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HELICAL IMMERSIONS AND NORMAL SECTIONS

By Y1 HONG AND CHORNG-SHI HOUH

1. Introduction.

Let f:M"—M"*? be an isometric immersion of a connected n-dimensional
Riemannian manifold M into a Riemannian manifold M of dimension n+p. If
7:I=[0, 1]>M is a curve on M then o=f-r is a curve on M. Let ¢ be
parametrized by its arc length, ¢™®=¢ be the unit tangent vector and K=
IV;0®].V denotes the covariant differentiation of M. If K, vanishes on [0, 1]
then ¢ is called of order 1. If K, is not identically zero, then we define ¢®
by V;6@=K,6® onthe set I,={s<[0, 1]: K,(s)#0}. Let K,=||V;0®+K,0V].
If K,=0 on I, then ¢ is called of order 2. If K, is not identically zero on I,
then we define ¢® by Veo®@=—K,6®+K,0®. Inductively we put K,=
IV;0@+K,.,09 ], If K4=0 on I,_, then ¢ is called of order d. It follows
that if the curve ¢ is of order d we have the Frenet formula ([9]):

1.1 Vil@®, @, -, ¢ D)=(g®, @, -, ¢ DK
where
0 — K, Qs 0 7
K 0 —K 0
K=0 K, 0
0 =K,
_ Ka 0

K, K,, ---, K,-, are called the Frenet curvatures of ¢. If, for each geodesic y
on M, the curve fey on M has constant Frenet curvatures of order d, and they
are independent of 7, then f is called a helical immersion of order d. In most
cases the ambient space is considered as a Riemannian manifold of constant
sectional curvature ¢, denoted by M™*?(¢). Sakamoto [9] and Nakagawa [8]
have investigated helical immersions. The concept “helical immersion” originates
from Besse [2]; it is important in the theory of harmonic manifolds.

Another important concept used in this paper called normal sections, origi-
nated from Chen [3]. In [3], [4], [7], submanifolds in E™ with (pointwise)
planar normal sections were investigated. Chen and Verheyen [5] proved that

Received March 19, 1984
171



172 YI HONG AND CHORNG-SHI HOUH

a helical submanifold in E™ has geodesic normal sections. Verheyen [10] proved
its inverse,

For a submanifold M™ immersed in a space form M™+?(¢c), we can also define
normal sections. For a point x in M and a unit vector tT,M, the vector t
and the normal space N M determine a (p-+1)-dimensional subspace E(x, t) of
T .M, which determines a (p-+1)-dimensional totally geodesic submanifold M,.
The intersection of M and M, gives rise a curve y(s) (in a neighborhood of x),
called the normal section of M at x in the direction ¢.

For any two vector fields X, Y tangent to M, the second fundamental form
h is given by A(X, Y)=VyY —VyY where V is the covariant differentiation in M.
For any vector field & normal to M, put ﬁXE=—A5X+nyE, where —A.X and

4& denote the tangential and normal components of Vx&, respectively.

The covariant differentiation D on the Whitney sum T(M)PN(M) is defined
as follows (see [8]): For any N(M)-valued tensor field T of type (1, k), C*-vector
fields X, X;, X,, ---, X, tangent to M, put

1.2) DT(X, Xy, Xy -+, X)=(DxT)(X, -, X2
=VHTXy, -, X)) 3

7

IT(XI’ tty VXXH R Xk)-

We have the Ricci identity :

(1.3) DTHX, Y, Xy, -, Xo)—(D*T)Y, X, X, -+, X&)
=RYX, Y)T(Xy, -+, Xi)— éT(Xl, o, RX, V)X, e, Xa)

where RY(X, Y)=V%V$—V$V%—V¢r y1 is the normal curvature tensor, R is the
curvature tensor of M.
The following identity is well known ([2]):

(1.4) (RHX, Y)E, pp=<[As A,]X, Y>.

The following algebraic Lemma is a main tool in this paper.

LEMMA 1.1. Let T,, T, be tensors of (g, p)-type on a vector space V. Suppose
for all veV

(1‘5) Tl(l}p)le(U, U, Tty U):TZ(UP) )
then for vy, -+, vpE€V,

(1-6) E Tl(vd(l)’ Tty vu(p)): 2 T‘Z(vd(l)} Tty vd(p)) s
aESp 0ESy
where S, is the symmetric group on p letters.

Proof. Let A, ---, A, be real parameters. Take v=37_,2; in (1.5). We
have
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2 Ay e ATy, iy, o, Vi )= Ay o A Tovey, Vi, oo, V1)

p

Comparing the coefficients of 4,-4, --- 4, on both sides we have (1.6).
In §2 we discuss the relation between helical immersion and normal section.
In §3 we consider helical immersed surfaces.

2. Helical immersions and normal sections.

The following theorem is a generalization of a theorem of Sakamoto ([9]).

THEOREM 2.1. Let f be an isometric immersion M™—M?**?(c). For all
geodesics v on M suppose a=f-y have constant curvatures K, K,, --- K, (j=d—1,
d the ovder of @), then we have the Frenet frames:

(F)  o¥=X,
[i/21-1

(F)  oP=(K, K, Quo-a(DVHER(X), 2=is+]

=0
where X=7, a,,=1, a, ,-5,= ZEA K} K3, --- K%, for >0, where A, is the
(ST Y)) 2
collection of subsets of {2, 3, ---, 1—2}, any two numbers in such subsets have dif-
ference at least 2.
Also, for 2=k, 1=27+1, 0=y=<k—1, Rk+I=2;+3, X, YeUM, the umt
tangent sphere at x,

(2.1) (DE2R)(XT, Y, XE0, (D' 2h)(X Y
{ (—1)(k—l)/2”(k+l)/z<X, Y>, k—{—l———'even,
1o k+1=odd.

Where v,=|(D*?A)X")|® only depend on K,, -+, K,-y, and for k=2;+1
(=D 1y, 0 X, if  k=cven,
2.2) A(Dk—zh)(xk)X:{
0 , if k=odd.
Proof. For =1, K,=constant implies that |A(X, X)|=K, is a constant. So
X, X), (X, Y)O=KKX,Y)
and ¢V =X, ¢®=K7'h(X, X). This proves (F,), (F:). Also
DX, V), h(X*)D=1/2Y h(X?), h(X?)>=0,
(Dh)(X?), KX, Y)y=—<h(X?), (DR)(X? Y))=0

where )?, Y denote the vector fields adapted to X, Y, i.e. VX)~’, Vy)?, VyY are 0.
Suppose the theorem is true for j—1. Assume that K, ---, K, are constant.
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By inductive hypothesis we have (F), (F), -+, (Fy), also (2.1) for k+4+I[<2741,
25k, 15271, (2.2) for k<2j—1. Then

Kjo‘““=§Xa‘f’+K]_,a"‘”
[j/21-1
=(K,K,-)! lg; @, o[ — Apr-ti-2y, (y1-2t, X+ (D721 ) (X121 +1)]

Cj-1/21-1
+K, (K, K, )" 120 Qyor yo1-gu(DI3BRY (X712
Since ¢¥*? is orthogonal to X and Api-2t-2;) xs-2,, XA X=0, we have
[j+1/2]1-1
Kig9V=(K, - K,.)™? 120 Qjon, o1 (DI 2 R)(X 72041

where a4, ;.1=a, ;=1, and for />0 and j—2/>1
2.3) aj+1,j+1-zt=K§—1a;-1,j+1—2z+aj,;—zl

=K, > Kz K: 4+ 3 K%Ky

(i3, 1 D€L -1 (i1, 1) EA,

= % KKl

(AU PFST
If j is odd and j—2/=1 we have aj4;,,=K? 1a,.,,,=K}K} - K2_,. This proves
(Fj+1). By a9tV ¢U*t>=1 and (F;;;) we have

AT R Y PPN AL - 1-21 1-2l
B Dy, T D)

=K?K%-- K*.

But <{(D*th)(X*), (D**h)(X'))> are constants, depending on K, -+, K,_, for
k+i=27+1, hence v =<(D?" h)(X7*Y), (D~ h)(X7*!)) is a constant, depending
on K, -, K,.

For every [, 2=<I<j+1

0=X{(D¥ - h) (X244, (D'*h)(X )
=((D¥ (X271, (DF2RY(X > +{(D¥ 1 R)(X -4, (DFRY(X )
So we have
@2.4) (D h)(X >4, (D' h)(X Dy=(—1)"Hy,, 2SI +1.
Again,
(D h)(X7*), <Df-1h><Xf+1>>=%X«Dl**h)()?m), (D h)(X7+1)y=0.
But . .
0=X{(D*~th)(X*-+%), (D' *h)(XY)
=D R)(X27H9), (DF2R)(X D) +(DP T R)(X 1), (DF1R) (X))
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Therefore
(2.5) (D¥-th) (X2~ (D A)Y(X ) =0, 1=i=5.

To prove (2.1) is true for k+/=25+2, 2743, 2=k, (2741, by (2.4) and
(2.5) we need only to consider the case <X, Y)>=0.
Differentiating

(Du-tpy( X, ¥, Xomtry (DRR)Y(XYy=0,  2<i<2j—1, 0<r=2j—I
along the directions of X and Y respectively we have
DY 2h)(XT, Y, X777, h(X?))
=—{D¥ )X, Y, X¥7), (DA)(X®)= -
=(—=1D¥*Th)(Y, X*7177), (DTh)(X %))
=(=DD¥ TR X® T, (DY, X)) = -
=<{h(X?), (D¥2h) (X557, Y, X))
By Ricci identities for any 4<k=<27+1, 2=/=<2j-—1,
(D*2p)Y, X+ 1)—(D*2h) (X, Y, X*°?)
=—RYX, Y)(D**h)(X* %)+ ZZ:(D"“%)(X*, R(X, V)X, X*°).
Since <R(X, Y)X, X>=0,
(D**h)X?, R(X, Y)X, X*35) (D' 2h)(X1)>=0.

By (2.2)
(RH(X, YYD**h)(X*?), (D'*h)(X 1)

=<[Awpr-1n) x k-2, Awpt-2nyx]X, Y>=0.
Hence

2.6)  (D*FPR)Y, XE, (DFPRYXD>=K(D**h)(X, Y, X*7%), (D'"*h)(X "))

and then
D¥27Th)(Y, X27177), (DThY(XT+2))

=(D¥ 2 Th)(X, Y, X727, (DTh)(X7*?))
=—D¥ 2 Th)Y, X¥7*7), (DT h)(XT*9))
=—{(D¥3Th)X, Y, X231 (DAY XT+3))= .-
=(=D¥* (X, Y), (D¥2h)(X™)) .

Thus we have

AD¥=2h)(XT, Y, X273, h(XP))=<(D**h)(X*), h(X, Y)).
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On the other hand if we write the identity <{(D¥-2h)(X?), A(X?))>=(—1)"*"v;4,
into the form

UD¥2h)(XY), h(X2)y= (=17 ((X, XOP*,

by Lemma 1.1 we have

B DR, ¥, X, REDAHRDH ), (X, ¥V)>=0.
Hence we have
2.7 D¥2h)(X7, Y, X¥77), i(XB>={(D¥2h)(X¥), h(X, Y)>=0.
This shows that for 0=s<2;—2, 0=<r=<2;—1-—s
2.8) (DW= h)(XT, Y, X217, (DSh)(X°+%))>=0.
Now
(DW= h)(XT, Y, X*¥70), h(X?))
=X(D R X, ¥, Ko, h(KY)

—(D¥2RYXTY Y, X270, (Dh)(X?)
=—{(D¥*h)( X7, Y, X¥7T), (DR)(X*)= -
=(=1(DETRYY, X2, (DTR)(XTH))
=(=DRD¥7T )X, Y, X770, (DTh)(XT+2))
=(=Dr (D R)(Y, X2, (DT R)(XTH) = -
=—<(h(X, Y), (D* )X .

By (2.5) and Lemma 1.1 we have
:gj})((Dg"‘h)(Xr, Y, X¥77), h(X*)>+2{D* " h)(X**Y), h(X, Y))=0.
Since 7>1,
DW7h)(XT, Y, X277, R(X®))=L(D¥h)(X**Y), h(X, Y)>=0
and for 0=s=<2;-2, 0=y<2j—1—s,
2.9) (DR (X7, Y, X¥77), (DR)(X*+%)>=0.
This proves (2.1) for k+/=2;42, 243. (2.2) is a consequence of (2.1).

Remark. In proving (F,), (2.4) and (2.8) we only need the assumption that
K, is a function of the point x, not depending on the direction X.

COROLLARY 2.2. If for every geodesic y the Frenet curvatures K,, ---, K, of



HELICAL IMMERSIONS AND NORMAL SECTIONS 177

g=fey are constants, then ¢®, ---, ¢9*V N M. Especially if K,, -, K4, are
constants then f is an immersion with geodesic normal sections.

Proof. The first conclusion follows from theorem 2.1. For the second
conclusion assume K, -, K;_, are constants then ¢®, ---, ¢ Y=N,M. By the
theory of ordinary differential equations we know that the geodesic 7 is contained
in the totally geodesic submanifold M, whose tangent space at x is spanned by
o®, g®, ..., ¢'9, which is contained in F(x, X). This means ¢ is a normal
section of M at x in the direction X.

The second assertion, i.e. a helical submanifold has geodesic normal sections
was proved by Chen and Verheyen ([5]). The inverse of theorem 2.1 is also
true.

THEOREM 2.3. Let f:M"—M"*?(c) be an isometric immersion, j=1. If at
each point x&M, for every unit vector XU (M), Awpr-2nyx iy XAX=0 for
2=k=2j41, then the Frenet curvatures K, K,, ---, K, are constants, and so (2.1),
(2.2) hold.

Proof. If AnxsnX=p, X holds for some g, (¢, may depend on X), then for
YeU.M, <hX?, h(X, Y))=u <X, Y>. This implies that Ki=|h(X?|*=p, is
constant on U,M. By the assumption Apn xsn X=pg.X for some p,. So for
YeU.(M),

ADRYXX?®), KX, Y))=p:(X, V>
ADRYX?), h(X, Y))=Xh(X?), h(X, ¥))—<h(X?), (Dh)(X? Y))
=(Xp)X, Y>—1/2 Y <X, k(X=X )X, Y>—1/2Y ;.

Since Y is arbitrary and X can be chosen such that <X, Y>=0 we see that
Y, =0, p, is a constant on M. By Lemma 1.1, we also have

L(DhYX?, Y), h(X?"))>=0.

It is easy to see p,=0. This proves the theorem in case j=1.

Suppose the theorem is true for j—1. Assume that Apr-2n)x ey X=pr1 X
for 2=k=<2j+1, XU M. By inductive hypothesis, K, :--, K,-, are constants
and so g, ps, -+, pMe,-. are constants. By differentiating the identity (when
YeU.M):

(D=2 h)( X, h(X, ¥)>=0

along the direction of X we have
(2.10) (D¥=3h) (X277, (DR)(X®, YD =—p2,- KX, Y.
Suppose we have proved that for 0=y</—1, 2=/<k, k<272

(2.11) D 2hR)(XT, Y, XF41), (D7 ) (X372 =(—1)" pte,-1(X, Y
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Then by differentiating

AD*h)( &1, ¥, Xkamn), (Do k) (K24 =0
along the direction of X we have

(D* )X, Y, X*-1oT) (D2-1-kp)(X2- k)
+{D*2h)XT, Y, X570, (D¥-kp) (X2 k%) =0
and thus
<(Dk-—lh)(X7’+l’ Y’ Xk—-)‘—l), (DZJ—I-kh)(XZ]—k+1)>___(_1)k+1#2J_1<X, Y>
for 0=<y=<k—1. Besides by Ricci identity
(D*'h)(X, Y, Xk H)—(D**h)(Y, X*)
k-2

=R (X, Y)D**h)(X*)— T (D R)XY, R(X, V)X, X7

$=0
Using the same argument as before we see

ADPRYX, ¥, X470, (D274 mh)(X¥74)
=(DFY, X4, (D4R

This completes the induction of (2.11). Especially for Y=X and k=; we have
(2.12) Vi =[(D? T AY X )|P=(—1)"* o, .

Now let X, YeU,M we can choose Z=U M such that <X, Z>=0 and for
some a<[0, 2z], Y=Xcosa+Zsina. For t<[0, 2x] let Y,=Xcost+Zsint
then

DR, (DY)
=2 Tz:% (D h)(YT, —X sint+Z cost, Y177), (D" h) (YD)
=2(— 1)ty (j+1)XYs, —X sin t-+Z cos =0
Hence [(D’7*h)(Y7*Y)||? is constant for ¢ [0, 2x], so
(DAY X )= (D> )Y 7).

This proves g,,-; and v,4, are constant on U, M.
Now for any X, YeU,M with <X, Y>=0 we have

<(D21_1h)(X2]+1)’ h(X, Y)>=#2]<X, Y>=0
and
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{D»2h)(X*), (DhY(X?, Y))
=X(D¥*h)(X*), h(X, ¥))—(D¥ h)Y(X¥), h(X, V)
=(Xpts,- <X, Y>=0.
Suppose we have proved that for 1=¢=2;—2, 0=7r=q, 0=s=<7r+1
(2.13) (DPTR)( X5 (DTh)(X®, Y, XT+19)y=0,
then for 0=s=q¢+1,
0={(D¥"1"9h)(X?779*), (DTh)(X?®, ¥V, X*17%))
= XDt oh)( Ko, (D)X, ¥, Kew)y
—{(D*=2"2h)(X*79), (DAY X, Y, X9H179))
=—(D¥ 2 Th)( X2, (DAY XH, Y, X979,
Again, since

(DT h)(X, Y, X¥)—(D*h)Y, X¢*7)

—RH(X, YYD )X — 3 (D)X, R(X, V)X, X+7),

=0
as before we can show that
(D727 2h) (X9, (D™ h)Y, X2*%))
={(D¥ 2 ) (X9, (D h)(X, Y, X1*)>=0.

This completes the induction of (2.13). Putting y=7 we have

(D ThY(X7*Y), (D7h)(Y, X7+)y=0,
hence we obtain

Y ptay ey =(—1)7Y (DAY K7+, (D7 )X 7))
=2(=17 (D7 hY(XY, (DPRYY, X7+)5=0,

it proves that g,,.; (and also y;;;) is a constant on M. It follows that u,;=0.
Thus by (2.10)-(2.13) we have (2.1). By inductive hypothesis K, ---, K,_, are
constants and (Fy), -+, (F,) hold. As in Theorem 2.1 we have

K60t =Ny P+ K, 00
:(Kl, e, KJ"I)-l E aj+1,j+1-2L(D]_1—uh)(XJ+l—“)

where aj4y,+1-2. are constants depending on Kj, ---, K,;. Since for y+s=2;—2
(DTh)(X7*?), (D*h)(X**?)) are all constants we see that K, must be a constant.
The theorem is proved.

COROLLARY 2.4. An isometric immersion f: M™—M™2(c) is a helical immer-
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sion 1f and only 1f M has geodesic normal sections.

Proof. 1If every geodesic 7 is a normal section, i.e. contained in a totally
geodesic submanifold M, with T,M,=E(x, X), X=7, then X&T (M), VxX=
hX, X)eT M, and Vxh(X, X)eT:M,, -~ , Vx(D* 2R} XHe T, M, for all 7. This
means Api-2n) xn XAX=0 for all XeU,M. By theorem 2.3 the Frenet curva-
tures are all constants.

COROLLARY 2.5. Let f:M"—M™?(c) be an isometric immersion with every
geodesic being of order d. Then:

(@) If d is even and the Frenet curvatures K,, K,, -+, Kas-1 are constants
then f s helical, K, K, ---, Kq_, are constants.

(b) If d is odd and the Frenet curvatures K,, K,, -, K-5,. are constants
and Kq-yyo 1S constant on every unit sphere UM then f is helical.

Proof. (a). If K, K,,---, Kas-, are constants by Theorem 2.1 for 2=d—1,
XeU M, Apr-21y(xyXANX=0. Using this fact we can easily show that the
Frenet frames ¢®, ¢®, ---, ¢, where o=f-y, 7 being the geodesic issued
from x and tangent to X, are linear combinations of X, h(X?), -, (D¢ 2A)(X9).
Hence ¢®, ¢®, -, ¢ < E(x, X). By the theory of differential equations ¢ is
contained in the totally geodesic submanifold M, having E(x, X) as tangent
space at x. Thus y is a geodesic normal section and f is helical.

(b). By the remark after Theorem 2.1 and the same argument in (a) f is
also helical.

Chen and Verheyen proved this corollary in the case d=3, 4. ([5]). Also
see Nakagawa [8].

Next we consider some problems related to the order d.

THEOREM 2.6. Let M be a compact submanifold in E™ having geodesic
normal sections, then the order of M is even.

Proof. By Corollary 4 in [5] the geodesics on M are closed curves. But
these curves are helices and a helix of odd order in E™ cannot be closed. See
D. Ferus and S. Schirrmacher [6].

THEOREM 2.7. Let M be a spherical submanifold in E™*? having geodesic
normal sections then the order of M is even (in E™*P).

Proof. Suppose a geodesic y of M is of odd order 2m-+1. Then there are
constants 7o, 71, ***» Im, @1, **, @ and orthogonal vectors e, ¢, =+, e E™*?
such that

r®)=7te,+ :Z:}l 7i[@2.-1€OS @t 45, Sin a;t] .

Since M is contained in some sphere with center x,
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m
(rot—xo)2+i§ [(y. €08 @it —x5.-1)*+(72 Sin a;t—x,,)*]=R?

where x,=<x, ¢;», R is a constant. But this implies that y,=0 which is a
contradiction.

In order to classify helical submanifolds in spaces of constant curvature, an
important problem is to determine the upper bound of the dimension of the
ambient spaces. By Sakamoto [9] a helical submanifold M immersed into a
sphere is also a helical submanifold of a Euclidean space. By the proposition 5.6
in Sakamoto [9] we know that if M"CE™ is a helical submanifold of order d
then M™ is contained in the linear subspace

0¢=Spi{X, (D*2h)(X,, -+, Xi); X, Xy, -, Xo€T M, k=2, 3, -, d}.
We have
LEMMA 2.8. Let M*CM™?(c) be an immersion. Then for j=1
dim O;g(";“)-l.
Proof. For j=1 we have
OL=Sp{X, XeT M}=T,M.

n+j—1
J—

1 )—1. Noticing that

So dim O%=n. Suppose that we have dim OQ"__<_<
0,=Sp{03*, V} where
V=Sp{(D*h)(X,, -+, Xp); Xy, -, X;€T M},
if we can show that (where e,, -+, ¢, are basis vectors for T ,M)
(2.14) VCSp{(D’2h)(efs, bz, -, exn); kit kot - +ho=j; O,
n47—1
+]]‘ )

since there are ( vectors in the set {(D’%h)(ef, ek, -, e*n)}, then we

. n+j—1 o e A e A
have dim 0z =("" )+( i )-1=("]7)-L
To prove (2.14) notice that
V:Sp {(D]-zhxetp Cigy "7y elj) N il: 1yt lj:1y 2; Tty Tl}

We only need to show that for any 7, 1=r=<;-3,

(2~ 15) (D]-‘zh)(etly €y " et,y elr+1) Tt elj))
_(D]-zh)(ell; Tty etr+1y e17; Tty e,,j)EO';_l.
Extending e,, ---, e, to vector fields &,, ---, &, in a neighborhood of x such that

at x, V,,,=0 for all 7, k&,
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(DJ'Zh)(ezl, Cupy 7y e‘r’ e"r+1’ e, ez])
——(D"zh)(e”, @y €y elj)
:Vleilvlgiz ”.Vléir_lmD]-T-lh)(é”r’ 51#1, . 511-)

_(DJ_T—lh)(étr}.l’ élry Ty Etj)]

:Vleilvléiz Vliir_l[Rl(élT, élr+l)(DJ_T'sh)(§,r+2, Tty glj)
J
= B DTNy, R, 200, 2],

But R*(eﬁr, étm)(D"T'sh)(é‘,rﬂ, -+, &) is a linear combination of h(¢, &),
1=<i, [<n, in fact if & is orthogonal to all h(é,, &), 1=¢, {<n, then

<A$én él>:<$y h(él; él)>:0’

hence A,=0 and <R*(élr, é,rﬂ)r), &=<[4,, Aé:leﬁr, é’r+1>=0 for all neN,M.
Thus all terms in the last expression are in O%'. This proves (2.15).
Thus we have

THEOREM 2.9. Let M®*CE™ be a helical immersion of order d then M™ is

contained in a linear subspace V of E™ with dimVé(nji_d>—1.

§3. Surface with geodesic normal sections.

Chen and Verheyen [5] studied surfaces with geodesic normal sections, they
showed that in E° the only surfaces with geodesic normal sections are (i) a
2-plane E?; (ii) an ordinary 2-sphere in a 3-plane; (iii) the Veronese surfaces in
E®. They also gave some partial results in E°.

In this section we will prove the following theorems.

THEOREM 3.1. Let M*® be a surface with constant curvature immersed in E7,
then M*® has geodesic normal sections if and only i1f M is contained in one of the
followings.

(i) a 2-plane E?;

(ii) an ordinary 2-sphere in a 3-plane;

(iii) the Veronese surface in a 5-plane;

(iv) the 3rd standard immersion of a 2-sphere S*CE".

THEOREM 3.2. There 1s no surface M? helically immersed into E™ of order 3.
First we prove the following lemma.

LEMMA 3.3. Let M*CE™ be a helical :mmersion, {e,, e;} are orthonormal
vectors in T.M, xeM. B=|h(e, e;))l. Then

3.1) {(Dh)(ed), h(eD)>=<(Dh)(e}), hles, ex)>={(Dh)(e}, es), h(e})>=0,
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(3.2) {(DR)(e}), h(e)>=—3Be,B,
(3.3) {(Dh)(e}, es), hley, e))=fef,
(3.4) {(Dh)(e3, ez), h(ed))=—Pe:f.

Proof. (3.1) is proved in theorem 2.1. Using Lemma (1.1) to <(Dh)(e}), h(e?)>
=0 we have

3.5 {(Dh)(e?), h(e3)>+6{(Dh)(e, e,), hles, e;)>+3{(Dh)(e,, €3), h(e})>=0
and
(3.6) {(Dh)(e}), h(e3))>+<(Dh)(es, ey), h(ed))

=e,{h(&}), h(@))>=e(Ki—28%)=—4Be,3,

where &,, &, denote the vector fields adapted to e,, ¢, and
1 U
3.7) {Dh)e}, e, ey, ey = eillh(@, &)*=pe.f.

Combining (3.5)-(3.7) we get (3.2)-(3.4).

Now we prove theorem 3.1. Let M*® be a surface with constant Gauss
curvature K, helically immersed in E’. If the immersion is of order 1 or 2, by
theorem 2.8, M? is contained in a 5-dimensional linear subspace of E?, thus by
the result of Chen and Verheyen M? is of case (i), (ii) or (iii). Suppose the
immersion f is of order at least 3 then K, K;>0. Using the notations in [5],
i.e. a=|H|, &=1/a)H, H being the mean curvature vector, §,=1/28(h(e})—
h(e)), €s=1/Bh(ey, e,), by lemma 3.3 (Dh)(e}) is orthogonal to &, &, & since S
is a constant. We may assume that aB+0 since the case @f=0 has been dis-
cussed in [5]. But [[(DA)(e})|=K,K, so we may assume (Dh)(e})=K,K,&; then
& is a unit vector orthogonal to &, &, and &. Thus we can find a unit vector
&, such that &, &, &, & and &, form an orthonormal basis for N,M. Since
(Dh) (e}, es), (Dh)(ey, €3) and (Dh)(e}) are all orthogonal to &, &, & and |[(DhA)(ed)|
=K, K;, {(Dh)e}), (Dh)(e}, e5)>=0, {(Dh)(e3), (Dh)(e,, €3)>=0. We may assume
that there are [0, 2z] and real numbers a, b such that

3.8) (Dh)(e}, e))=K,K,a&,,
3.9) (Dh)(e,, ed)=K,K,b(cos §&;—sin &)
(3.10) (Dh)(e3)=K,K,(sin §&;+cos 0&;) .

Using lemma 1.1 to {(Dh)(e*), (Dh)(e*)>=K:iK}(e, e))* for all eeT M,
3.11 2{(Dh)(e}), (Dh)(e,, €3)>+3{(Dh)(ei, es), (Dh)(e}, e.))=K3K3,
(3.12) {(Dh)(eD), (Dh)(e3)>+9(Dh)(et, es), (Dh)(e,, €3)>=0,

(3.13) 2{(Dh)(e}, ez), (Dh)(e2))+3{(Dh)(e,, e3), (Dh)(e,, e3)>=K3K}.
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Combining all the equations (3.8)-(3.13) we have four solutions :

Case 1. b=—1, a=—1, §=0; Case 2. b=1/3, a=1/3, 6=0; Case 3. b=a=1,
f=n; Case 4. b=a=-—1/3, 0==r. If we replace &, by —&, then Case 3 reduces
to Case 1 and Case 4 reduces to Case 2. Thus we have basically two possible
cases :

(3.14) Case 1: (Dh)e)=K,K:Es, (Dh)(e}, e))=—K K&,
(Dh)(ey, e5)=—K,K,&s, (Dh)(ed)=K K& .

(3.15) Case 2: (DRND=KK&,, (DAY, e)=(3)Kukir,

(D)o, D=5 ) Kk, (DRNED=Kiit .

We first consider case 2. Choose {e;, ¢,} to be orthonormal vector fields. Then
{ey, ey, &, &4, &, &, &;} is @ moving frame of E". Let w? be the connection form.
Then

V4=, o (h(e)+h(eh)

‘7[(Dh)(e?)+(Dh)(en e3)+2wi(e;) hiey, ex)+2wile)h(es, e,)]

= o [ KKtt  KoKos|= o KoKt

i =T o (e +h(ed]= o K.

822

Thus we have
2
(3.16) vlgs— Kle(a) &+t &) .

Similarly we have

(3.17) Vit =202+ Kll;( @'y,

(3.18) V155—2w254+ 3 5 (0)256+(0
The Ricci equation (1.4) can be rewritten as following :
RH(X, V)&=V 5V3Ee— ViVl —Vix, vifz
=Vfr(Zy3 w%(Y)Ey)—Vé(%) w%(X)Ey)—Zy) o¥([X, Y]§,

=2 (Xo¥(Y))E, > w%é(Y)w;(X)Ez—§ (Yo¥(X))é,

Y
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—g)zw%(X)wi,(Y)Sz—g o¥([X, YD§,
=§‘, [(Xoi(Y)—(Y ol(X)—o¥([X, Y])
+2 (@} (X0 (Y)—0(Y)wz(X))]E,
=2 %‘, (do¥(X, Y)+2 (@ AoX)(X, Y))E, -

So we can write
1
(3.19) dw%—; W NO=o [4e,, Ag,]

where [Ag,, A, ] denotes a 2-form, having <[A,,, Ag, J(X), Y5 as its value at
X,Y. Let x=6, y=7 then

(3.20) dcoZ—l—w;/\wZ—l—wZ/\wé—i-w;/\wg:é—[AEG, A¢]=0.
On the other hand
L p— L 1
i e=(V( o (D), e (DXL, €)

K;Q’KZ (D*h)(et)+30e) (DAY, e, (DRYEL, e

9 KiK3
= K ~f‘9~i -0¥e)=wke,),

Wiko 8= iy, 80=—(V (o o (DRNED), o (DRYes, D)

=—wj(e,)=wi(ey) .

Thus @{=w? and (3.16)-(3.20) gives

dw?-i-%sz(——z—K,sz‘)%—(@f wz)/\(_ KK, wl)

Sa 3a B 38
5 )= ig)
e O+

Thus we have K=0. Let x=4, y=>5 then
do3 -+ N0+ N0+ 05 N\ W)

~adute(~ S ) (gl )+ (- 5 ) (- g )

:(zK_zKl@,)wz o 2T

98° 98

OO
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On the other hand [Ag,, Agl=4B°0*Aw', this is a contradiction. Thus case 2
is impossible.
Next we consider case 1. Similar computation as in case 2 we have

3.21) V+£,=0,

(3.22) v*s4=2w%es+%[—{2—<wlss—w2&> :
(3.23) Vie,— 201 — K;SKZ (@t a'ty),
and

Tibo & <v:1( —(DRED), g (DRI, )

=— K2K2 {(D*h)(e})+3wi(e)(Dh)(ef, en), (Dh)(e}, ex)>
=—3wi(e,) .
Similarly,
<veLzEsy En=—3wile,).
Thus we have

K KK,
(3.24) Vig,=— sz '+ ;9 L 0% —30,
(3.25) Vig= %K—zw% K;SKZ 0185~ 30l .
Putting x=4, y=>5 in (3.19)
dwi+ i N o+ w3 Ao
—2dwt L K:ng WP K;ng ot K};KZ w‘/\(— K;;Kz m2)
2 2
=<2K+ 2K52K2>w2/\w1:4;92w2/\wl.
Thus we have
KK
(3.26) K+ B —2‘82
Putting x=6, y=7 in (3.19)
dwi+wN\ot+ol Ao}
:_3dw;+(-%wzy(_ KlﬁKa o) +(~ B o) Kgfz o)
2 2
:(—3K—|— 2%2]{2)@2/\(0‘:0.
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Thus we have —3K+(2K?1K3)/B*=0. Taking account of (3.26) we have

R ) . 15
) K, ﬂ——zK, K2—34K.

Let 7 be the geodesic issued from xeM and g=f-y as its image in E7
Choosing e, such that e¢,=¢4 along 7,

ﬁ%é:h(@h e))=ab;+pE,=K,6®.

(3.27) Ki=

a ® F( (a$3 B&«i) ’

To0 = Aycert o DWD=—Kie+ Ky, 0 09=4,,
1

—KlKg
B

Thus we have Ksaw:"“((Kle)/ﬁ)&"}‘(Kz/Kl)(a&s+,B$4):(Kza/Kl,B)(ﬂés—aED
and

V“O'w)::vgl&s: §i=—K 0P+ Ko™

K 3v2
(3.28) K= 3 =7
and V, 09=—K¢&=—K,0®. Thus 7 is a helix of order 4. But e, can be
chosen as any unit vector in 7,M, this means f is of order 4.

Now if we regard {&, &, &, &, &} as a 5-plane bundle £ on M? then
(3.21)-(3.25) define a connection on £, equipped with the second fundamental
form h and associated second fundamental tensor A. It is easy to check that
they satisfy the equations of Gauss, Ricci, and Codazzi. Thus by the funda-
mental theorem of submanifold [2] we can conclude that there is an immersion
M*—E" with normal bundle E, and up to a motion, this immersion is unique.

We can also write this immersion explicitly. Let ey, e, &, &,, &, &, &; be
the frame at x, 7. be the geodesic issued from x, having tangent vectorje=
ey cos 0+e,sin 6, 00 <2r, o,=f-y.,. Then

VK

o (0)=e=e¢, cos O+e,sin @,

7P (O)=(1/K)hle, )=(1/ K+ B cos 208+ B sin 208 ,

a8 (0)=(1/K,K,)(Dh)(e*)=E; cos 30 —&, sin 39,

o (0)=1/K)(Veo® +Ky07)=(1/K,)(f&;—a cos 20&,—a sin 20&;) .

(3.29)

Since ¢V, ¥, 0¥ and ¢{* satisfy the Frenet equations and the initial condi-
tion (3.29), by solving these equations we get the helical immersion of the
sphere S:(CE’, which is the 3-rd standard immersion of S*CE":
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f(@, v)=(R/16)(sin v+75 sin 3v)(e, cos  +e, sin §)
—(R~/ 6 /48)(3 cos v+5 cos 3v)&,
+(R+/10/16)(cos v—cos 3v)(&, cos 20 +&; sin 28)
—(RA/15/16)(sin v—1/3 sin 3v)(&, cos 30 —&, sin 36),

where R=1/+/K is the radius of S? and (6, v) is the spherical coordinate on SZ
Thus Theorem 3.1 is proved.
Now we turn to theorem 3.2.

LEMMA 3.4. Let f:M*CE™ be a helical immersion of order 3. {e,, es} 1s
an orthonormal basis for T:M, x&M. Then

(3.30) (D*h)(e)=—K3h(eD),

(3.3D (D*h)(e}, e))=(1/2)(Ki—K3—4B")h(es, €2),
(3.32) (D?h)(es, e)=(—1/2)BKI+Ki—12p"h(ey, ¢5),
(3.33) (D*h)(e}, ed)=((—1/6)K5—(1/2)Ki+28%)h(e})

+((—1/6)K3+(1/2)Ki—2p")h(ed) .

Proof. Let y be a geodesic issued from x with tangent vector ¢ and the
Frenet frame for o=f-y be ¢®, ¢®, ¢®®. By theorem 2.1, ¢W=¢, ¢®P=
(1/K)h(e?), ¢®=(K.K;)"(Dh)(e*). And the Frenet formula gives V.6 ® =—K,¢®,
i.e.

(K, K,)((D*h)(e*)=(—K,v/ Ky h(e?) ,
or
(D*h)(e)=—K3h(e) .

Since this is true for all unit vectors e U (M) by lemma 1.1 we have

3.39) 3(D?h)(ei, ex)+(D*h)(es, el)=—2K%h(es, ¢5),

(3.35) (D*h)(et, eb)+(D*h)(eh, e)=—(5 ) KHh(eD+hieh)
By the Ricci identity
(D*h)(el, e —(D*h)es, e)=R*(es, eoheD—2h(R(es, ees, €).

Using (1.3) and Proposition 13 in [5] there is an adapted orthonormal frame
{e, es, &, -+, &} for which we can find that

(3.36) R*(e, €,)6,=0 if i#4, 5; R'(ey, e,)6,=—28%;; R*(ey, €)6:=28%,,

since R(e,, ¢,)e;=—Ke,=(—Ki+3B%¢,, where K is the Gauss curvature of M2
Thus we have
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(3.37) (D*h)(e}, es)—(D*h)(es, e1)=2(K1—4B")h(es, e,).

By (3.34) and (3.37) we get (3.31) and (3.32).
Similarly we have

(D*h)(e3, e3)—(Dh)(es, e)
=R*(ey, e;)h(es, e;)—h(R(es, es)e, e;)—h(R(es, es)e,, e,)
= B[ h(e})—h(e3)]+(Ki—3B*)h(ed)—(Ki—3B*)h(e})
=—(Ki—4p")[h(ed)—h(ed)].
Taking into account of (3.35) we get (3.33).

LEMMA 3.5. Let f: M*—E™ be a helical immersion of order 3. Then M?*
has constant Gauss curvature.

Proof. Suppose M?® is not of constant Gauss curvature then 8 is not a
constant. Since M? is connected there exists xM*® such that f+0, df+0 in
a neighborhood U of x. Choose a unit vector field e, in U such that df(e,)=
¢,8=0 and a unit vector field ¢, in U orthogonal to ¢, Then by Lemma 3.3

{(Dh)(eD), h(e$)>=0.
Differentiating along the direction of ¢, we have
{(D?h)(es, e1), h(ef)>+<{(Dh)(el), (Dh)(e3))
+30i(e)X(Dh)(e, es), h(ed))+2wi(e;)(Dh)(e), hles, €:)>=0.
By lemma 3.3 and 3.4 we get
(3.38) {(Dh)(ed), (Dh)(es)>=—3wi(e)X(Dh)(e}, e.); h(ed))=3wi(e;)Be,f

Also by Lemma 3.3
{(Dh)(ey, €3), h(e})>=0.

Differentiating along the direction of ¢, we have
{(Dh)(ey, €3), (Dh)(e3, es)>+<{(D*h)(e3, er), h(ed))+wi(e.)\(Dh)(e3), h(e})
+2wi(e:)(Dh)(e3, es), h(eD)>+2wi(es){(Dh)es, €3), hles, €2)>=0.
Hence we have

{(Dh)(e,, €3), (Dh)(e}, e,)>+wi(e)(—3Be,f)+2wi(e;)(Be.8)=0,
that is

(3.39) {(Dh)(es, €3), (Dh)(e3, e.)>=wi(es)Besf .
Combining (3.38), (3.39) and (3.12) we find
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(3.40) {(Dh)(ed), (Dh)(e3)>=L(Dh)(e,, €3), (Dh)(e}, e.)>=0,
(3.41) w%(eg)ﬁegﬁzo.

(3.41) is true for all points in U. But Be,+0 in U, thus wi(e,)=0 in U.
Again, since (Dh)(e}) is orthogonal to h(e?), h(e,, e,) and h(e?), so by (3.36),
we have
R*(ey, e2)(Dh)(e})=0.
By (3.30)-(3.33), we have

VLT (DR)e)=T2 (D*h)(es, o)
= 2 (K1 K3 126975 h(ey, €

=— %(3K§+K§—12.32)[(Dh)(e?, es)toi(e)h(ed) +wile)h(ed)],

TVA(DRYE)=V4[(D*h)ed)+30(e ) Dh)eE, e)]
=V [—K3h(e)+3ak(e ) (Dh)eS, er)]
=—KXDh)(et, e0)+3[esi(e)(DA)ES, e)+3uk(e) (D, e,
Vi en( DR =00} (e )V (DR) ) =0le) [ — K3h(e)+302(e)(DR)E, e)].
Thus,
R (s, e)(DRYE)=V4T4(DA)e)—T4TA(DAY D) —Th, e DR
=[— 5 @K+ K3 1289+ K3-3K] DR,

:_.;_(QKi—Ké—%,BZ)(Dh)(Ef, e).

Since § is not a constant, we have (Dh)(e}, ¢;)=0. On the other hand, by dif-
ferentiating <{(Dh)(e?, e.), h(e?)>=0 along the direction of ¢,, we have

{(Dh)(e}, e5), (Dh)(et, ex)>+<(Dh)(e}, D), h(e})>=0,

hence
{(Dh)(e}, ez), (Dh)(€3, ex)>=—L(Dh)(e}, e}), h(ed)>
:%K%K%—%K%W——K%BZ—!-LI/B‘:O.

This shows that 8 is a constant, a contradiction. This proves Lemma 3.5.

Now we finish the proof of theorem 3.2. Let M®CE™ be a helical immer-
sion of order 3. By lemma 3.5, M? has constant Gauss curvature. By theorem
2.9, we may assume that m=9. Let {e,, ¢,} be orthonormal vector fields in
some open subset UCM. Thus Lemma 3.3 shows that (Dh)(e}) is orthogonal to
h(e?), h(ey, e,) and h(e), by (3.36), we have



HELICAL IMMERSIONS AND NORMAL SECTIONS 191
R*(ey, e;)(Dh)(e})=0.

The same computation as in the proof of lemma 3.5 gives

(3.42) —%(9K§-K§—30ﬁ2)(Dh)(e%, e)=0.

But we also have

(3.43) {(Dh)(es, e,), (Dh)(ef, e2)>:%K%K%—% $pP—KipP 48,
and

(3.49) {Dh)(e3, o), (Dh)(el, en)y=—<(D*h)(e}, ez), h(es, ¢2))

1
= 5 (— K K345
Comparing (3.43) and (3.44), we get
(3.45) 128*—(GBK3+3K) P +2K K5=0

If (Dh)(e}, e,)=0, by (3.44) we have =0 or —K3i+Kj}-+45°=0, both are impos-
sible by (3.45). If (Dh)(e}, e,;)#0, then 9K?—Kj5—308°=0, this also contradicts
with (3.45). Thus theorem 3.2 is proved.

Since a helical immersion M*C E® has order no more than 3 ([5]), we have
the following.

COROLLARY 3.6. Let M? be a surface immersed into E°. M?* has geodesic
normal sections if and only if M? is contained in one of the surfaces (i), (ii) and
(iii) listed in theorem 3.1.
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