=Ux(M) by lemma 1.1 we have

(3.34) 3(D2h)(el e2)+(D2h)(e2, el)=-2K2

2h(eu e2),

(3.35) (D2h)(e2, el)+{D2h){el e\)=-{^)K2

2{h{e\)+h{eD).

By the Ricci identity

(D2h)(el, e2)-{D2h){e2, eϊ)=R\elf et)h(ef)-2h(R(eu e2)elf ex).

Using (1.3) and Proposition 13 in [5] there is an adapted orthonormal frame
\βi, e2, ξ3, " , ξm} for which we can find that

(3.36) R\eu et)ξt=0 if iΦ4, 5; R^eu e2)ξ,= -2β2ξ5; R±(el9 e2)ξ5=2β2ξ4,

since R{eu e2)e1 ——Ke2—{—K2

ι

J

Γ?>β2)e2, where K is the Gauss curvature of M2.
Thus we have
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(3.37) {D2h){e\, e2)-(D2h)(e2, eϊ)=2{K\-ψ)h{eι, e2).

By (3.34) and (3.37) we get (3.31) and (3.32).
Similarly we have

{D2h)(e\, el)-{D*h){el, e2)

= Rx(e1} e2)h{eu e2)—h(R(eu e2)eu e2) — h(R{eλ, e2)e2, e,)

=β2ίHe2

1)-h(el)^+(K2

1-3β2)h(el)-(K2~3β2)h(e2

1)

Taking into account of (3.35) we get (3.33).

LEMMA 3.5. Let f:M2->Em be a helical immersion of order 3. Then M2

has constant Gauss curvature.

Proof. Suppose M2 is not of constant Gauss curvature then β is not a
constant. Since M2 is connected there exists x ε M 2 such that βφO, dβφO in
a neighborhood U of x. Choose a unit vector field e1 in U such that dβ(eά =
e1β~Q and a unit vector field e2 in U orthogonal to eλ. Then by Lemma 3.3

<(Dh)(e\),

Differentiating along the direction of e2 we have

<(D2h)(e2, el), h(eϊ)

+3ωl(e2K(Dh)(el e2), h(e2

2)y+2ωl(e2K(Dh)(el), h(elf e2)>=

By lemma 3.3 and 3.4 we get

(3.38) <(Dh)(el), (Dh)(el)> = -3ω2(e2K(Dh)(ei e2);

Also by Lemma 3.3

<(Dh)(eu el), A(ef)>=0.

Differentiating along the direction of e2 we have

<(Dh)(e1} el), (DhM, e2)>+<(D2h)(el, eλ), h{e\)y+ω\{e2K{Dh){ef), h(e2)}

+2ωl(e2K(Dh)(e2, e2), Λ(ef)>+2ωf(e2)<(DA)(e1, el), h(el9 e2)>=0.

Hence we have

<(Dh)(elt el), (Dh){e\,that is

(3.39) <(Dh)(eu e2

2), {Dh)(e\, e2))=ω2(e2)βe2β .

Combining (3.38), (3.39) and (3.12) we find
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(3.40) <(DhM), (DhM)>=<(Dh)(*i, *i), (DhM, e2)>=0,

(3.41) ω2

ι

(3.41) is true for all points in U. But βe2βΦθ in U, thus ωl(e2)=0 in U.
Again, since (Dh)(e\) is orthogonal to h(ef), h(eu e2) and h(el), so by (3.36),

we have

R^el9et)(Dh)(eO=0.
By (3.30)-(3.33), we have

= -~(3/Cϊ+/fi-12 iS«)7β

J

 1A(e1, e2)

Thus,

) - 7 6 1 . β ^ ^

Since ^ is not a constant, we have (Dh)(el, e2)^=0. On the other hand, by dif-
ferentiating <lDh)(e\> e2), A(βf)>=0 along the direction of e2, we have

, (Dh)(el eύ>+<(DhM, e\), A(
hence

|, el),

This shows that β is a constant, a contradiction. This proves Lemma 3.5.
Now we finish the proof of theorem 3.2. Let M2dEm be a helical immer-

sion of order 3. By lemma 3.5, M 2 has constant Gauss curvature. By theorem
2.9, we may assume that m=9. Let {elf e2) be orthonormal vector fields in
some open subset UdM. Thus Lemma 3.3 shows that (Dh)(ef) is orthogonal to
h(e\), h(eί} e2) and h(e\), by (3.36), we have
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The same computation as in the i

(3.42)

But we also

(3.43)

and

(3.44)

DΓOOf Of

-j(9K2-K2

2-30β2

have

<(Dh)(e2

u e2), (Dh){e\,

<(Dh)(e2, e2), (Dh)(e

1

ϊ, *»)> =

lemma

)(DhM,

KIKl-

-«D*h)

1 K2

2{ Γ

3.5

(el,

gives

= 0 .

:ψ-κψ+ί

eύ, h{eu e2))

•2

2+4p )p .

Comparing (3.43) and (3.44), we get

(3.45) 12/34

If (Dh)(eh e2)=0, by (3.44) we have β=0 or -Kl+Kl+4β2=0, both are impos-

sible by (3.45). If (Dh)(el e2)Φθ, then 97Γf—iίΓl—30/S2=0, this also contradicts

with (3.45). Thus theorem 3.2 is proved.

Since a helical immersion M2dE6 has order no more than 3 ([5]), we have

the following.

COROLLARY 3.6. Let M2 be a surface immersed into E6. M2 has geodesic

normal sections if and only if M2 is contained in one of the surfaces ( i), (ii) and

(iii) listed in theorem 3.1.

Acknowlegement. We are grateful to the referee for his valuable suggestions

which lead improvements to this paper.

REFERENCES

[ 1 ] BESSE, A.L., Manifolds all of whose geodesies are closed, Springer-Verlag, Berlin,
1978.

[ 2 ] CHEN, B.Y., Geometry of submanifolds, M. Dekker, New York, 1973.
[ 3 ] CHEN, B.Y., Submanifolds with planar normal sections, Soochow J. Math., 7

(1981), 19-24.
[ 4 ] CHEN, B.Y., Differential geometry of submanifolds with planar normal sections,

Ann. Mat. Pura Appl., Vol. 130 (1982), 59-66.
[ 5 ] CHEN, B.Y. AND P. VERHEYEN, Submanifolds with geodesic normal sections,

Math. Ann., 269 (1984), 417-429.
[ 6 ] FERUS, D. AND S. SCHIRRMACHER, Submanifolds in Euclidean spaces with simple

geodesies, Math. Ann., 260 (1982), 57-62.
[ 7 ] HONG, Y., HOUH, C. S. AND G. Q. WANG, Some surfaces with pointwise planar



192 YI HONG AND CHORNG-SHI HOUH

normal sections, Bull. Soc. Math. Belg., 36 (1984), 193-206.
[ 8 ] NAKAGAWA, H., On a certain minimal immersion of a Riemannian manifold into

a sphere, Kodai Math. J., 3 (1980), 321-340.
[ 9 ] SAKAMOTO, K., Helical immersions into a unit sphere, Math. Ann., 261 (1982),

63-80.
[10] VERHAYEN, P., Submanifolds of Em with geodesic normal sections are helical, to

appear.

DEPARTMENT OF MATHEMATICS

WAYNE STATE UNIVERSITY

DETROIT, MICHIGAN 48202

U.S.A.




