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§0. Introduction and notation. In [7], the “curvature” of the Carathéodory
metric on a bounded domain in C™ is considered by using the generalized Hessian
of this metric; it may be called the Hessian-curvature. Referring to this, we
define Hessian quartic forms to an arbitrary hermitian metric. These Hessian
quartic forms enable us to provide another proof for the following result of Wu
[14; Lemmas 1 and 41: The holomorphic sectional curvature coincides with the
maximum of the Gaussian curvatures to all local one-dimensional submanifolds that
contact at the point in the direction under consideration (Corollary 1.8).

Modifying the construction of the n-th order Bergman metric introduced in
[6] (also see [5]), we define quantities g, , (neN) as follows: We consider a
certain linear functional on a specified subspace of square-integrable holomorphic
m-forms on a m-dimensional complex manifold and define the quantity g, by the
square of the operator norm of this functional (Proposition 3.7). We then set
Mon =t/ tte. The quantity g, , is a [0, H+-oco)-valued function on the tangent
bundle, and is biholomorphic invariant (Theorem 4.2). Especially g, is the usual
Bergman metric, and 2(po,1)*— pto,2 i the quartic form defining the holomorphic
sectional curvature of the Bergman metric (Theorem 4.4).

Let 2% . be the n-th order Bergman metric on a complex manifold, relative
to a coordinate z, as introduced in [6]. Then the Hessian quartic form of the
Bergman metric coincides with 2(g,,,)*—43,, (Corollary 5.4). In general, 23,25
with an explicit statement as to when equality holds (Proposition 5.5). Finally,
we note that the quantity A% . does depend on the coordinate z, by examining a
concrete example (Corollary 5.8). One should observe, however, that while the
quantity 2% , with n=2 is biholomorphic invariant in the weak sense mentioned
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in [5, 6], it is nevertheless dependent on the coordinate z, that is one cannot
regard it as a global function on the tangent bundle of the manifold.

NOTATION. The following notation will be used throughout the paper.

0.1. Matrices.
(0.1.1) For a positive integer n= N, we put:

M(n, C): =the set of all (n, n)-matrices over C.
GL(n, C):={AeM(n, C); det A+0}.

Sin, C): ={AeM(n, C); A is symmetric}.

H(n, C): ={AcM(n, C); A is hermitian}.

Ps(n, C): ={AeH(n, C); A is positive semi-definite}.
Pn, C):={A=H(n, C); A is positive definite}.

(0.1.2) For AcPs(n, C), we denote by A'? the square-root of A in Ps(n, C).
If AeP(n, C) we put A™%. =(A"")""%, where A~! is the inverse matrix of A
(note that A~'*<P(n, C)).

0.2. Mamfolds.

(0.2.1) The letter “M” will always mean a paracompact connected complex
manifold, while the letter “m” designates its complex dimension. The term
“coordinate z” stands for a local coordinate system z=(z!, ---, z™) in M with
defining domain “U,”. We write 0% :=0/0z% (a=1, ---, m), for simplicity.

(0.2.2) For a point peM, we set:

T (M) : =the holomorphic tangent space at p.
T(M): =the holomorphic tangent bundle of M.
A$H(M): =the space of all (s, ¢)-forms at p.

(0.2.3) For a pair of coordinates z and w in M with U,NU,#¢, we denote
by J¥ the Jacobian of wez!, i.e. J¥:=det(0%. w")q, s

(0.2.4) For a coordinate z=(z*, .-+, z™), we put dz: =dz*A---Adz™. The pull-
back of the euclidian volume element on C™ by z is given by (v —17%/2™)dzAdz.

0.3.  Multi-indices.
Let m be the dimension of M as in (0.2.1).

(0.3.1) Let MI(n):={1, -, m}™, MII(n):={(a, -, a,)eMI(n); a,=a,+
(=1, -, n—1)} (neN), and MI(0): =MII{0)={¢}. By a multi-index (resp. an
increasing multi-index) of length n we mean an element of MI(n) (resp. MII(n)).

(0.3.2) For a pair of increasing multi-indices A=(ay, -, a,) and B=(b,, ---,
ba), we write A<B if n<n’ or if n=n’ implies that a,=b; (:<(4,) and a,,<by,
for some 1, {1, ---, n}.
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(0.3.3) For a non-negative integer n<Z,, we denote by ¢(n) the cardinality

of the set \U2,MII(j). Thus gD(n):(m;:”), while the cardinality of MII(n) is
(p(n)*go(n—l):<m+:_l> with g(—1): =0,

(0.3.4) We denote by @ the unique order-preserving bijection from N onto
=_eMII(n). Thus, for an increasing multi-index 4 and for neN we have
AeMII(n) if and only if Plp(n—1N<AZB(p(n)).

0.4. Local differential operators.
Let z=(z%, .-+, z™) be a coordinate in M.

(0.4.1) For a constant vector v=(@", ---, v™) in C™ we put (see (0.2.1)):
03 = v%0%, (02)°:=1%, (0%)":=0%0%)"* (n=1, 2, ---), where 1? stands for the
identity operator on functions on U,.

(0.4.2) For a multi-index A=(a,, -+, a,) we put: 0%:=0%, - 0%, (when
n=0 we have 93=1%).

§1. Hessian quartic form of a hermitian metric. lLet g be an arbitrary
hermitian metric on M, and let R be the hermitian curvature tensor to the metric
in the sense of Kobayashi and Nomizu [12; pp. 155-1597] (cf. also [11; pp. 37-397]).
For a coordinate z in M, we put: g, «5: =g0%, 03), (.7 : =(g, o5)"", R, wsea: =
g(R(32, 33)03, %) (a, b, ¢, d€ {1, -+, m}). Thus,

Rz, aicd:azafb £z, aE_Es, Lgﬁs(ag; F<P3 ai)(afb &, 35) .
DeriniTION 1.1. For pe M, we define a quartic form Sec(p; -) on T (M) by
Sec(p; (05)p) : = =2 R, aseal p00°vo?,

where z is a coordinate around p and veC™ (see (0.4.1)). Since Sec(p; X)
/g(X, X)* is the holomorphic sectional curvature of g in the direction XeT (M)
— {0}, we call Sec(p; -) the curvature quartic form of g at p.

Remark 1.2. Since R, .5, are components of a tensor, the definition of
Sec(p; -) does not depend on the coordinate z around p.

DerINITION 1.3. For a coordinate z and v C™— {0}, we set g, ,: = g(0%, 0%)
>0. For pel/, we define a quartic form Hess*(p; -) on T (M) as follows:

'—gzvi;(p>azz>a’f]0g gzu’)(ﬁ): U:r—LO
Hess*(p; (03)p) 1 = 0
’ V=4

Since 0%0% is a complex Hessian, we call Hess*(p; -) the Hessian quartic form of
g, at p, relative to z.
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LEMMA 1.4. Let g be a hermitian metric on M, z a fixed coordinate around
p and v a constant vector in C™—{0}. We consider the complex line L : =z(p)+Cv
in the space C™ and the connected component M, of z (L), containing p, which is
a one-dimensional complex submanifold in U, We denote by Gauss(p, v; ) the
curvature quartic form, at p, of the metric induced from g on M,. Then, viewing
T (M) as a subspace of T (M),

Hess*(p ; (02),)=Gauss(p, v; (02),) .

Proof. The mapping M, =z (z(p)+E&v)—E<C, denoted by ¢, is a coordinate
in M, around p, while the inclusion mapping ¢: M;—M may be represented,
under the coordinates ¢ and z, as &—z(p)+£&v. The induced metric c*g is given by

Ko =23 g, aset 00 dt-dt=2 g, ysor dt-dt,
and the hermitian curvature tensor to ¢*g is
JR;,lIlI:aLat'gz,uE”_lat'gz,uﬁ"f'Z/gz,vﬂ“['-

Since (02),=1¢:(0%),=(0"), by the identification of T ,(M;) with ¢, T ,(M,), we have
Gauss(p, v; (03),)=Gauss(p, v; (09),)=—'R, mi(p)=Hess (p; (03),), and the result
follows.

Let (,)n (resp. || |l.,) be the canonical hermitian inner product (resp. the
induced norm) on €™ Then, for every pelU, we have g, (p)=» G.(p)v*
=lv G.(p)2%, where G,: =(g, .;) (see (0.1.2)).

PROPOSITION 1.5. Let g be a hermutian metric on M, and z be a coordinate
with G,=(g, a5). Then, for every (p, v)elU,x(C™—{0}), we have

Sec(p; (99),)—Hess*(p ; (93);)
=CvA R IeBA R — @B, v)n )/ lvA%
where A =G,(p) and B:=0;.G,(p). In particular, we have
Hess*(p ; (07)p)=Sec(p ; (05);)
with equality 1f and onlv tf
(LD v05. GL(p)=5vG,(p)
for some scalar E<C.
Proof. By Definitions 1.1 and 1.3 we have
Sec(p; (33),) —Hess*(p; (02),)=vBA ' B*up*—|vBv*|*/vAv*
=[vBA™%—1(08, v)nl*/lvA5 .
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The last term is zero if and only if vBAV2=&v A for some £=C. This is
equivalent to (1.1) and the proof is complete.

LemMMA 1.6. Let g be a hermitian metric on M, and let a point peM and
u tangent vector XeT ,(M)—{0} be given. Then, there exists a coordinate z
around p so that condition (1.1) holds for veC™ with X=(3%)p.

Proof. We arbitrarily fix a coordinate w=(w?, -, w™) around p with w(p)
=0. For every (E9)eGL(m, C) and (E%p)e.s=S(m, C) (c=1, ---, m) (see (0.1.1)),
the equations

1.2) W'=,6520+ 20 o852%2°  (¢=1, -+, m)

define a new coordinate z=(z!, ---, z™) around p with z(»)=0 by the inverse
mapping theorem. We shall select the numbers &5, &%, so that z satisfles (1.1)
for veC™ with X=(03),.

First, we can find a matrix (£5) so that

(1.3) v2=0 (a=2, -, m), G.p)=la,

where G,:=(g, ) and 1, is the identity matrix. Indeed, we set X,:

=X/g(X, X2 and select X, -, Xn€T (M) so that g(X,, Xo)=0q5. If we
write 33.£5(0%),: =X,, then (&) is the desired matrix.
By virtue of (1.3), condition (1.1) is equivalent to

(1.4) 0%.g.1a(p)=0 (d=2, ---, m).

Making use of (1.2), condition (1.4) can be rewritten as
P - 1 .
(1.5) 20 08w, ol D) %55‘1:—EZa,b,ca?.gw,ag(p)EfE?EZ (d=2, -, m).

Since G.,(p)EHEGL(m, C), equations (1.5) with unknowns &% (a=1, -, m)
possess a solution. This concludes the proof.

Combining the last lemma with Proposition 1.5, we obtain the following
assertion :

PropPOSITION 1.7. For XeT (M), Sec(p ; X) corncides with max {Hess*(p; X);
z 1S a coordinate around p}.

By virtue of Lemma 1.4, this proposition yields the following result which
was alluded to in the introduction of this paper.

CoroLLARY 1.8. (Wu [14; Lemmas 1 and 4]). For a tangent wvector
XeT  (M)y—{0}, the holomorphic sectional curvature Sec(p; X)/g(X, X to a
hermitian metric g on M coincides with max{GCg(p); S 15 a local one-dimensional
submanifold such that S2 p and ¢s:T (S)=CX}, where t5 15 the inclusion mapping
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of S into M, and GCg(p) 1s the Gaussian curvature at p to the induced metric
ts*g.

Remark 1.9. In [7], a generalized definition of the “Hessian curvature”
Hess*(p: X)/g(X, X)* is used for the square of the Carathéodory metric on a
bounded domain in C™.

§2. The Bergman form. We recall the notion of the Bergman form of M.
For this we follow the description given in [5, 6]. The set of all holomorphic

m-forms « on M satisfying |«|?: :(x/fim2/2m)SMaAc?<+oo is denoted by H(M).

The space H(M) becomes a pre-Hilbert space over € with an inner product (,)
inherited from the norm | |l.

DEFINITION 2.1. Let a be a (m, 0)-form on M, and let z be a coordinate in
M. We denote by «, the function on U, such that aly,=a.dz (see (0.2.4)).

Applying the Cauchy integral formula to «,, acH(M), we find that H(M)
is in fact a separable Hilbert space, and, moreover, for a coordinate z around a
point peM and for a holomorphic differential operator D? on U,, the linear
functional HM)2a—D?.a,(p)eC is bounded (see also Kobayashi [10] and
Lichnerowicz [13]). By the Riesz-representation theorem there exists a unique
element y(D?, p)= H(M) such that

@1 D .a(p)=(a, 7(D*, p)), a=HM).
Especially, when D*=1" (see (0.4.1)), we set

(2.2) Kapt=7(1% D).

For another coordinate w around p we have

2.3) Ko = JE D0, o,

since a,=/%a, on U,NU,, for every acH(M) (see (0.2.3)).

LemMA 2.2. Let y=y(D?, p) (resp. x,.p) be as mn (2.1) (resp. (2.2)). Then,
DZ-(Ez,p)z(p):Z(B-

Proof. By definition D?.(k, ,).(p)=(£. », 7)={, £, »)=7.(p), and the result
follows.

Let M be the conjugate complex manifold of M, and denote by M2 p—peM
the conjugation. For a coordinate z in M, we denote by Z the conjugate coordi-

nate of z with defining domain U,, i.e. 3(p): =z(p), pel..

DEFINITION 2.3. For p, geM we set Klq, p): =k, (q)NdZ;, where z is a
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coordinate around p. By property_(2.3) the quantity K is a well-defined (2, 0)-
form on the product manifold M XM of dimension 2m, and is called the Bergman
form of M (cf. [5, 61).

Applying Definition 2.1 for the manifold MXxM, we find that Kly ;=
K, .;dwAdz. On the other hand, by Definition 2.3

(24) waé('» p_):(ﬁz,p>w
on U, for every peU,. It follows from Lemma 2.2 that
(2.5) Ko, D)=Kalp, O, (b, €U, XU, .

By virtue of (2.4) and (2.5), the function K, ,; is holomorphic on U, XU, by
Hartogs’ theorem of holomorphy. Thus, the Bergman form is a holomorphic
2m-form on MXxM.

DEFINITION 2.4. Let D be a holomorphic differential operator on a coordinate
neighborhood U,, and let w=> crw,dz* be a holomorphic differential form on
U, where F is a finite subset of \UZ MII(n) (see (0.3.1)). Let dz4:=
dz®t A+ Adz%r for A=(a,, -+, a,)€F. We denote by D.w the action of D on
w coefficient-wise, i.e. D.w: = 4er(D.w)dz%. Viewing D as a holomorphic

differential operator on MxU, we have D.K(q, p)=D.K,.:(q, p)dw,NdZ;,
(g, P)eU,xU, We denote by D

form 8 on M such that Sly,=
D .K(-, p)=(D.K(-, p)/dZz)NdZp.

K(-, 9)/dz; the well-defined holomorphic m-
D .Ky.:(-, p)dw for every coordinate w, i.e.

ProrosITION 2.5. ([5; Lemma 1], [6; Lemma 17). Let D? (resp. E¥) be a
holomorphic differential operator on a coordinate neighborhood U, (resp. U ) of p
(resp. q). Let v(D?, p) and y(E%, q) be as in (2.1). Then:

(1) D*.K(, p)/dz=1(D?, p)eH(M);
() G0 p), 1(E¥, @)=E¥D..Ky.q, p).

Proof. (i) Let x be a coordinate, and let D:=D* Usmg Lemma 2.2,
(2.4) and (2.5) we have for every r=lU,,

7(D, P)2(1)=D.(ks,0:p)

:5 szj(T’, ﬁ) .

Therefore, 7(D, p)ly,=D. K..:(+, p)dx, as desired.
(il By definition and part (i), we have
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(D%, p), T(E™, ¢))=E».7(D% plulq)
=E¥. (D% Kuxi(+, PI)Q)
=E*D* Ky.s(g, B),

as desired. This concludes the proof.

CoroLLARY 2.6. (Characterization of the Bergman form). The Bergman form
K s a umque 2m, O)-form on the product manifold MXM with the reproducing
property, in the sense that K(-, p)e HMINAG-"(M) for every p&M, and

(2.6) alp)=(a, K(-, p)/dZ;)
for every ac HM), and every pair of p and z with p&U,.

Proof. The Bergman form K possesses the reproducing property by Defini-
tion 2.3 and Proposition 2.5 (i). The uniqueness of K follows from Aronszajn

[1; item (2), p. 343].

PrROPOSITION 2.7. Let (B,), (NeZ.\J{+co}) be a complete orthonormal
system of H(M). If z (resp. w)1s a coordinate around a point peM (resp. g= M),
then the series 3201(B,)w(g)(B,).(p) converges absolutely to K,.:{q, p), where K is
the Bergman form of M.

Proof. 1t follows from (2.6) that the Fourier coefficients &, of K(-, $)/dZ;
with respect to (§;) are given by &,: =(K(:, p)/dZp, B)=(8,).(p). By the com-
pleteness of (8;) we have [ X7.6;8,—K(-, p)/dZ3|—0 as n—N. Another application
of (2.6) gives lim,.y 2518 (B)w(@)=Kunx:(g, §), and the result follows,

Remark 2.8. By virtue of Proposition 2.7, the Bergman form introduced in
Definition 2.3 coincides, up to a multiplicative constant, with the Bergman kernel
form given in Kobayashi [10; p. 2697 (see also [137).

§3. Extremal quantities of the space H(AM). We shall first establish a
chain rule for the differential operators 0% (see (0.4.2)). For neZ,, we denote
by II(n) the family of all partitions of the set {1, ---, n} (II(0)={¢}). Given a
multi-index A=(qa,, -+, a,)eMI(n) and a subset PC{l, -, n}, we set 04p:=
TT.cp0%, (when n=0, we have 05,=1°).

LEMMA 3.1. Let z and w be coordinates in M with U,NU,#¢, and let
AeMI(n). Then, for every holomorphic function [ on U,NU,, we have 04. f
=2venafa, 0, where fa 0 with P={Py, ---, P} is the function given by

Z(bpeﬂum(afmm Swh) (aiipu.wbu)(a'{’w S

Proof. 'The proof is carried by induction on neZ,, using the formula
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Oopir- S 0= s et faer.

Here A:(A,: (ln+1)EM1(n+l), EP: {PI) "';Pu} EH(n)y EZ)(L)) : :{Ply e vaU{n+]} »
-, P}, and @' :={Py, ---, P,, {n+1}}. The proof is now complete.

DEFINITION 3.2. For every neZ, and peM, we define a subspace H,(p)
of H(M) and a condition (C,), as follows:

Huy(p): ={acHM); 04 a(p)=0 (Ac\UIIMIGN  (Ho(p)=HM)),

For every vector (€4)semirny €CY¥— {0}, there exists a form acH, (p)

(Cadp: ( such that 3,840%. a(p)=0.

Here, z is an arbitrary fixed coordinate around p and N:=¢p(n)—p(n—1) (see
(0.3.3)). Condition (C,) stands for the collection of all (C,), (peM).

By Lemma 3.1, we see that the definitions of H,(p) and (C,), do not depend
on the choice of the coordinate z.

Remark 3.3. Condition (C,) (resp. (C,)) coincides with condition (A. 1) (resp.
(A.2)) of Kobayashi [10].

LEMMA 3.4. Let K be the Bergman form of M, z be a coordinate around a
pont peM and let neZ,. Set S(p, z):=1{0% K(-, p)/dzs; Ac\JMII(;)}C
HM). Then:

(i) The space H,y(M) concides with S(p, z)*, the orthogonal subspace cf
the subset S(p, z) in HM).

(ii) Conditions (C;)p (3=0, -+, n) hold true 1f and only if the system S(p. z)
18 linearly independent 1n H(M).

Proof. By Proposition 2.5 (i),
3.1) . a(p)=(a, 04 K(-, )/d%;), asHM).

Thus, assertion (i) follows immediately from (3.1). To prove part (ii), suppcse
that (C,), (=0, ---, n) hold true, and let

2_7:021‘161‘111(])5/18‘2‘;'}{(.) ﬁ)/dé,—,:()
for a vector (£4). It follows from (3.1) that
(3.2 Do Daenr1 €0 a (p)=0, asHM).

Applying formula (3.2) on a=H,(p) and using assumption (C,),, we find that
&4=0 for every AeMII(n). Similarly and inductively, we conclude that £4=0
for every A. Conversely, suppose that

(3.3) S(p, z) is linearly independent in H(M),

and let
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(3.4) EAEMII(j)ani-a(ﬁ):O (aEHj(P)),

where ;= {0, ---, n} and &4=C. Substituting (3.1) into formula (3.4), we see
that Dscwrrn&40%. K(-, p)/dZ;=H,(p)*. From part (i) with ; instead of n,
assumption (3.3) implies that &4=0 for every A. This concludes the proof.

LEMMA 3.5. Let XeT (M) and acH,(p). If we express X=(0%),=(0%),
(v, vEC™) with respect to coordinates z and w around p, then (02".a(p)=
©09)". a(p); therefore, this form at p may be denoted by X™.a(p).

Proof. We first note that

(3.5) V=0 wep) (a=l1, -, m),

(3.6) CHSEREES 3 G CR S L OO
since a,=J%a,, (see (0.2.3)). Since ac=H,(p), it follows from Lemma 3.1 as well
as (3.5) that

0, 1En—1
(35)].aw(z>)={
¢y . aw(p), j=n.
Substituting these values into formula (3.6), we obtain
03)". a(p)=J V(D)0 ay(p), or (I alp)=(05)". alp),

as desired.

DEeFINITION 3.6. (Kobayashi [10; p. 269]). We define an order relation on
the subset {wA&; oA M)}CA™ (M) as follows (see (0.2.2)): We let
ONGEW' A&, for o, o' € A5 (M), if |@,|<]w,| for some coordinate z around
p, where w=w,dz,, o' =w,dz, (0, 0,C).

PROPOSITION 3.7. For every X&T (M) and every neZ,, the maximum
a(p s X) s =max{X™. a(p)ANX". a(p); acHy(p), lal=1}
under the order wn Definmition 3.6 exists and comncides with
max {|(8(z), &)|*; a€S(@)*, lal=1}(dzAdz),
for every coordinate z around p, where

S(z): ={0%. K(-, p)/dZp; A=\ U=t MII(GY CH(M)
and
Blz): =05 K(-, p)/dz,cHM), X=(33),.

Proof. Since X™ a(p)ANX". a(p)=|@)". a,(p)|Xdz N dz), for every ac H(M),
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the assertion follows from Proposition 2.5 (1) and Lemma 3.4 ().

Let peM. From the definition we deduce the following:

3.7) ( When n=0 or 1, u,(p; X)#0 for every X=T ,(M)— {0}
nha if and only if (C,), holds true;

3.7) ( When n=2, p(p; X)=0 for every XeT ,(M)—{0}
e if (C,), holds true.

To study the g, more precisely, we record a lemma which is valid for any
pre-Hilbert space H. We denote by G(x,, -+, x,) the Gramian of a system
(%1, =+, x5) In H (especially, G(¢)=1), and denote by G,,(x,, -, x,) the (i, j)-
cofactor of the Gram-matrix of (x,, -+, x,) (especially, G (x,)=1).

LEMMA 3.8. Let (xy, -+, x,) (nEZ,) be a linearly independent system in a
pre-Hilbert space H, and let xn, .= H. Then

max {[(y, xa:01%; yE {xy, -, xab Iyll=1}
=G(xyy o, Xuad/Glxy, ) Xa),s
and the latter coincides with {y™ | where
Y i =G(xy, oy X)) NG, (X v, XKaa) X

Furthermore, when y™ 0, the above maximum 1s attained by v of and only 1f
y=ev-18y® /| y™| for some real 8.

DerFINITION 3.9. Let K be the Bergman form of M, and let z be a coordinate.
Then Ky, .7;=K,«:dzNdzZ. We consider the function k2, on U, given by

kz(p>::Kz,<é(p’ ﬁ) (PgUz),
which we call the Bergman function of M relative to z.

DEFINITION 3.10. Let ¢ and @ be as in (0.3.3) and (0.3.4), respectively. For
a coordinate z in M, we set:

kenit =050,000 . ke,
LGy 0 )t =Lk, gdizitiie,
Lo(g oy gades s =detlk, 1200000,
K, #(p): =0pw. K(-, p)/dZ; s HM) (pel.).

It follows from Proposition 2.5 (ii) that &, ,;=(K; K. on U,. This means
that the matrix L,(j,, -, J.)(p) is the transpose of the Gram-matrix of the
system (K, 75, -+, K., 77) in H(M) for every pel/,. Combining this with Lemma
3.4 (ii) and Lemma 3.8, we obtain the following two results.
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PROPOSITION 3.11. Let z be a coordinate around peM, and let neZ,. Then
L1, -, om)(p)ePs(p(n), C) (see (0.1.1)), and the following four conditions are
mutually equivalent :

(a) Conditions (Cy), (j=0, -+, n) hold true.

(b) The system (K, i(p), -, K, om(p)) in H(M) is linearly independent.
() L, -, pm)Xp)ePlp(n), C).

(d) detL.(1, -, p(m)(p)>0.

THEOREM 3.12. Let z be a coordinaie in M and let f, , be the function on
U, xC™, defined by

ta(p s @) =Fn(p, vdzAdz),, (p,v)EU,XC™,

Then, for every peU, and any maximal linearly independent subset {K, 5:(p), -,
K. 7 of {K.1(p), - Ko.omo(0),

fn,z(p; U):det Lz(]ly Tty ]l)(p>_1
><Egp(n—l)<s,tgt,n(n)C$(S)C@(l)vd}(S)D(b(“Lz(]l; <y 10 (D)

Here, Cy=nl/nyl o nyl, vi=v®1- v for A=(ay, -, a,) and v=0"% -, v™),
where n, 18 the cardinarity of the set {j; a;=v}.

CoroLLARY 3.13. (Kobayashi [10; Theorem 2.27). For peM,

K(p, p)=max{a(p)Aa(p); ac HM), ||a|=1}.

If K(p, p)#0, the above maximum 1s attaimed by a 1f and only 1f a=
eV-10p,(p) ' K(-, P)/dZp for some real 6.

Proof. The first assertion follows from Theorem 3.12 with n=0, and the
latter from Lemma 3.8 with n=0.

§4. The biholomorphic invariant z, ,. In this section we suppose that
M satisfies condition (C,), i.e. M satisfies condition (A.1) of Kobayashi [10] (see
Remark 3.3). For every neZ, and every XeT (M), the (n, n)-form

4.1 palp s X)=max {X™. a(p) AN X" a(p); acHy(p), |al=1}

at p has been defined in Proposition 3.7. When n=0, by Corollary 3.13 together
with (3.7);,, we have

polp s X)=k(pXdzNdz)y, kAp)>0.
DEFINITION 4.1. For every nEN, we let po,.:=p,/po. Thus it follows

that g, is a well-defined [0, +oo)-valued function on the tangent bundle T(M),
for which, by (4.1), it possesses the property that for every X=T ,(M) and every
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EEC, o, nlp; EXD=181" o n(p; X).

THEOREM 4.2. The function p,,, on T(M) 1s a biholomorphic invariant, i.e.
o nlD s X)=po,{f(D); fX) (p; XDeT(M)) for every biholomorphic mapping f
from M onto the complex manifold f(M).

Proof. Let M’:=f(M) and let ¢:=f(p). The mapping f induces an
isometry f* of the Hilbert space H(M') onto H(M) so that f*H,(q)=H,(p). Let
(w, Uy) be a chart of M’ around ¢. Then, the function z:=w-f|,, with U,:
=f"YU,) is a coordinate around p such that

4.2) z2%=w%f on U, (a=1, -, m).

Let X=(@5),=T,(M). Thus, by (4.2), f+X=(0%),. Furthermore, by induction on
n and by virtue of (4.2), we obtain, for every a<H,(qg),

@) ([*a);=03)". @y /)=(0)" .ayy)o f on U..

Evaluating the above formula at the point p, we obtain that (02)".(f*a).(»)
=0¥)". a,,(q) for every a=H,(g). It follows from (4.1) that

palp s X)/(dandz)y=palq; [+ X)/(dwAdw),.

The desired assertion follows now from Definition 4.1.

Remark 4.3. Let C(p; X) be the Carathéodory metric on M. Suppose that
(Cy)p holds and C(p; X)>0 for some (p; X)eT(M). Then the same argument
as in the proof in [6; Theorem 1] implies that C(p; X" <(n )2y, (p; X) for
every nE N,

Now, making use of Theorem 3.13, we have
ﬂo,l(p 5 X):avz)a—'zz) IOg kz(p) , X:<azz))pETp(M) .

With the aid of the above formula, one can extend ,; to a unique hermitian
pseudo-metric g on M such that g(X, X)=pu, (p; X), X&T,(M). This pseudo-
metric is given by

gIUz:‘Z Za,baéég- 10g kzdza'dzb 2

and is called the Bergman pseudo-metric on M. We note that the Bergman
pseudo-metric g becomes an ordinary metric if and only if M satisfies condition
(Cy) (see (3.7)), i.e. M satisfies condition (A.2) of Kobayashi [10] (see Remark
3.3).

Assume now that M satisfies condition (C,). It follows from Theorem 3.12
that

4.3) to.o(p 5 08)p) = k(D) Pop)'Q:D, 1),

where
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P, i=det L(1, -, ¢(1))
and
Q. v): :2¢<1)<s,z;</:<2>C<]1<s>cd)<z>vw(8)77w(“Lz(lr s e

The following theorem was stated in Fuks [8; p. 525]. For the sake of com-
pleteness we give another proof which may have its own interest.

THEOREM 4.4. Suppose M satisfies conditions (Co) and (Cy). Let Sec(p; ) be
the curvature quartic form, at pEM, of the Bergman metric g on M (see Defini-
tron 1.1).  Then,

o o{p; X)=2g(X, X)‘*’~Sec(p; X), XeT,(M).

Proof. Set g, ep:=0405.108 k,, G,:=(g. ) (g0%:=G;. We compute
2o, o{p ; (03),) with the aid of formula (4.3). We first note that

P.=kP" det G,

G, x.0%
QA+, v)= kI det ,
Xzv Oz
where x,, and o, , are C™-valued and C-valued functions on U,, respectively,

given by
Xz,v : :(ag ((65)2 kz/kz»b 3

(2P :(kz(a:»)z(a@z kz' 1(alzv>2 kz]Z>/k§ .
it follows that
ﬂo,z(ﬁ y (ag)p):az v(p>_Xz,v(p)Gz(p)_lxz,v(p)* .

The desired formula is now obtained from Definition 1.1 (see also [10; p. 2757),
and the proof is complete.

COROLLARY 4.5. (Fuks [8; Theorem 1], Kobayashi [10; Theorem 4.47).
Suppose M satisfies conditions (Co) and (C,). Then the holomorphic sectional
curvature of the Bergman metric on M 1s at most 2. Let peM be fixed. The
holomorphic sectional curvature is less than 2 for every direction at p 1f condition
(Cy)p holds.

Remark 4.6. Concerning the last corollary, the following facts are shown
in [2] by means of examples:

(i) There exists a simply connected domain A in C? such that conditions
(Co) and (C,) hold true, and such that the holomorphic sectional curvature of the

Bergman metric on M is identically 2.
(i) For every real number & with £<2, there exists a pseudo-convex bounded
Reinhardt domain A in C?* such that the holomorphic sectional curvature of the

Bergman metric on M is greater than £ for some direction.
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§5. Hessian quartic form of the Bergman metric. We first recall the
n-th order Bergman metric introduced in [6]. Let a coordinate z in M be fixed.
For neZ, and (p, v)elU,xC™, we set

Hy(p, vy:={acsHM); @3. a(p)=0 (=1, -, n—1)}
and

(P (03)p) 1 =max{(@5)". a(p)\(d5)". a(p); acHilp, v), |a|=1}
(see Definition 3.6). Referring to Definition 3.2, we have

=H,(p), n=0,1

(5.1) Hi(p, U){
DH.(p), n=2.

In particular,

{ Xp; V= mlp; )= kAp)dzAd2),
(5.2)

A d=m(p; )

on T,(M). When M satisfies condition (C,;), we may consider the [0, -co)-valued
function 4, on \Uzey, T (M) for every ne NV, given by 4§ .=23/4;. The function
A% . is called in [6] the n-th order Bergman metric of M. It follows from (5.1)
and (5.2) that

(5.3) )wz],]:}lo,h Xé,n?;[/lo,n (n=2).

Given a vector veC™, consider the functions R, (n=—1,0,1, ---) on U,
given by

(5.4) Ry =det[(05)(05), k. 152000,
the Wronskian of functions (92). b, (;=0, 1, ---, n) with respect to 97 (especially,
R_=1).

We now recall the Jacobi’s formula concerning determinants.

LEMMA 5.1. Let A=(,)eM(n, C), and let A,, be 1ts (i, y)-cofactor. Then
det A det(&j);i%:::{Zig:AnnAn—x, n-1—An n-14n-1n.
This lemma leads to the following recursive formula for the Wronskians R,

in (5.4).

LEMMA 5.2. Let z be a coordinate in M, and let veC™. Then, for every
ne N,

Ran—z:Rn—lafB%- Rooi— ’af) Rn»1|2
on U,.

Proof. Let (R,);, be the (1, j)-cofactor of the H(n+1, C)-valued function
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[@)492)7. k,Ji=bn2, Tt follows from Lemma 5.1, since R, is hermitian, that
Ran—2:<Rﬂ)ﬂﬂ<Rﬂ)ﬂ+l,7l+1—’(Rﬂ)ﬂ,n"'I‘z'

Moreover, from the derivation properties of the Wronskians we also have

(Rn)nn:Rn—h (Rn)n,n+1:”“a1€" Rn—lr and (Rn)7L+1,n+1:azz)a%. Rn—l- The prOOf is now
complete.

From Lemma 3.8 together with (5.2) it follows that

(5.5 5P @) p)=k(P) Ry (PYTRA(D),
provided that R,_,(p)+0 (cf. [6; p. 517).
THEOREM 5.3,  Asswme, n addition to the assumptions of Lemuna 5.2, that M

satisfies condition (C;) (3=0, -+, n—1). Set

XU,]'(Z’) : :/7»5]<j) ; (ai)ﬁ> , ,DEva (/ :1v Ty 71) .
Then

/20, 2 =Ao, n-1{NA, 1+2?;118535- log 20.])
on U,. where 2, ,=1.
Proof. By assumption and Lemma 5.2 we have
Ran—Z:‘(Rn—l)za?zJB'f"- log RrL—l .
It tollows from (5.5) that

/20, n:ZO, n—laia%. log Rn—x
and that
R"—lz(kz)n}w,l }\\J,n—l .

he desired result now follows by observing that A, ;=0%05. log &.,.

As a consequence of this theorem we find an intimate relationship between
the quantity A%, and the Hessian quartic form of the Bergman metric.

COROLLARY b.4.  Suppose that M satisfies conditions (Cy) and (Cy). Let z be
a coordinate in M, and let Hess*(- ; -) be the Hessian quartic form of the Bergman
metric g on M, relative to z (see Definztion 1.3). Then, for (p, vieU,xC™,

284 5 (33),)=2g((33),, (03),)*—Hess™(p ; (33),) -
Combining Theorem 4.3 with Corollary 5.4, we obtain, for (p, v)eU,xXC™,
(5.6) Sec(p ; (05)p)—Hess*(p; (05)p)=25, 2D 5 (03)p)— 20, 2(p ; (05))=0.

The latter inequality follows from Proposition 1.5 or (5.3).

PROPOSITION 5.5. Suppose that M satisfies conditions (Cy) and (Cy). Let z be
a coordinate in M and let Sec(-;:) (resp. Hess*(-; ) be the curvature quartic
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form (resp. Hessian quartic form relalive to z) of the Bergman metric g on M.
Let (p, v)€U,xXC™ be fixed. Then, the left hand side of (5.6) vamshes if and

only if
6.7 Wik, 04. k., 05. £)(P)=0 (a, be{l, -, m}),

where Wi(fo, ==+, fr) 1S the Wronskian of functions f,, -, f. on U, with vespect
to 03, Condition (5.7) is equivalent to

{(kz, 0% k., (03)°. k2)
rank

— — - (p=2.
(aa kz: aflaf) kzy aé(a?z)>2 kz)a:l,m.m

(5.8)

Proof. We suppress the dependence on z. Set go;:=0,0,.log £ and G: =
(gas). From Proposition 1.5 it follows that equality in (5.6) holds if and only if
18, G(p)=EG(p) for some scalar £=C. The latter is equivalent to

(5.9) W (0405. 10g k, 0:0,. log E)(p)=0 (a, b= {l, -, m}).

But, using Lemma 5.1 with n=3 and standard properties of Wronskians, we
arrive at the following identity :

Wolk, 0g. b, Op. B)=EW (0,0, log k, 0:0,. log &) .

It follows that condition (5.9) is equivalent to (5.7).

It remains to show the equivalence of conditions (5.7) and (5.8). Clearly,
(5.8) implies (5.7). Assume now that (5.7) holds and v+0. Consider the vectors
x:=(k, O b, (0,). k)(D), ¥ :=0u.(k, Do. k, D)% RXD), Yo :=0a.(k, Dy b, (3:)% BN D)
{a=1, -, m) in C° Because of condition (C,), which guarantees that
Wik, 8, k)(p)#0, the set {x, y} is linearly independent. It follows, since y=
2 v*y,, that there exists an a,= {1, ---, m} such that {x, y,} is linearly inde-
pendent. Therefore, (5.7) implies that every y, is spanned by x and y., and
hence condition (5.8) holds. The proof is now complete.

We note that condition (5.7) holds true trivially when m=1.

ExampPLE 5.6. Suppose that M={(¢&, &)eC?; |&|2+]&2]|¥*<1} for some
positive real number s, and that the coordinate z is the inclusion mapping of
M into C® 'The Bergman function £=Fk, of M is given by

A& —rig®
k(&' §5)=c : v
© =@ e e
where ¢ : =(1+4s)/z*=vol(M)~* and

(5.10) r=r(s): =(1—s)/(1+s) (—1<r<i)

(cf. Bergman [4; p. 21]). Assume that the point p under consideration is (0, &%)
with [£%] <1. As in [3] (not Definition 3.10), we use the convenient variable
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R St
(5.11) 1= e

and the notation k,:=0%. k, kas:=030: b, etc. Then, we have

1—¢
1—rt

(0<t=D), or [&*=

>

ki/k=ki/ k=0, ky/k=x,(E""
Ikli/kth kis/k=0, ke/k=x,
kii/k=0, kip/k=x:&", kom/k=x&"

J ki/k=0, ky/k=xE

(5.12)

and their corresponding conjugated formulas, where
xp:={1—=rt)B—rt)/(1—r)t

Xyt =6(1—rt)2—rt)/(1—r)i*

g1 =3+t / A+

X =1—rt)(12—90+rt+G4rrty)/(1—r)i?
x5 =2(L—rt)}6—3rt+r12)/ (1 +r)(1—r)i®

xo 1 =12(1—rt)(6— (345t +2+mrt®) /[ (1—r)*t.

Using (5.12), we find that condition (5.7) is equivalent to
1 080" x(E%0")

{5.13) 0 x,0  2x:80'%% |=0.
1,8 x, 0 x &2 (D%)"

If v}2%£%=0, condition (5.13) holds true trivially. Suppose that v'w?%2=£(0. Then
(5.13) is equivalent to

[E8]7% x1 xy
(5.14) 0 xs 2x5=0.
X4 Xy Xg

Using the values of x, together with (5.11), and noting that 1—#¢t>0 and ¢>0,
we find that (5.14) is equivalent to

(5.15) {991 —rt—18rt* —(1—9r)rt*+r2t'} =0.

Making use of Sturm’s method, we can see that the factor in the brace of (5.15)
is positive for every (r, t)e(—1, 17x(0, 17 (for Sturm’s method, cf., e. g., Isaacson
and Keller [9; pp. 126-1297) ; therefore, (5.15) holds if and only if »=0, or by
(5.10), if and only if s=1. Note that the domain M with s=1 is the unit ball
in C*
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Summing up the above arguments, we obtain the following assertion.

PROPOSITION 5.7. Suppose that M and z are as in Example 5.6 with s=1.
Let Sec and Hess® be as in Proposition 5.5, and let X=(0%), with v=", v)eC?
and p=(0, 5 M. Then, Sec(p; X)—Hess*(p; X)=A5,(p; X)—pto,o(p ; X) 15 posi-
tive if and only if v'w*&E2+0.

It was shown in [6] (see also [5]) that the quantity 4% , possesses a certain
biholomorphic invariance. This invariance, however, is not an invariance in the
ordinary sense and it does not guarantee that for n=2, 43 , can be regarded as
a global function on the tangent bundle T(M) of M. In fact, as the following
corollary of Proposition 5.7 shows, A% , does depend, in general, on the coordinate z.

COROLLARY 5.8. Let M, z, Hess® be as in Proposition 5.5 with m=dim M =2.
The quantities A3, and Hess?, in general, depend on z, 1.e. they cannot be con-
sidered as global functions on the tangent bundle T(M).

Proof. It is sufficient to find a manifold A/ that satisfies (C,) and (C;), and
in which there exist two coordinates z and w with U NU,#*¢ such that
B o(p; X)#F=2(p; X) for some peU,NU, and X=(33),=0%),=T (M).

For this, we take as M the domain considered in Example 5.6, and as z the
inclusion mapping of M mmto C% We also take p=(0, £ M and v=0"*, v)eC?
so that v'w2£%?#0. Lemma 1.6 guarantees the existence of a coordinate w around
p, for which Hess®(p; (0%),)=Sec(p; (0%),) with (0¥),=(3%),. Then, by (5.6)
and Proposition 5.7 we have

Hess*(p ; (03),) <Hess*(p; (03 },),

A (05 (00> 28 (08),),
as desired.
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