1. Introduction

Among all submanifolds of an almost Hermitian manifold, there are two typical classes: one is the class of almost complex submanifolds, and the other is the class of totally real submanifolds. A Riemannian submanifold \((M, \phi) \) (or briefly \(M \)) of an almost Hermitian manifold \((\tilde{M}, \tilde{J}, \langle \cdot, \cdot \rangle) \) (or briefly \(\tilde{M} \)) is called an almost complex submanifold provided that

\[
J \phi((d \phi)_p(X)) \in (d \phi)_p(T_p(M))
\]

for any \(X \in T_p(M), \ p \in M \). The most typical example of nearly Kaehlerian manifolds is a \(6 \)-dimensional sphere \(S^6 \). In fact, Fukami and Ishihara \([3]\) proved that there exists a nearly Kaehlerian structure on a \(6 \)-dimensional sphere \(S^6 \) by making use of the properties of the Cayley division algebra. We shall call it the canonical nearly Kaehlerian structure on \(S^6 \). In this paper, we shall study almost complex submanifolds of a \(6 \)-dimensional unit sphere \(S^6 \) with the canonical nearly Kaehlerian structure. First of all, Gray \([1]\) proved that with respect to the canonical nearly Kaehlerian structure, \(S^6 \) has no \(4 \)-dimensional almost complex submanifolds. We shall prove the following Theorems and some related results. In the following Theorems, we assume that \(M=\langle M, \phi \rangle \) is an almost complex submanifold of \(S^6 \). Then it follows that \(\dim M=2 \). We denote by \(K \) the Gaussian curvature of \(M \).

Theorem A. If \((M, \phi) \) is not totally geodesic, then the degree of \(\phi \) is 3.

Theorem B. If \(K \) is constant on \(M \), then \(K=1 \) or \(1/6 \) or 0.

Theorem C. Assume that \(M \) is compact. If \(K>1/6 \) on \(M \), then \(K=1 \) on \(M \), and if \(1/6 \leq K<1 \) on \(M \), then \(K=1/6 \) on \(M \).

In the last section of this paper, we shall give some examples of almost complex submanifolds of \(S^6 \) corresponding to the cases, \(K=1, \ 1/6 \) and 0 in Theorem B. We note that the result of Theorem B is a special case of the result obtained by Kenmotsu under more general situation (\([6]\)).

Received July 8, 1982
2. Riemannian submanifolds

Let \(\tilde{M}, \langle , \rangle \) (or briefly \(\tilde{M} \)) be a Riemannian manifold and \((M, \phi) \) (or briefly \(M \)) be a Riemannian submanifold of \(\tilde{M} \) with isometric immersion \(\phi \). Let \(\nabla \) (resp. \(\tilde{\nabla} \)) be the Riemannian connection on \(M \) (resp. \(\tilde{M} \)) and \(R \) (resp. \(\tilde{R} \)) be the curvature tensor of \(M \) (resp. \(\tilde{M} \)). We denote by \(\sigma \) the second fundamental form of \(M \) in \(\tilde{M} \). Since \(\phi \) is locally an imbedding, we may identify \(\tilde{p} \in \tilde{M} \) with \(\phi(p) \in M \) locally, and \(T_p(M) \) with the subspace \(\langle d\phi \rangle_p(T_p(M)) \) of \(T_{\phi(p)}(\tilde{M}) \). Then, the Gauss formula, Weingarten formula are given respectively by

\[
\sigma(X, Y) = \tilde{\nabla}_X Y - \nabla_X Y,
\]

\[

\tilde{\nabla}_X \xi = - A^\xi X + \nabla^\xi \xi, \quad X, Y \in \mathfrak{X}(M),
\]

where \(\xi \) is a local field of normal vector to \(M \) and \(- A^\xi X \) (resp. \(\nabla^\xi \xi \)) denotes the tangential part (resp. normal part) of \(\tilde{\nabla}_X \xi \).

The tangential part \(A^\xi X \) is related to the second fundamental form \(\sigma \) as follows:

\[
\langle \sigma(X, Y), \xi \rangle = \langle A^\xi X, Y \rangle, \quad X, Y \in \mathfrak{X}(M).
\]

We denote by \(R^\perp \) the curvature tensor of the normal connection, i.e., \(R^\perp(X, Y) = [\nabla^\xi, \nabla^Y] - \nabla^Y X \). Then, the Gauss, Codazzi and Ricci equations are given respectively by

\[
\langle R(X, Y)Z, Z' \rangle = \langle \tilde{R}(X, Y)Z, Z' \rangle + \langle \sigma(X, Z'), \sigma(Y, Z) \rangle - \langle \sigma(X, Z), \sigma(Y, Z') \rangle,
\]

\[
(\tilde{R}(X, Y)Z)^\parallel = (\nabla^Y \sigma)(Y, Z) - (\nabla^X \sigma)(X, Z),
\]

\[
\langle \tilde{R}(X, Y)\xi, \eta \rangle = \langle R^\perp(X, Y)\xi, \eta \rangle - \langle [A^\eta, A^\xi] X, Y \rangle,
\]

for \(X, Y, Z, Z' \in \mathfrak{X}(M) \), where \((\nabla^Y \sigma)(Y, Z) = \nabla^Y \sigma(Y, Z) - \sigma(\nabla^X Y, Z) - \sigma(Y, \nabla^X Z) \) and \(\xi, \eta \) are local fields of normal vectors to \(M \).

In the sequel, the following convention for the notations will be used unless otherwise specified:

\[
X, Y, Z, \ldots, \in \mathfrak{X}(M), \quad U, V, W, \ldots, \in \mathfrak{X}(\tilde{M})
\]

and \(\mathfrak{X}(M) \) (resp. \(\mathfrak{X}(\tilde{M}) \)) denotes the set of all tangential vector fields to \(M \) (resp. \(\tilde{M} \)).

For the definition of the degree of the isometric immersion \(\phi \), we refer to [8].
3. 6-dimensional nearly Kaehlerian manifolds

In this section, for the sake of later uses, we shall recall some elementary formulas in a 6-dimensional nearly Kaehlerian manifold and furthermore the canonical nearly Kaehlerian structure on a 6-dimensional unit sphere S^6. Let \tilde{M} be an almost Hermitian manifold with the almost Hermitian structure $(J, \langle \cdot, \cdot \rangle)$. We denote by N the Nijenhuis tensor of J and by $\tilde{\nabla}$ the Riemannian connection of \tilde{M}. It is known that the tensor field N satisfies

\begin{equation}
N(JU, V) = N(U, JV) = -JN(U, V), \quad U, V \in \mathfrak{k}(\tilde{M}).
\end{equation}

Especially, if \tilde{M} is a nearly Kaehlerian manifold (i.e., $(\tilde{\nabla}_U J)U = 0$, for any $U \in \mathfrak{k}(\tilde{M})$, then the tensor field N is written in the following form (cf. [13]):

\begin{equation}
N(U, V) = -4J(\tilde{\nabla}_U J)V, \quad U, V \in \mathfrak{k}(\tilde{M}).
\end{equation}

From (3.2), we get

\begin{equation}
\langle N(U, V), W \rangle = -\langle N(U, W), V \rangle, \quad U, V, W \in \mathfrak{k}(\tilde{M}).
\end{equation}

An almost complex submanifold M of an almost Hermitian manifold \tilde{M} is called to be a σ-submanifold if the second fundamental form σ is complex linear, i.e.,

\begin{equation}
\sigma(JX, Y) = \sigma(X, JY) = J\sigma(X, Y), \quad \text{for} \quad X, Y \in \mathfrak{k}(M),
\end{equation}

(cf. [12]). From (3.4), any σ-submanifold is necessarily minimal. Vanhecke [12] proved that if \tilde{M} is a nearly Kaehlerian manifold, any almost complex submanifold is a σ-submanifold and is also a nearly Kaehlerian manifold. W now assume that \tilde{M} is a 6-dimensional non-Kaehlerian, nearly Kaehlerian manifold. Then the followings hold in \tilde{M} (cf. [7], [9]):

\begin{equation}
\tilde{\nabla}_U (\tilde{\nabla}_V J)W = -\frac{S}{30} (\langle U, V \rangle JW - \langle U, W \rangle JV + \langle JU, W \rangle V),
\end{equation}

\begin{equation}
\langle \tilde{\nabla}_U J \rangle (\tilde{\nabla}_V J)W = -\frac{S}{30} (\langle U, V \rangle JW - \langle U, W \rangle V

+ \langle JU, V \rangle JW - \langle JU, W \rangle JV),
\end{equation}

$U, V, W \in \mathfrak{k}(\tilde{M})$, where S denotes the scalar curvature of \tilde{M}.

From (3.2), (3.5) and (3.6), we get

\begin{equation}
(\tilde{\nabla}_U N)(V, W) = \frac{2S}{15} (\langle JU, V \rangle JW - \langle JU, W \rangle JV + \langle JV, W \rangle JU),
\end{equation}

\begin{equation}
N(U, N(V, W)) = 16 (\tilde{\nabla}_U J)(\tilde{\nabla}_V J)W
\end{equation}
ALMOST COMPLEX SUBMANIFOLDS OF A 6-DIMENSIONAL SPHERE

\[= -\frac{8S}{15} (\langle U, V \rangle W - \langle U, W \rangle V + \langle JU, V \rangle JW - \langle JU, W \rangle JV), \]

(3.9)

\[= \frac{8S}{15} (\langle U, U' \rangle \langle V, V' \rangle - \langle U, V' \rangle \langle V, U' \rangle + \langle JU, U' \rangle \langle JV, V' \rangle - \langle JU, V' \rangle \langle JV, U' \rangle), \]

\(U, U', V, V', W \in \mathbb{R}^6 \).

We shall now recall the canonical nearly Kaehlerian structure on a 6-dimensional sphere \(S^6 \). Let \(C \) be the Cayley division algebra generated by \(\{ e_i = 1, e_i(l \leq i \leq 7) \} \) over real number field \(\mathbb{R} \) and \(C_+ \) be the subspace of \(C \) consisting of all purely imaginary Cayley numbers. We may identify \(C_+ \) with a 7-dimensional Euclidean space \(\mathbb{R}^7 \) with the canonical inner product \((,) \) (i.e., \((e_i, e_j) = \delta_{ij}, 1 \leq i, j \leq 7 \)). The automorphism group of \(C \) is the compact simple Lie group \(G_2 \) and the inner product \((,) \) is invariant under the action of the group \(G_2 \). A vector cross product for the vectors in \(C_+ = \mathbb{R}^7 \) is defined by

\[x \times y = (x, y)e_0 + xy, \quad x, y \in C_+. \]

Then the multiplication table is given by the following:

<table>
<thead>
<tr>
<th>(k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j)</td>
<td>0</td>
<td>(e_3)</td>
<td>(-e_2)</td>
<td>(e_5)</td>
<td>(-e_4)</td>
<td>(e_7)</td>
<td>(-e_6)</td>
</tr>
<tr>
<td>2</td>
<td>(-e_3)</td>
<td>0</td>
<td>(e_1)</td>
<td>(e_6)</td>
<td>(-e_7)</td>
<td>(-e_4)</td>
<td>(e_5)</td>
</tr>
<tr>
<td>3</td>
<td>(e_2)</td>
<td>(-e_1)</td>
<td>0</td>
<td>(-e_7)</td>
<td>(-e_6)</td>
<td>(e_5)</td>
<td>(e_4)</td>
</tr>
<tr>
<td>4</td>
<td>(-e_5)</td>
<td>(-e_6)</td>
<td>(e_7)</td>
<td>0</td>
<td>(e_1)</td>
<td>(e_2)</td>
<td>(-e_3)</td>
</tr>
<tr>
<td>5</td>
<td>(e_4)</td>
<td>(e_7)</td>
<td>(e_6)</td>
<td>(-e_1)</td>
<td>0</td>
<td>(-e_3)</td>
<td>(-e_2)</td>
</tr>
<tr>
<td>6</td>
<td>(-e_7)</td>
<td>(e_4)</td>
<td>(-e_5)</td>
<td>(-e_2)</td>
<td>(e_3)</td>
<td>0</td>
<td>(e_1)</td>
</tr>
<tr>
<td>7</td>
<td>(e_6)</td>
<td>(-e_5)</td>
<td>(-e_4)</td>
<td>(e_3)</td>
<td>(e_2)</td>
<td>(-e_1)</td>
<td>0</td>
</tr>
</tbody>
</table>

Considering \(S^6 \) as \(\{ x \in C_+ ; (x, x) = 1 \} \), the canonical almost complex structure \(J \) on \(S^6 \) is defined by

\[J \circ U = x \times U, \]

where \(x \in S^6 \) and \(U \in T_x(S^6) \) (the tangent space of \(S^6 \) at \(x \)).

The above almost complex structure \(J \) together with the induced Riemannian metric \(\langle , \rangle \) on \(S^6 \) from the inner product \((,) \) on \(C_+ = \mathbb{R}^7 \) gives rise to a nearly Kaehlerian structure on \(S^6 \). The group \(G_2 \) acts on \(S^6 \) transitively as the group of automorphisms of the nearly Kaehlerian structure \((J, \langle , \rangle) \) (cf. [3]). It is well known that \(S^6 \) does not admit any Kaehlerian structures.
4. Proofs of Theorems A, B and C

Let M be an almost complex submanifold of a 6-dimensional unit sphere $\tilde{M}=S^6$ with the canonical nearly Kaehlerian structure (J, \langle, \rangle). Then it follows that $\dim M=2$ and hence M is a Kaehlerian manifold of complex dimension 1 with respect to the induced structure from S^6. We denote by K the Gaussian curvature of M. Then, from (2.4) and (3.4), we get

$$K=1-\frac{\|\sigma\|^2}{2},$$

where $\|\sigma\|$ denotes the length of the second fundamental form σ.

Codazzi equation (2.5) implies in particular

$$\nabla_X^2 \sigma(Y, Z)=\nabla_Y^2 \sigma(X, Z).$$

From (2.1), (2.2) and (3.2), we get

$$\nabla_\sigma(J\sigma(X, Y))=\frac{1}{4}JN(Z, \sigma(X, Y))+J(-A_{\sigma(X,Y)}Z+\nabla_\sigma(X, Y)),$nabla_\sigma(X, JY)=-A_{\sigma(X,Y)}Z+\nabla_\sigma(X, JY).$$

From (4.3), taking account of (3.1), (3.3) and (3.4), we get

$$\frac{1}{4}JN(Z, \sigma(X, Y))=(\nabla_\sigma(X, JY)-J(\nabla_\sigma(X, Y)).$$

Since $\dim M=2$, from (3.1) and (3.4), we get easily

$$N(Z, \sigma(X, Y))=N(Y, \sigma(X, Z)).$$

Let $M'=\{p\in M; \sigma\neq 0 \text{ at } p\}$. Then M' is an open set of M.

We now assume that $M'\neq \emptyset$ (i.e., M is not totally geodesic in S^6). Let $\{X_1, X_2=JX_1\}$ be a local field of orthonormal frame on a neighborhood of a point $p\in M'$ in M. If we put

$$\nabla_{X_i} X_j=\sum_{k=1}^{3} B_{1, j, k} X_k, \quad 1\leq i, j \leq 2,$nabla\sigma(X_1, X_i)=-B_{i, k} X_k, \quad 1\leq i, j, k \leq 2.$$

Taking account of (3.1), (3.3), (3.4) and (3.9), we may put

$$(\nabla_{X_1} \sigma)(X_1, X_1)=a\sigma(X_1, X_1)+b\sigma(X_1, X_2)$$

$$+c\frac{1}{4}N(X_1, \sigma(X_1, X_1))+\frac{d}{4}N(X_2, \sigma(X_1, X_1)).$$
\((\nabla_{X_1} \sigma)(X_1, X_2) = a' \sigma(X_1, X_1) + b' \sigma(X_1, X_2) + \frac{c'}{4} N(X_1, \sigma(X_1, X_1)) + \frac{d'}{4} N(X_2, \sigma(X_1, X_1)).\)

Then, from (4.8), taking account of (2.5), (3.1), (3.4) and (4.4), we get

\[(4.9)\quad a' = -b, \quad b' = a, \quad c' = d, \quad d' = -c - 1.\]

Thus, from (4.8), taking account of (3.3), (3.4) and (4.9), we get

\[(4.10)\quad a = \frac{1}{\|\sigma\|} X_1 \|\sigma\|, \quad b = -\frac{1}{\|\sigma\|} X_2 \|\sigma\|.

From (4.6), (4.7) and (4.10), we get

\[\llbracket X_1, X_2 \rrbracket \|\sigma\| = X_1(X_2 \|\sigma\|) - X_2(X_1 \|\sigma\|),\]

and hence

\[(4.11)\quad X_2 a + X_1 b + a B_{121} + b B_{212} = 0.\]

Taking account of (3.4), (4.6) and (4.7), we get easily

\[(4.12)\quad \sum_{i=1}^{2}(\nabla_{X_i} \sigma)(X_i, X_i) = 0.\]

From (4.8) with (4.9), taking account of (2.5), (3.1), (3.3)\textasciitilde(3.6) and (4.12), we get

\[(4.13)\quad \|\nabla' \sigma\|^2 = \sum_{i=1, j \neq i}^{2} \langle(\nabla_{X_i} \sigma)(X_j, X_k), (\nabla_{X_j} \sigma)(X_i, X_k)\rangle = 4 \langle(\nabla_{X_1} \sigma)(X_1, X_1), (\nabla_{X_1} \sigma)(X_1, X_1)\rangle + \langle(\nabla_{X_2} \sigma)(X_2, X_1), (\nabla_{X_2} \sigma)(X_1, X_1)\rangle = (2a^2 + b^2) + (2c^2 + c + d^2) + 1\|\sigma\|^2.\]

From (4.10) and (4.13), we get

\[(4.14)\quad a^2 + b^2 = \|\grad (\log \|\sigma\|)\|^2,\]

\[(4.15)\quad c^2 + c + d^2 = \frac{1}{2\|\sigma\|^2} (\|\nabla' \sigma\|^2 - 2\|\grad \|\sigma\|^2 - \|\sigma\|^2).\]

We put

\[F = \|\grad (\log \|\sigma\|)\|^2\]

and

\[G = \frac{1}{2\|\sigma\|^2} (\|\nabla' \sigma\|^2 - 2\|\grad \|\sigma\|^2 - \|\sigma\|^2).\]
Then, from (4.15), we have easily

Lemma 4.1. $G \geq -\frac{1}{4}$ on M'.

From (2.6), taking account of (2.1), (2.2), (3.1)~(3.4), (3.7), (3.8), (4.1), (4.5)~(4.9), we get

\[\frac{1}{8} \| \sigma \|^2 = \langle R^e(X_1, X_2) \sigma(X_1, X_1), \sigma(X_2, X_2) \rangle \]
\[= \frac{\| \sigma \|^2}{4} (X_1 a - X_2 b - b B_{121} + a B_{212} - 2G - 1) \]
\[+ \frac{1}{2} (X_1 B_{212} - X_2 B_{121} - B_{121} B_{212} + B_{212} B_{121}) \]
\[= \frac{\| \sigma \|^2}{4} (X_1 a - X_2 b - b B_{121} + a B_{212} - 1 - 2G - 2K), \]

and hence

\[\langle 4.16 \rangle \]
\[X_1 a - X_2 b - b B_{121} + a B_{212} = 2G + 3K. \]

Similarly, we get

\[\langle 4.17 \rangle \]
\[X_1 d - X_2 c = 3(2c + 1) B_{121} - 6d B_{212} - 2a d - (2c + 1)b, \]
\[\langle 4.18 \rangle \]
\[X_1 c + X_2 d = -6d B_{121} - 3(2c + 1) B_{212} + 2bd - (2c + 1)a. \]

Lemma 4.2. $\Delta(\log \| \sigma \|) = 2G + 3K$ on M'.

Proof. From (4.6), (4.7), (4.10) and (4.16), we get

\[\Delta \| \sigma \| = X_1(X_1 \| \sigma \|) + X_2(X_2 \| \sigma \|) + B_{121} X_1 \| \sigma \| + B_{212} X_1 \| \sigma \|
\]
\[= \| \sigma \| (X_1 a - X_2 b - b B_{121} + a B_{212} + a^2 + b^2)
\]
\[= \| \sigma \| (F + 2G + 3K), \]

and hence

\[\Delta(\log \| \sigma \|) = (1/\| \sigma \|) \Delta \| \sigma \| - \| \text{grad}(\log \| \sigma \|) \|^2 \]
\[= 2G + 3K. \quad \text{Q.E.D.} \]

Let $\{ E_1, E_2 = J E_2 \}$ be an orthonormal basis of $T_p(M)$, $p \in M'$ and $\gamma_i = \gamma_i(t_i)$ ($1 \leq i \leq 2$) be the geodesics in M' such that

\[\gamma_i(0) = p \quad \text{and} \quad \frac{d\gamma_i}{dt_i}(0) = E_i, \quad 1 \leq i \leq 2. \]

Then, we may easily see that there exists an orthonormal frame field $\{ X_i, X_i = JX_i \}$ near p in M' such that
(4.19) \[X_i = E_i \quad (1 \leq i \leq 2) \] at \(p \),

and

\[X_1 = \frac{d\gamma_1}{dt_1} \text{ along } \gamma_1, \quad X_2 = \frac{d\gamma_2}{dt_2} \text{ along } \gamma_2. \]

From (4.19), we get

(4.20) \[B_{121} = 0 \text{ along } \gamma_1 \text{ and } B_{212} = 0 \text{ along } \gamma_2. \]

From (4.17) and (4.18), taking account of (4.19) and (4.20), we get

(4.21)

\[
E_1(X_1^d) - E_1(X_2^c) = -(2c + 1)E_1^d - 2dE_1^a - 6dE_2B_{212} - 2bE_2^c - 2aE_2^d,
\]

\[
E_2(X_1^c) + E_2(X_2^d) = -(2c + 1)E_2^a + adE_2^b - 6dE_2B_{212} - 2aE_2^c + 2bE_2^d.
\]

From (4.21), taking account of (4.11), (4.16) and (4.20), we get

(4.22) \[d = -4dG - 2aE_1^d + 2bE_2^d - 2bE_1^c - 2aE_2^c. \]

Similarly, we get

(4.23) \[c = -(2c + 1)G + 2bE_1^d + 2aE_2^d - 2aE_1^c + 2bE_2^c. \]

On one hand, from (4.17), (4.18) and (4.20), we get

(4.24)

\[
(E_1c)^a = -(E_2c)(E_2^d) - (2c + 1)aE_1c + 2bdE_2c,
\]

\[
(E_2c)^a = (E_2c)(E_1^d) + 2adE_2c + (2c + 1)bE_1c,
\]

\[
(E_2d)^a = (E_2c)(E_1^d) - 2adE_1d - (2c + 1)bE_2d,
\]

\[
(E_2d)^a = -(E_1c)(E_2^d) - (2c + 1)aE_2d + 2bdE_2d.
\]

From (4.17), (4.18) and (4.24), we get

(4.25) \[2((E_2c)(E_1^d) - (E_1c)(E_2^d)) \]

\[= -F(4G + 1) + (E_1c)^a + (E_2c)^a + (E_2d)^a + (E_2d)^a. \]

Thus, from (4.21)~(4.25), we get

(4.26) \[\Delta G = 2(-(F + G)(4G + 1) - 2aE_1G + 2bE_2G + (E_1c)^a + (E_2c)^a + (E_2d)^a + (E_2d)^a). \]

Lemma 3. The following holds on \(M' \).

(4.27) \[J(4G + 1)^a = 24(4G + 1)(-4G + 1)^2G + 6\| \text{grad } G \| ^2. \]
Proof. By the definition of the function G, we get

\begin{equation}
E_i G = (2c+1)E_i c + 2d E_i d, \quad 1 \leq i \leq 2.
\end{equation}

From (4.17), (4.18) and (4.28), we get

\begin{align*}
(4.29) \quad (4G+1)E_1 c &= (2c+1)E_1 G - 2d E_2 G + 2b d (4G+1), \\
(4G+1)E_2 c &= 2d E_1 G + (2c+1)E_2 G + 2a d (4G+1), \\
(4G+1)E_1 d &= 2d E_1 G + (2c+1)E_2 G - (2c+1)b (4G+1), \\
(4G+1)E_2 d &= -(2c+1)E_1 G + 2d E_2 G - (2c+1)a (4G+1).
\end{align*}

From (4.29), taking account of the definitions of the functions F and G, we get

\begin{align*}
(4.30) \quad (4G+1)^4 (E_1 c)^2 + (E_2 c)^2 + (E_1 d)^2 + (E_2 d)^2 \\
&= -2(4G+1)^3 F + \|\text{grad } G\|^2 \\
&\quad + a (4G+1) E_1 G - b (4G+1) E_2 G.
\end{align*}

Thus, from (4.26) and (4.30), we have finally (4.27). Q.E.D.

We are now in a position to prove Theorems A, B and C. First, we shall prove Theorem A. We denote by ν^k_p the k-th normal space and by σ^k_p the k-th fundamental form of the isometric immersion ψ at $p \in M'$. Then from (4.8) with (4.9), we see that ν^k_p and ν^2_p are generated respectively by \{ $\sigma^k_p(E_1, E_1) = \sigma(E_1, E_1)$, $\sigma^k_p(E_1, E_2) = \sigma(E_1, E_2)$ \} and \{ $\sigma^2_p(E_1, E_1, E_2) = (c/4) N(E_1, \sigma(E_1, E_1))$, $(d/4) N(E_2, \sigma(E_1, E_1))$, $\sigma^2_p(E_2, E_1, E_1) = (d/4) N(E_2, \sigma(E_1, E_1)) - (c+1)/4 N(E_2, \sigma(E_1, E_1))$ \}, where $E_2 = JE_1$.

If $G(p) \neq 0$, then it follows that $\dim \nu^k_p = 2$, $\dim \nu^2_p = 2$, and hence the degree of the immersion ϕ is 3. So, we assume that $G = 0$ on M'. Let p be any point of M' and define E by

\begin{equation}
\| (\nabla_p \sigma)(E, E) \| = \max_{X \in N^1(F_p')} \| (\nabla_p \sigma)(X, X) \|.
\end{equation}

Let \{ $X_1, X_2 = JX_1$ \} be an orthonormal frame field near p satisfying the condition (4.19) for the basis \{ $E_1 = E, E_2 = JE$ \} at p. Then, we may easily see that $d = 0$ (and hence $c^2 + c = 0$) at p. We may assume that $c = -1$ at p. We put

\begin{equation}
\zeta = - \frac{d}{4} N(X_1, \sigma(X_1, X_1)) + \frac{c}{4} N(X_2, \sigma(X_1, X_1)) \quad \text{near } p.
\end{equation}

Then, taking account of (3.1), (3.7), (3.8), (4.2), (4.8), (4.9), (4.20) and (4.29), we get

\begin{align*}
(4.31) \quad \sigma^4_p(E_1, E_1, E_1, E_1) &= -(E_2 d + a) \zeta_p \\
&= -2G(p) \zeta_p = 0.
\end{align*}
Similarly, we get

\[(4.32) \quad \sigma^\sharp(E_2, E_1, E_4, E_5) = 0. \]

Thus, from (4.31) and (4.32), taking account of (4.12) and the symmetricity of \(\sigma^\sharp \), we have finally \(\sigma^\sharp = 0 \), and hence the degree of \(\phi \) is 3. This completes the proof of Theorem A. Next, we shall prove Theorem B. We assume that the Gaussian curvature \(K \) of \(M \) is constant and \(K \neq 1 \). From (4.1), we get

\[\| \sigma \|^2 = 2(1-K), \]

and hence from (4.10) and (4.14)

\[(4.33) \quad F = 0 \quad \text{on} \quad M = M'. \]

Thus, from (4.33) and Lemma 4.2, we get

\[(4.34) \quad G = -\frac{3}{2} K \quad \text{on} \quad M. \]

From (4.34) and Lemma 4.3, it follows that \(G(4G+1) = 0 \). If \(4G+1 = 0 \), then, from (4.34), we have \(K = 1/6 \), and otherwise, we have \(K = 0 \). This completes the proof of Theorem B.

Lastly, we shall prove Theorem C. We suppose that \(M \) is compact and \(M' \neq 0 \). Then \(\| \sigma \| \) takes its maximum at some point \(p \in M'. \) Then, from (4.10), we have \(F(p) = 0 \). Thus, from Lemmas 4.1 and 4.2, we have

\[(4.35) \quad 0 \leq (\Delta \log \| \sigma \|)(p) \leq -\frac{1}{2} + 3K(p), \]

and hence \(K(p) \leq 1/6 \).

Thus, if \(M \) is compact and \(K > 1/6 \) on \(M \), from (4.35), it follows that \(M' = 0 \), and hence the first half of Theorem C is proved. The latter half of Theorem C is immediately followed by using Lemmas 4.1 and 4.2, and Green's theorem. From Lemmas 4.2 and 4.3, taking account of Green's theorem and Gauss-Bonnet theorem, we have the following

Theorem D. Assume that \(M \) is compact and \(K \leq 1 \) on \(M \). If the function \(G \) satisfies the inequality \(-1/4 \leq G \leq 0 \) on \(M \), then \(G = 0 \) or \(-1/4 \) on \(M \), and furthermore \(M \) is diffeomorphic to a 2-dimensional torus (resp. a 2-dimensional sphere) in the case where \(G = 0 \) on \(M \) (resp. \(G = -1/4 \) on \(M \)).

We remark that the equality \(G = 0 \) (resp. \(G = -1/4 \) on \(M' \) is equivalent to

\[(4.36) \quad \Delta \log(1-K) = 6K, \quad \text{on} \quad M' \]

(resp. (4.37) \(\Delta \log(1-K) = -1+6K \) on \(M' \))
5. Some examples

Example 1. Let \(M = \{ x \in S^6; x = x_1e_1 + x_2e_2 + x_3e_3 \} \), and \(\iota \) be the inclusion map from \(M \) into \(S^6 \). Then, we may easily see that \((M, \iota)\) is a 2-dimensional almost complex and totally geodesic submanifold of \(S^6 \).

Example 2. Let \(M = S^2_{1/6} = \{ (y_1, y_2, y_3) \in \mathbb{R}^3; y_1^2 + y_2^2 + y_3^2 = 6 \} \) and \(\phi_0 \) be a \(C^\infty \) map from \(M \) into \(S^6 \) defined by

\[
\phi_0(y_1, y_2, y_3) = \left(\sqrt{\frac{6}{72}} (2y_1^2 - 3y_1y_2^2 - 3y_1y_3^2) \right)e_1 + \left(\sqrt{\frac{15}{72}} (3y_1^2y_2 - y_1y_2y_3) \right)e_2 \\
+ \left(\sqrt{\frac{15}{72}} (y_2^2 - 2y_2y_3^2) \right)e_3 + \left(\frac{1}{24} (4y_1^2y_2 - y_1^2 - y_2y_3y_3) \right)e_4 \\
+ \left(\frac{1}{24} (4y_1y_2y_2 - y_1y_2y_3) \right)e_5 + \left(\frac{\sqrt{10}}{24} (y_1y_2 - y_1y_3) \right)e_6 \\
+ \left(\frac{\sqrt{10}}{12} y_1y_2y_3 \right)e_7, \quad \text{for} \quad (y_1, y_2, y_3) \in S^2_{1/6}.
\]

Then, we may easily check that \((S^2_{1/6}, \phi_0)\) is a 2-dimensional almost complex submanifold of \(S^6 \) and furthermore, any almost complex submanifold \((S^2_{1/6}, \phi)\) of \(S^6 \) is obtained by \(\phi = \alpha \cdot \phi_0 \) for some \(\alpha \in \mathbb{C}^2 \).

Example 3. Let \(M = \mathbb{R}^3 \) be a 2-dimensional Euclidean space with the canonical metric and \(\phi \) be a \(C^\infty \) map from \(\mathbb{R}^3 \) into \(S^6 \) defined by

\[
\phi(u, v) = \sqrt{\frac{2}{3}} \left(\cos \frac{\sqrt{3}}{2} u \right) \left(\sin \frac{\sqrt{3}}{2} v \right) a_1 - \left(\cos \frac{\sqrt{3}}{2} v \right) b_1 \\
+ \left(\sqrt{\frac{2}{3}} \sin \frac{\sqrt{3}}{2} u \right) \left(\sin \frac{\sqrt{3}}{2} v \right) a_2 - \left(\cos \frac{\sqrt{3}}{2} v \right) b_2 \\
+ \left(\sqrt{\frac{1}{3}} \cos \sqrt{2} u \right) a_3 + \left(\sqrt{\frac{1}{3}} \sin \sqrt{2} u \right) b_3,
\]

for \((u, v) \in \mathbb{R}^2\), where \(a_i, b_i \in \mathbb{C}^3 = \mathbb{R}^6 \) such that \((a_1, a_2) = (a_3, a_4) = (a_5, a_6) = 0 \), \((b_1, b_2) = (b_3, b_4) = 0 \), \(1 \leq i, j \leq 3 \), and

\[
a_1 \times b_1 = -b_3, \quad a_1 \times a_4 = b_2, \quad a_3 \times b_1 = -a_2, \\
a_3 \times b_3 = b_3, \quad a_3 \times a_4 = b_1 \times b_2 = -a_2 \times b_3.
\]

For example, \((a_1, a_2, a_3, b_4, b_5, b_6) = (e_3, -e_5, e_6, -e_7, e_5, e_6) \) satisfies the relations in (5.2). We may easily check that \((\mathbb{R}^3, \phi)\) is a 2-dimensional almost complex submanifold of \(S^6 \).
The above immersion φ induces an immersion \(\psi : T^2 = \mathbb{R}^2/\Gamma \rightarrow S^4 \) in the natural way, where \(\Gamma \) denotes the lattice group in \(\mathbb{R}^2 \) generated by \(\left\{ 2\sqrt{2} \pi (1, 0), 2\sqrt{2} \pi (0, 1) \right\} \).

References

Niigata University
Niigata, Japan