
I. KURIBAYASHr
KODAI MATH. J.
7 (1984), 222-237

ON AN ALGEBRAIZATION OF THE

RIEMANN-HURWITZ RELATION

BY IZUMI KURIBAYASHI

Introduction.

In this paper we study the canonical representation Aut(M)->GL(g, C) with
the space of holomorphic differentials on M as its representation module, where
M is a compact Riemann surface of genus g^2 (cf. (1.1)). For an automorphism
group AG of M we denote its image by R(M, AG). The GL(g, C)-conjugate
class of R(M, AG) appears as an invariant of the holomorphic family of Riemann
surfaces which is defined by the subgroup of Teichmϋller modular group cor-
responding to the pair (M, AG) (cf. [4], [5]). From such a point of view among
others we consider it a problem to determine R{M, AG)'s.

In this paper we introduce two necessary conditions, which turn out (in § 2)
sufficient in case g—2, for a finite subgroup G of GL(g, C) to be conjugate to
some R(M, AG). In § 1 we make an algebraic formulation of the Riemann-
Hurwitz relation, in terms of which one of our conditions is given. In fact we
define the data of "ramification" for a (special type of) finite subgroup of
GL{g, C) and we show our formulation is valid in this case. In §2 we introduce
another condition on G that the character defined by G is of the form of the
Eichler trace formula. It is known [6] that this condition is also sufficient in
case where G is of prime order (and g^2). Using these two conditions, we
determine 21 types of representatives (up to GL(g, C)-conjugacy) of R(M, AG)'s
in the case g—2.

In a similar line we shall determine R(M, AG)'s in another place when g—3
(55 types) and g=i (74 types).

Notation.

As usual C mean the field of complex numbers. The subgroup of a group
generated by a family {Alt •••, Ar) of its elements is denoted by (Au •••, Ar).
We write %X for the cardinality of a finite set X. And for an element A of a
group we denote its order by #A If T is an element of GL{g, C), T* denotes
the automorphism of GL(g, C) sending A to T'ι A-T (Ae^GL(g, C)).
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§ 1. Riemann-Hurwitz relation.

In this section we use the following notation for a group G and its sub-
group H.

CY(G)={K\K is a nontrivial cyclic subgroup of G},

CY(G\^H)={KEΞCY(G)\K contains H},

CY(G\^H)={KΪΞCY{G)\K contains H strictly}.

1.1. Motivation. Let M be a compact Riemann surface of genus g^2, and
let AG be an automorphism group of M. For each point P of M we denote by
AG(P) the stabilizer of AG at P. It is noted that AG(P) is a cyclic group
(see e.g. [3], III. 7.7.). For each nontrivial cyclic subgroup H of AG, we define
as follows.

r(H)=%{Pt=M\AG(P) contains H},

#π( {P^M\ AG(P) =

where π denotes the natural mapping of M onto Ml AG.
Here we recall the Riemann-Hurwitz relation for π (see e.g. [3], V. 1.3.):

2£-2=n(2 goG4G)--2)+n Σ « t t AG)> {1-Q/tfi/,)},

where n—%AG, go(AG) denotes the genus of MjAG, and {//*} is a set of re-
presentatives of the ΛG-conjugacy classes of CY(AG). And we note the follow-
ing facts (1) and (2).

(1) r * ( # ; AG) = r(H)- Σ r*(ir; /1G),
K

where K ranges over the set CY{AG\^H).

( 2 ) l(H; AG)=r*{H; AG)/INAG(H): //] f

where [ : ] denotes the index and NAG(H) denotes the normalizer of H in AG.
Let R: Aut (M)-*GL(g, C) denote the canonical representation for a (fixed)

basis {ξlf •••, ξg} of holomorphic differentials on M. In fact, the matrix R(σ)-
(sιj) (corresponding to a σeAut(M)) is defined by the relation:

**(&)= Σ s x A 0 = 1, - , g).

It is noted that R is faithful (see e.g. [3], V. 2.1.). Then it is easy to see the
following facts (3) and (4).

(3) r(//)=2-{Tr(/?(σ)) + TK#(tf)-1)} if H=<σ>
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(Lefschetz fixed point formula, see e.g. [3], V. 2.9.).

(4) go(ΛG) coincides with the dimension of the R(M, τ4G)-invariant subspace
of the C-vector space Cx ••• xC (^-times) (under the natural action) (cf.
[3], V. 2.2.).

1.2. Algebraization. We are motivated by the facts in (1.1) to consider its
algebraization using matrices as follows.

DEFINITION. For a matrix A of GL{g, C) of finite order, we say that A
satisfies (Eo), if Tr(A)+Tr{A~1) is an integer, or equivalently, if the relation

holds for each integer k such that (k, %A)=1. For a finite subgroup G of
GL(g, C), we say that G satisfies (Eo), if each element of G satisfies (Eo).

DEFINITION. Let G be a finite subgroup of GL(g, C) which satisfies (Eo),
and let H be a nontrivial cyclic subgroup of G. Then we define as follows.

(1)
A&G

(2) r{H)=2-{Tr{A)Λ-Tr{A'1)} y where H=<A>,

(3)

where K ranges over the set CY(G\^H). To state more precisely, r*(H;G) is
defined by the descending induction on H with respect to the inclusion relations
in CY{G).

(4 ) l(H; G)=r*(H; G)/[NQ(H): //] .

For the sake of brevity we set r«i4»=r(Λ), r*«i4>; G)=r*«i4»=r*(i4)
and /«^4> G)—l«A})=l(A), for each element 4̂ (=^7) of G. (It is convenient to
define /«/> G)=/«7»=/(7) as 0, as the case may be.)

Remark. ( i ) The number r(//) is well-defined by virtue of (£<>).
(ii) By the orthogonality relations for characters, it is noted that go(G)

coincides with the dimension of the G-invariant subspace of Cx ••• XC (g-times)
(under the natural action).

(iii) If G = R(M, AG), then the notions r, r*, / and g0 in (1.1) and (1.2) are
compatible (via the representation).

1.3. Riemann-Hurwitz relation.

PROPOSITION 1. If G is a finite subgroup of GL{g, C) which satisfies (Eo),
then we have the following relation :
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(RH) 2g-2=n(2 go{G)

where n — %G and {Hi} is a complete set of representatives of the G-conjugacy
classes of CY(G).

Proof. From the definition of go(G):

it follows that

2n-go(G)=2-Tr(I)+ Σ {T
A(ΞG*

where Gx denotes the set G\{/}. Since Tr(I)=g and r(A)=2-{Tr(A)i-Tr{A-1)}>

we have that

2g-2=n{2-go{G)-2)+ Σ r(A).

Thus it suffices to show that

(+) Σ r(i4) = nΣ/(// ι){l-(l/«0K

where each n% denotes the number %H%.
For each ι, let {Hik\ k = l, •••, kt} be the G-conjugacy class of Hτ~Hιh

where kx = [_G :NG{Hι)~\. To prove (+) first we note by the definition that

G : NQ{Hxy]/[G : H^r^HJ-kι ni/n .

And hence we see that

n-l(Ht) {l-(l/nz)} =r*(Ht) ki{nι-l)

= k%{ Σ

= Σ { Σ r*(Λ)+ Σ
k = l A(ΞHιk* AEίHtk*

where, for a subgroup H of G, H° (resp. //*) denotes the set {A<^H\(A}
(resp. {Ae//X|<4>^=i7}). Secondly we note that

Σ Σ Σ r*(A)= Σ MA)
l k = lA(ΞHτk° A<=G*

Σ Σ Σ r*(H,*)= Σ Σ,rΛHA),

where HA ranges over the set CY(G | 2<^4» Hence we obtain

= Σ



226 IZUMI KURIBAYASHl

as desired (where HA ranges as above). Q. E. D.

1.4. (RH+). We introduce a "necessary" condition.

DEFINITION. We say that a finite subgroup G of GL(g, C) satisfies (RH+)
if G satisfies (Eo) and if l(H G) is a non-negative integer for any nontrivial
cyclic subgroup H of G.

In this case, letting {Hlf , Hs} be a set of representatives of the G-con-
jugacy classes of CY(G), we define the "RH data" of G, RH{G), as follows:

R H ( G ) = l $ G , g o { G ) ; n l f •••, n λ , ••• , n S y •••, n j
ZCT/^-times Z (i7 s).times

where nx — %H% (z = l, ••• , s). Here we may always assume that n^n2^ ••• ^ n s .

Remark. If G = R(M, AG) then G satisfies (J?i/+) (cf. (1.1) and (1.2)).
We shall mention two corollaries of Proposition 1.

COROLLARY 2. Lei G be a finite subgroup of GL(g, C) {where g^2) which
satisfies (RH+). Then we have the following.

(1) #G:g84(£-l).
(2) // #G>4(g-l) , then go(G)=0.

Proof. The argument for (1) (resp. (2)) is almost identical to [3], V. 1.3.
(resp. [1], Lemma 8). Q.E.D.

COROLLARY 3. Let G be a finite subgroup of GL{g, C) which satisfies (RH+).
Let d(G) denote the integer

where {Ht} is as in the above definition. Then d(G) is nonnegatwe.

Proof. We may assume that go(G)—O. We wish to show that
so suppose Σ W ϋ ^ 2 . Then it follows from Proposition 1 that

for some (positive) divisors nx of n (z = l, 2). This means that g is smaller than
1, which is absurd. Q.E.D.

1.5. We prove a proposition which shall be used for the classification of
R(M, AG)'s. In this numero we assume that G is a finite subgroup of GL(g,C)
and G' is a subgroup of G.

PROPOSITION 4. // G satisfies {RH+), then Gr also satisfies (RH+).

Before giving its proof, we insert two lemmas.
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LEMMA 5. Let H be a cyclic subgroup of G, and let N(G\H, G') denote the
set {TE:G\T*(H)Γ\G'=HΓλG'}, Then $N{G\H, Gf) is divisible by %H'lNG,{Hr\G'):
HίλGf~].

Proof, If T is an element of N(G\H, G'), then Hr\Gf and T*(HΓ\G') are
of the same order in the cyclic group T*(H). Hence T*(HΓ\G')=Hr\Gr and so
we see that N(G\H, Gf) is contained in NG(HΓ\G'). It is also easy to see the
following facts (1) and (2).

(1) The mapping: NG(H)xN(G\H, G')-+N(G\H, Gf), {A, T)^>A-T, is an
action on the set N(G\H, G').

(2) The mapping: N(G\H, G')xNG,{HΓ\G')-->N{G\H, G'\ (T, B)->T-B, is
an action on the set N(G\H, G').

It follows from (1) and (2) that N(G\H, GO has a double coset decomposi-
tion such as:

N(G\H, G')=\JH-Tλ>NG,(HΓ\Gf) (disjoint).

Thus in order to prove

$N(G\H, Gt)=%H ${λ} lNG.{Hr\G')\HΓ\GtΊ,

it suffices to show

H'Tλ-B=H-Tλ-Bf if and only if B''B~l^Hr\Gf,

where B and Br are elements of NG\UΓ\Gf).

In fact, to prove the "if part", we assume that B' B~ι belongs to HΓ\G'. Since
Tλ belongs to NG{HΓλGf), there is an element B" in HΓ\G' such that Tλ*Bf B-χ

= B"-Tχ. Then H Tλ-B/=H-Tλ'B
/'B-1-B=H'B"'Tλ-B=H'Tλ B, as desired.

To prove the "only-if part", we assume that H'Tλ B=H Tλ-B\ Then B' β-'
belongs to Tf(//)ΠG/-://ΠG/, as desired.

LEMMA 6. // H' is a nontnvial cyclic subgroup of G', then

where H ranges over the set CY{G\G\ H') i.e. {H<ΞCY{G)\Hr\G' = H'} .

Proof. It is trivial that Gf satisfies (Eo). In order to prove (*) we use the
descending induction on H' in CY{Gf).

In the case where H' is maximal in CY(Gf), we have that

where H ranges over the set CY(G\ 2/Γ), which now coincides with CY(G\G', Hf).
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in general cases, for the (fixed) Hr, we assume that (*) holds for each
element Hf

a of CY(G'\^H') (instead of H;). Then we see that

H'a

=r(#')-Σ Σr*(Haβ;G)

Γr G ) + Σ r*(/ί G)

= Σ r * ( / / ; G ) ,

where # ; (resp. Haβ,Hγ,H) ranges over the set CK(G'|2#') (resp. C7(G|G',#;),

CY(G|2J/'), CF(G|G/, #')). Q.E.D.

0/ Proposition 4. Let //r be an element of CK(G0. Let {Ha} be a
set of representatives of G-conjugacy classes of CF(G|G r, H'). This yields a
decomposition:

CY(G IG7, H')=\JCY(G IG', //0, (disjoint),

where each CF(G|G', //')« denotes the set {T*(Ha)\T<=N(G\Ha, G')}. Let na

denote the integer $N{G\Ha, G')/%Ha \_Nβ {H'):H'~\ (see Lemma 5). Then we have

= ZNa.(H'): H'-] • na/lNG{Hn): Ha] .

It follows from Lemma 6 that

' G ' ) = Σ Σ r*(/ίβ/) G)

|G', H')a r*{Ha;G)

where Haβ ranges over the set CY(G\G\ H;)a, Hence we conclude that

To this expression we apply our assumption that each l(Ha G) is a non-
negative integer. Then we see that l(H' GO is also a nonegative integer. This
completes the proof of Proposition 4.

Remark. The above proof of Proposition 4 is purely "group theoretic".
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§ 2. Automorphism groups of a Riemann surface of genus two as linear
groups.

2.1. We introduce another necessary condition in order to characterize
R(M, AG)'$ (in the case g=2) by determining them.

DEFINITION. Let A be an element of GL(g, C) of order n>l. We say that
A satisfies (E) if there are integers vlf •••, vτ (r^O) which are prime to n such
that

Tr(A)=l+ Σ {CϋVd-α*)} ,
1 = 1

where ζn=exp(2πΛ/^ΐ/n). For a finite subgroup G of GL(g, C) we say that
G satisfies (E) if each element (=*=/) of G satisfies (£).

Remark, (i) If Λ and v2, •••, vr are as above, then r=2— {Tr(A)~\-Tr(A-1)}
i.e. r=r(i4) (cf. [3], V. 2.9.).

(ii) If G=R(M, AG) then G satisfies (£) by the Eichler trace formula (see
e.g. [3], V. 2.9.).

The purpose of this section is to prove the following.

THEOREM 1. Let G be a finite subgroup of GL(2, C). Then the following
two conditions are equivalent.

(1) There is a compact Riemann surface M of genus two and an automorphism
group AG of M such that R(M, AG) is GL(2, C)<onjugate to G.

(2) G satisfies the conditions (RH+) and (£).

To prove the theorem, we shall use the following properties on (RH+) and
(E) frequently but implicitly.

Remark. Let G be a finite subgroup of GL(g, C) which satisfies (RH+)
(resp. (E)). We have the following.

(1) If T is an element of GL(g, C) then T*(G) is also satisfies (RH+)
(resp. (£)).

(2) If G' is a subgroup of G then G' also satisfies (RH+) (resp. (E)).

2.2. Notation. We set the notation for later use.

NOTATION. Setting

D(a, δ)
a

=

\o

0\

δ
B(β, r)=\

(0

\r

β

0

we define distinguished elements of GL(2, C) as follows.
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1 = D(1, 1), J=D(-1, - 1 ) , A2=A{1, - 1 ) , As=D(ζl ζ.),

Λ = £ ( ζ l W , Λ=0(CI, Cβ), Λ=0(C§, Cβ), A8=D(ζl ζ 8 ),

B2=B(l, 1) and B4=B(1, - 1 ) .

And we set

T α/vτ
S 3 =

Vζi/VΎ

It is noted that S3~J43, where ~ means the relation of GL(2, C)-conjugacy.

NOTATION-LEMMA 2. W^ cte/mβ distinguished subgroups G(n, m) of GL{2, C)
as in the following table. And we list the group structure {using the symbols in
[2]) and the RH data of each G (n, m). We note that in general G(n, m) is a
subgroup of G{m, m) such that d{G{ny m)) = d{G{m, m)) {cf. (1.4)).

G(l, 2)=</>

G(2, 2)=</>

G(2, 4)=<v42>

G(3, 12)=<Λ>

G(4, 4)=</, A,)

G(4, 8)=<Λ,>

G(5, 10)=<Λ6>

G(3 2, 12)=<Λ :

G(6, 12)=</ Λ8

G(6, 24)=<Λ>

G(8, 8)=<A,, 5.

G(4 2, 48)=<Ait

G(8, 48)=<ΛS>

G(10, 10)=</ Λ

G(12, 12)=<J A

G(2 6, 24)=</,

G(4 3, 24)=</ .

G(16, 48)=<AS,

G(24, 24)=</l,,

G(24, 48)=<Λ4,

G(48, 48)=<Λ8,

, B2>

y

• ^ 4 >

ι5>

3, B»)

4,, B,

Bty

B2>

S3>

S3>

®2

6,

e,
®2

e4
©5

®3

6.'

<£>4

<2,

©8

e.o

e 2 :
.> <2,

<—

(4,

<2,

2, 2>

2, 3>

2, 4|2>

6|2, 2)

3, 3>

3, 4|2>

[1,2;

[2 O

[2,1;

[3,0;

[4,0;

[4,0;

[5,0;

[6,0;

[6 0

[6,0;

[8,0;

[8,0;

[8,0;

[10,0;

[12,0;

[12,0;

[12,0;

[16,0;

[24,0;

[24, 0

[48, 0

—]

2, 2, 2, 2, 2, 2]

2, 2]

3, 3, 3, 3]

2, 2, 2, 2, 2]

2, 2, 4, 4]

5, 5, 5]

2, 2, 3, 3]

2, 2, 3, 3]

3, 6, 6]

2, 2, 2, 4]

4, 4, 4]

2, 8, 8]

2, 5, 10]

2, 2, 2, 3]

2, 6, 6]

3, 4, 4]

2, 4, 8]

2, 4, 6]

3, 3, 4]

2, 3, 8]
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Proof. Cf. [2], Table 9.
(1) Putting T=BfA8 and S=AS, we have that T2=I and T-S-T=S\

This means that the symbol of G(16, 48) is <-2, 4|2>.
(2) Putting Λ = β 4 and S==Λ, we have that ^ = 56=(/? 5)2=(7?- J5)2=/.

This means that the symbol of G(24, 24) is (4, 6|2, 2).
(3) Putting R=J'S3 and S = S ϊ 1 β4, we have that RS=S9=(R SY. This

means that the symbol of G(24, 48) is <2, 3, 3>.
(4) Putting 5 = ( ^ 8 5a)-1 and T=SZΆ\, we have that S 4 =(S 7) 8 and T 2 =7.

This means that the symbol of G(48, 48) is <-3, 4|2>.
(5) Considering the group structure, we are able to calculate RH{G(n, m))

easily, so we omit the detail. Q. E. D.

2.3. Here we prove a lemma on the normalizer of G(n, m) in GL(2, C).
Before the statement, we set the notation.

NOTATION. (1) For a subgroup G of GL(2, C), NGL(G) (resp. CGL{G))
denotes the normalizer (resp. centralizer) of G in GL(2, C).

(2) ZGL={D(a, α)|
DGL={D(a, δ)\a,
BGL={B(β, γ)\β,

Remark. It is easy to see the following.
(1) CGL{φ{a, δ)»=DGL if a^δ.
(2) CGL«B(β, γ)»Γ\DGL = ZGL.

LEMMA 3. We have the following.

τVGL(G(4, 4))=WGL(G(4, 8))=DGLUBGL,

NGL(G(6, 24))=DGL=CGL(G(6, 24)),

NGL(G(6, 12))=NGL(G(8, 48))=NGL(G(2 6, 24))=DGLuBGL ,

NGL(G(12, 12))=iVσL(G(4 3, 24))=G(24, 24) Z G L ,

NGL(G(4: 2, 48))=7VGL(G(24, 48)) = G(48, 48) Z G L .

Proof. Considering the group structure, we see easily the desired facts.
So we omit the details. Q. E. D.

2.4. Lemmas. To prove the main part of Theorem 1, we shall prepare some
lemmas such as

LEMMA 4. Let G = (A> be a finite cyclic subgroup of GL(2, C) which satisfies
(RH+) and (E). Then G is conjugate to some G(n, m) {in (2.2)).

Before giving its proof, we insert a sublemma on RH(G).
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SUBLEMMA. Let G be a finite subgroup of GL(2, C) which satisfies (RH+)y

say RH(G)=[n, go',nly •••, n r ] . Assume nr=n (where r ^ l ) . Then RH{G) is
equal to one of the following,

[2, 0 2, 2, 2, 2, 2, 2], [2, 1 2, 2], [3, 0 3, 3, 3, 3], [3, 1 31
[4, 0 2, 2, 4, 4], [5, 0 5, 5, 5], [6, 0 2, 2, 2, 6], [6, 0 3, 6, 6],
[8, 0 2, 8, 8], [9, 0 3, 3, 9], [10, 0 2, 5, 10], [12, 0 2, 4, 12],
[18, 0; 2,3,18].

Proof. Since G satisfies (/?//+)> it follows from Proposition 1 in § 1 that
RH(G) satisfies the relation :

(/?//) 2 2-2 = n(2 £,-2)+n Σ( l-( l/n,)) .
1 = 1

On the other hand it is easy to find all the (desired type of) solutions of the
relation (RH) for a given integer n. Since now n^Ξ84(2—1) (see (1.4)), we have
done in principle.

Here we wish to show n^lS, so suppose w>18. Then it is obvious that
£ 0 = 0 and r ^ 3 . If r ^ 4 then

and hence that n^6. If r = 3 then

2+2w^(n/2)+(2n/3)+(n-l) i.e. n ^ l 8 ,

since [n, 0 2, 2, n~\ is not a solution. Thus we have a contradiction.
Q.E.D.

Proof of Lemma 4. Trivially it may be assumed that %A=n>L. Using
Jordan canonical forms, we may assume (cf. (2.1)) that A—D(ζk

n, ζ
ι

n), where
0^k, Kn. I f & = O o r / = 0 then we may assume moreover that I—I, replacing
A by its some power or its some conjugate element if necessary. When &^F0
and ίΦO, we may also assume I—I, if we show that (/, n ) = l or (k, n)=l.
Suppose contrary that (/, ri)—m>\ and (k, n)>l. Then the order of Am' —
D{ζk

n

m', 1) is m, where m'=n/m. Since now Am' satisfies (E), 2—2 Re(l+ζk

n

m')
is a nonnegative integer. Hence ζS m '=ζί 1 , ζ ί 1 or —1. It is easy to see that
any of D(ζ4, 1) and D(ζs, 1) does not satisfy (E). Hence ζk

n

m' = -l and m=2.
Similarly we obtain that (/, n)=(k, n)=2, which is absurd, since %A is n.

Next we prove the lemma under an additional condition that r(A)=0. Then
it follows from (E) that Tr(A)=ζn+ζk

n = l. From this it is easy to see that
n=6 and k=5 and hence G = G(6, 12).

Assuming r(A)Φθ, we examine the following cases (1), •••, (10). We note
then RH(G) appears in the list of the Sublemma.

(1) Case: n=2. Then trivially G equals to either G(2, 2) or G(2, 4).
(2) Case: n = 3. Then obviously D(Q, ζ3) (fe=0, 1) does not satisfy (E).
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Hence k—2 i.e. G = G{3, 12) (if this case occurs).
(3) Case: n=4. Then obviously D(ζ\, ζ4) (fc=0, 1) does not satisfy (E) and

<D(ζl ζ4)> does not satisfy (RH+). Hence k=3 i.e. G = G(4, 8).
(4) Case: n=5. Then D(ζϊ, ζB) (fe=0, 1, 4) does not satisfy (£0). Hence

k=2 or &=3. From this G~G(5, 10).
(5) Case: n=6. Then it follows from (2) that </!2>~G(3, 12), since C42>

also satisfies (RH+) and (E) (note Λ2=D(ζt, ζ3) with r(Λ2)Φθ). Hence 6=2 or
6=5. Since r(D(ζ5

6, ζβ))=0, we see that k=2 i.e. G = G(6, 24).
(6) Case: n=8. Then it follows as above that <,42>~G(4, 8). Hence k=3

or k=7. Since D(ζl, ζ8) does not satisfy (Eo), we obtain that k=3 i.e. G = G(8,48).
(7) Case: n=9. Then it follows as above that <043>~G(3, 12) and hence

r(Λ3)=4. On the other hand since <^3> is the unique subgroup of order 3, it
follows from RH(G)=[9, 0; 3, 3, 9] that r « i 4 8 » = 3 + 3 + l . This contradiction
implies that this case does not occur.

(8) Case: n = 10. Then J?i/(G)=[10, 0; 2, 5, 10] hence K < 4 6 » = 5 + 0 + l .
This means Λ5=J by (1). On the other hand <A2}^(A5> by (4). Hence G~
</ Λ> i e. G-G(10, 10).

(9) Case: n = 12. Then RH(G)=\Ί2, 0; 2,4,12] hence r ( O 4 6 » = 6 + 3 + l .
On the other hand r«^4 6 »=2 or 6 by (1). This contradiction implies that this
case does not occur.

(10) Case: n = 18. Considering the 3-Sylow subgroup and (7), we see that
this case does not occur.

This exhaustion (of cases) completes the proof. Q. E.D.

COROLLARY 5. Let <B(β, γ)> be a finite subgroup of GL(2, C) which satisfies
(RH+) and (E). Then <B(β, γ)> is DGL-conjugate to <B2> or (B4>.

Proof. Since B(β, γ)2=D(βr, βγ), we obtain by Lemma 4 that B(β, γf=I
or /. If B(β, γ)2=I (resp. /), then D(β, D^'Biβ, γ)-D{βy l ) = β 8 (resp. BA).

Q.E.D.

LEMMA 6. Let G be a finite subgroup of GL{2, C) which satisfies (RH+) and
(E). Suppose that #G=2 α (α^0). Then G is conjugate to some G{n, m) {in (2.2)).

Proof. We may assume that G is not cyclic (and hence that α^2) by
Lemma 4. To prove Lemma 6 we shall examine the following cases (1), •••, (4).

(1) Case: a—2. Since then G is abelian, G can be diagonalized simultane-
ously i.e. G is conjugate to a subgroup in DGL (by a result of linear algebra).
Thus G~G(4, 4).

(2) Case : a=3. This case breaks into three subcases (see e.g. [2], Table 1.).
(a) Subcase: G is abelian. Then we may assume (cf. (1)) that G is con-

tained in DGL. Hence the type of the abelian group G is (4, 2). And it follows
from Lemma 4 that G contains A± and A2. This is absurd, because Aγ Ai—
D(ζit ζ4) does not satisfy (E).

(b) Subcase: G is dihedral. Then we may assume by Lemma 4 that G —
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<Ait B) where (B A,f=[ and #B=2. Since B is an element of NGL(<AA», it
follows from (2.3) that B belongs to BGL, and hence from Corollary 5 that G~
<AA, B2} i.e. G~G(8, 8).

(c) Subcase : G is quaternion. Then we may assume that G = ζAAf B} where
B2=(B At)2=J. It follows as above that G~<A4, 54> i.e. G~G(4 2, 48).

(3) Case: α=4. Then /?/7(G)=[16, 0; 2, 4, 8], because it is the unique
solution of (RH) when n = 16. This means that G contains an element of order 8.
Hence we may assume by Lemma 4 that G = (A8, B} for some element B. This
case breaks into two subcases by (2.3).

(a) Subcase : B^DGL. Then G should be abelian and so contain an abelian
group of type (4, 2), which is absurd by (2).

(b) Subcase: BΪΞBGL. Then it follows from Corollary 5 that G~<A, £4>
= G(16, 48) or G~O48, £ 2 >~<Λ, B(ζ8, ζ8

7)>=G(lβ, 48).
(4) Case: α^5. It is easy to see that (RH) has no solutions when n=32.

Hence our case does not occur, since any group of order 2α (α^5) has a sub-
group of order 32.

Since we have considered all the possible cases, these complete the proof of
Lemma 6.

LEMMA 7. Let G be a finite subgroup of GL(2, C) which satisfies (RH+) and
(E). Suppose #G=2 α 3& (α^O, b^l). Then G is conjugate to some G(n, m) (in
(2.2)).

Proof. By Lemma 4 and Lemma 6 we may assume that G is not cyclic and
that β^4. It is easy to see that (RH) has a unique solution [9, 0; 3, 3, 9] when
n=9. Hence if b^2 then we see that G contains an element of order 9 (using
a theorem of Sylow). This contradiction to Lemma 4 means that b — 1. Moreover
then, since G is assumed to be not cyclic, we have aΦO. To prove Lemma 7 we
shall examine the following cases (1), •••, (4).

(1) Case: a = l. Since then G must be dihedral, we may assume by lemma
4 that G = (A5, B} where #5=2. Then it follows from (2.3) and Corollary 5
that G~(A3, B2> i.e. G~G(3 2, 12).

(2) Case : a—2. This case breaks into four subcases (see e.g. [2], Table 1.).
(a) Subcase : G is (noncyclic) abelian. Then by Lemma 6 we may assume

that G contains G(4, 4) and hence that G is of the form </, A2, A} where %A=3.
Then A belongs to DGL by (2.3). Since <yl>^<^3> by Lemma 4, we conclude
that A=Aγ and hence that G = G(2 6, 24).

(b) Subcase: G is dihedral. Then G = (A, B) where #v4=β and #B=2. By
Lemma 4 we may assume that A=JΆ3 or AQ. Considering (2.3), we see that
A=JΆ3 and BCΞBGL. And it follows from Corollary 5 that G~(JΆS, B2> i.e.
G~G(12, 12).

(c) Subcase: G is tetrahedral. If this case occur then we may assume that
G contains G(4, 4) as a normal subgroup (by Lemma 6). It follows from (2.3)
that G is of the form </, A2, B> where B is an element of BGL of order 3.
This contradicts to Corollary 5.
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(d) Subcase: G is ZS-metacyclic. Then we have that G = <A B} where
As=Bt=(A'B)i. As in (b) we may assume that A=JΆ3 and B^BGL. Since
#5=4, it follows from Corollary 5 that G~(J AS, Bά} i.e. G~G(4 3, 24).

(3) Case: a=3. Then the group G is solvable, hence G contains a normal
subgroup N of order 12 or 8. We shall examine these two subcases.

(a) Subcase: #N=12. Let A be an element of G such that A&N. By (2)
we may assume that N=G(12, 12), G(2 β, 24) or G(4 3, 24).

(i) If N=G(12, 12) (resp. G(4 3, 24)), then it follows from Lemma 3 that
A=B D(a, a) for some element B of G(24, 24) and a^C. Since now G(24, 24)
=NUA2-N, we may assume that B—I or B = A2. Then A2 belongs to ZGL
and so A2—l or A2—] by Lemma 4. If A2—] then AΆ3 is an element of order
12 of G, which is absurd by Lemma 4. If A2—I then # 2 = 1 and hence A belongs
to G(24, 24). This implies that G = G(24, 24).

(ii) If N=G(2-6, 24) then it follows from Lemma 3 that A is an element of
DGLKJBGL. If A belongs to DGL then G is abelian and hence G contains an
element of order 12, which is absurd. If A belongs to BGL then we obtain by
corollary 5 that G~G(24, 24) (note that G(24, 24) contains B2 and B4).

(b) Subcase: #iV=8. Let A be an element of G such that #v4=3. By
Lemma 6 we may assume that N=G(8, 8) or G(8, 48) or G(4 2, 48).

(i) If N=G(8, 8) or G(8, 48), then (A,y A} is a subgroup of order 12 and so
we have done by (a).

(ii) If JV=G(4 2, 48), then it follows from Lemma 3 that A=B D{a, a) for
some element B of G(48, 48) and α e C . Since A3=I, B* belongs to ZGL and
so B3=I or B°°—J by Lemma 4. Therefore in any case it follows from Lemma 4
that det(J3)=l. On the other hand detCΛ)=l since A~A3 by Lemma 4. Thus
άet(D(a, α))=l i.e. a2=l, and hence in particular D(a, α)eG(48, 48). Since
G(24, 48) consists of elements of G(48, 48) such that their determinants are 1,
we conclude that A belongs to G(24, 48) and so G = G(24, 48).

(4) Case: α=4. Then the group G is solvable, hence G contains a normal
subgroup TV of order 24 or 16. We shall examine these two subcases.

(a) Subcase: #Ar=24. Let A be an element of G such that A&N. By (3)
we may assume that N=G{24, 24) or G(24, 48).

(i) If N=G(24, 24), then RH(N)=IU, 0 2, 4, 6], which contradicts to RH{G)
(if occurs). In fact [48, 0 2, 3, 8] is the unique solution of (RH) when n=48.

(ii) If 7V=G(24, 48), then it follows from Lemma 3 that A=B-D(a, a) for
some element B of G(48, 48) and « G C . Since now G(48, 48)=Λ^W^8 Â , we
may assume that B—I or B=A8. Then by Lemma 4 it is easy to see that α 2 = L
Thus we obtain that A belongs to G(48, 48) and hence that G = G(48, 48).

(b) Subcase: #iV=16. By Lemma 6 we may assume that N=G{16, 48). If
A denotes an element of G such that #^4=3, then (A8, A} is a subgroup of
order 24 and so G~G(48, 48) from (a).

This exhaustion (of cases) completes the proof.

LEMMA 8. Let G be a finite subgroup of GL{2, C) which satisfies (RH+)
and (E). Suppose that #G ts divisible by 5. Then G is conjugate to G(5, 10) or
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G(10, 10).

Proof. Considering that now #G^84(2—1), we see easily that RH(G) is one
of the following.

[5, 0 5, 5, 5], [10, 0 2, 5, 10], [15, 0 3, 3, 5],
[20, 0 2, 5, 5], [30, 0 2, 3, 10], [40, 0 2, 4, 5].

We wish to show that G is cyclic, in which case we have done by Lemma 4, so
we assume (moreover) that G is not cyclic. Then RH(G) should be one of the
below three.

(a) If #G is 30, then G contains a (cyclic) subgroup of order 15 by a theorem
of Hall, which is absurd by Lemma 4.

(b) If #G is 20 (resp. 40), then any 2-Sylow subgroup of G must contain / by
Lemma 6. Hence G contains a cyclic subgroup of order 10, which must be con-
jugate to G(10, 10) by Lemma 4. This contradicts to the RH data of G, since
RH(G(l0, 10))=[10, 0; 2, 5, 10].

This completes the proof of Lemma 8.

2.5. Proof of Theorem 1.
The implication: (1)=H2) is already remarked (cf. (1.4), (2.1)).
To prove the converse, we assume that G is a finite subgroup of GL(2, C)

which satisfies (RH+) and (£). Then the prime factors of %G occur among
{2, 3, 5} by Lemma 4. Hence it follows from Lemma 6, Lemma 7 and Lemma 8
that G is conjugate to some G(n, m) (in (2.2)).

Let //C48 (resp. HC2±, HC10) denote the hyperelliptic Riemann surface (of
genus 2) which is defined by the equation y2=x(xi—1) (resp. y2=x6+l, y2—
x5+l). Using the differentials xdx/y and dx/y, we define the representations
R:A\it(HCu)->GL(2, C) as in (1.1) (where w=48, 24, 10). Then it is (classical
and) easy to see that R(HCU, Aut (HCu))=G(u, u) (cf. e.g. [7]).

Since our G(n, m) is contained in one of the above G(u, u)'s, this completes
the proof.
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