$\mathcal{E}(X)$ FOR NON-SIMPLY CONNECTED H-SPACES

By Seiya Sasao

§ 0. Introduction.

Let X be a path-connected H-space with a unit x_{0} and let $\mathcal{E}(X)$ be the group of homotopy classes of homotopy equivalences: $\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$. In the case of X being simply connected, D. M. Sunday, J. R proved that if $\operatorname{rank}\left(\pi_{i}(X)\right) \geqq 2$, for some i, then $\varepsilon(X)$ contains a non abelian free subgroup (Theorem B-(2) of [3]). In this paper we investigate the case of an associative H-space X being not simply connected and having the homotopy type of a $C W$-complex.

Theorem A. There exists a splitting exact sequence:

$$
\{1\} \longrightarrow \nu^{-1}(1) \longrightarrow \varepsilon(X) \underset{\nu}{\longrightarrow} G L(n, Z) \longrightarrow\{1\},
$$

where n is the rank of $\pi_{1}\left(X, x_{0}\right)$.
Especially, since $G L(n, Z)$ is not of finite rank for $n \geqq 2$ we have
Corollary. If $\operatorname{rank}\left(\pi_{1}\left(X, x_{0}\right)\right) \geqq 2$ then $\mathcal{E}(X)$ is not of finte rank.
Next let $\mathcal{E}_{H}(X)$ be the subgroup of $\mathcal{E}(X)$ consisting of homotopy-homomorphisms (H-maps), then we have

Theorem B. If the natural homomorphism

$$
\pi_{1}\left(Z(X), x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right) / \text { Torsion }
$$

is onto, where $Z(X)$ denotes the homotopy-centre of X, then $\mathcal{E}_{H}(X)$ contans $G L(n, Z)$ as a semi-direct factor.

In addition, if we assume that $\pi_{1}\left(X, x_{0}\right)$ is torsion free we have
Corollary. $\mathcal{E}(X)$ is isomorphic to the direct sum $G L(n, Z) \oplus K(X)$, where $K(X)$ denotes the kernel of the natural representation.

$$
\mathcal{E}_{H}(X) \longrightarrow \operatorname{Aut}\left(\pi_{1}\left(X, x_{0}\right)\right)=G L(n, Z) .
$$

Received July 7, 1982

§ 1. Definitions of homomorphisms ν and μ.

Let $\pi_{1}\left(X, x_{0}\right)$ be isomorphic to the direct sum $Z^{n} \oplus F$, where F is the torsion subgroup, and let $\left\{\alpha_{i}\right\}(i=1, \cdots, n)$ be a system of generators of Z^{n}. For a map $f:\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$ we define a homomorphism:

$$
\tilde{f}: Z^{n} \underset{i}{\longrightarrow} \pi_{1}\left(X, x_{0}\right) \underset{f_{*}}{\longrightarrow} \pi_{1}\left(X, x_{0}\right) \underset{j}{\longrightarrow} Z^{n}
$$

by the composition $j f_{* l, ~}$ is the inclusion and j is the projection.
Lemma 1. $\quad(\tilde{h f})=\tilde{h} \tilde{f}, \quad \widetilde{d}=i d$
Proof. Consider the diagram:

Then, for $x \in Z^{n}$, we have

$$
\begin{aligned}
& f_{* i}(x)=i j f_{* i} i(x)+x^{\prime} \quad\left(x^{\prime} \in F\right) \\
& h_{*} f_{* i}(x)=h_{* i} \tilde{f}(x)+h_{*}\left(x^{\prime}\right) \\
& j h_{*} f_{* i} i(x)=j h_{* i} \tilde{f}(x)+j h_{*}\left(x^{\prime}\right) \quad\left(j h_{*}\left(x^{\prime}\right)=0\right)
\end{aligned}
$$

thus we have $(\tilde{h f})(x)=\tilde{h} \tilde{f}(x)$ i. e. $\tilde{h f}=\tilde{h} \tilde{f}$.
Since we may regard \tilde{f} as an element of $G L(n, Z)$ by using the system of generators $\left\{\alpha_{i}\right\}$ we define $\nu(f)$ by the matrix \tilde{f} and get a homomorphism,

$$
\nu: \mathcal{E}(X) \longrightarrow G L(n, Z) .
$$

Conversely, let $A=\left(a_{\imath \jmath}\right)$ be a matrix of degree n with Z-coefficient. Now, from isomorphisms:

$$
\left[X, S^{1}\right] \cong H^{1}(X, Z) \cong \operatorname{Hom}\left(H_{1}(X, Z), Z\right) \cong \operatorname{Hom}\left(\pi_{1}\left(X, x_{0}\right), Z\right) \cong \operatorname{Hom}\left(Z^{n}, Z\right)
$$

we obtain a map

$$
f_{2}: X \longrightarrow S^{1} \quad(i=1, \cdots, n)
$$

which satisfies $f_{i *}\left(\alpha_{j}\right)=a_{j i}$.
Define a map $f_{A}: X \rightarrow X$ by

$$
\left.f_{A}(x)=\left(\alpha_{1} f_{1}(x)\right) \text { ©(}\left(\alpha_{2} f_{2}(x)\right) \text { © } \cdots \text { © (C) } \alpha_{n} f_{n}(x)\right),
$$

where (c) denotes the multiplication of X.

The following lemma can be easily deduced from definitions.
Lemma 2. $f_{A^{*}}: \pi_{m}\left(X, x_{0}\right) \rightarrow \pi_{m}\left(X, x_{0}\right)$ satısfies
(1) $f_{A^{*}}=0$-homomorphism if $m \geqq 2$
(2) $f_{A^{*}} \mid F=0$ and $f_{A^{*}} \mid Z^{n}=A$ if $m=1$.

Moreover if we define a map $\hat{f}_{A}: X \rightarrow X$ by $\hat{f}_{A}(x)=x @ f_{A}(x)$, then we can transform lemma 2 to the following

Lemma 3. $\hat{f}_{A^{*}}: \pi_{m}\left(X, x_{0}\right) \rightarrow \pi_{m}\left(X, x_{0}\right)$ satisfies
(1) $\hat{f}_{A *}$ is the identity of $m \geqq 2$
(2) $\hat{f}_{A^{*}} \mid F$ is the identity and $\hat{f}_{A^{*}} \mid Z^{n}=I_{n}+A$ if $m=1$, where I_{n} denotes the unit matrix of degree n.

Thus, from Whitehead's theorem, we obtain
LEMMA 4. \hat{f}_{A} is a homotopy equivalence of and only if the matrix $I_{n}+A$ is contained in $G L(n, Z)$.

Now we define a correspondence $\mu: G L(n, Z) \rightarrow \mathcal{E}(X)$ by

$$
\mu(A)=\hat{f}_{A}-I_{n}
$$

Then, by considering the induced homomorphism, we have, from lemma 3,
Lemma 5. The correspondence $\nu \mu$ is the identy.

§ 2. The homomorphism μ.

In this section we prove
Lemma 6. μ is an antı-homomorphism $(\mu(A) \mu(B)=\mu(B A))$
For the proof we need some sub-lemmas. We denote $A-I_{n}$ by A^{\prime} for,'short. First we note the equality:

$$
\begin{aligned}
& \hat{f}_{A^{\prime}}, \hat{f}_{B^{\prime}}=\left(1_{X} \subseteq f_{A^{\prime}}\right)\left(1_{X} \odot f_{B^{\prime}}\right) \\
& =1_{X}\left(1_{X} \odot f_{B^{\prime}}\right)\left(f _ { A ^ { \prime } } \left(1_{X}\left(\subset f_{B^{\prime}}\right)\right.\right. \\
& =\left(1_{X} \subsetneq f_{B^{\prime}}\right) \subset f_{A^{\prime}}\left(1_{X} \subset f_{B^{\prime}}\right) \\
& =1_{X}\left(\left\{f_{B^{\prime}} \subset f_{A^{\prime}}\left(1_{X}\left(f_{B^{\prime}}\right)\right\} .\right.\right.
\end{aligned}
$$

Sub-lemma 1. $f_{P}\left(1_{X}(\subset) f_{Q}\right)=f_{P+Q P}$ for any matrices P and Q.

Proof. Consider the diagram for $f_{i *}\left(\alpha_{j}\right)=p_{j i}, P=\left(p_{i \jmath}\right)$:

$$
\begin{aligned}
& X \xrightarrow[\left(1_{X}, f_{Q}\right)]{ } X \times X \longrightarrow \text { (c) } \underset{\downarrow}{ } X\left(f_{1}, \cdots, f_{n}\right) \\
& T^{n}=S^{1} \times \cdots \times S^{1} \\
& \downarrow \alpha_{1} \times \cdots \times \alpha_{n} \\
& X \times \cdots \times X \xrightarrow[\text { (c) } \cdots \text { © }]{ } X .
\end{aligned}
$$

Since we have the equality for the induced homomorphisms:

$$
\begin{aligned}
\left(f_{1} \cdots f_{n}\right)_{*}\left(1_{X} \odot f_{Q}\right)_{*}\left\{\left(\alpha_{2}\right)\right\} & =\left(f_{1} \cdots f_{n}\right)_{*}\left\{\left(\alpha_{\imath}\right)+Q\left(\alpha_{2}\right)\right\} \\
& =\left(f_{1} \cdots f_{n}\right) *\left\{\left(I_{n}+Q\right)\left(\alpha_{2}\right)\right\} \\
& =\left(I_{n}+Q\right) P\left\{\left(\alpha_{2}\right)\right\}
\end{aligned}
$$

the proof follows from definitions of maps.
Sub-lemma 2. We can take any element of $\pi_{1}\left(X, x_{0}\right)$ as an H-map, i.e. $\alpha(x y) \cong \alpha(x)$ © $\alpha(y)$ for $\alpha:\left(S^{1}, 1\right) \rightarrow\left(X, x_{0}\right)$.

Proof. Since the obstraction is given by the separation element of two maps:

$$
S^{1} \times S^{1} \longrightarrow X, \quad \alpha(x y) \text { and } \alpha(x) \Subset \alpha(y),
$$

the proof follows from $\pi_{2}\left(X, x_{0}\right)=\{0\}$.
Analogously we have
Sub-lemma 3. For $\alpha, \beta \in \pi_{1}\left(X, x_{0}\right)$ two maps,

$$
\alpha(x) \subsetneq \beta(y) \text { and } \beta(y) \Subset \alpha(x): S^{1} \times S^{1} \longrightarrow X
$$

are homotopic.
Sub-lemma 4. $\quad f_{P}(\subset) f_{Q}=f_{P+Q}: X \rightarrow X$.
Proof. Consider the diagram:

Here the square of maps in the right hand means that

and \vec{f}_{P} is defined by $f_{P}(x)=\left(f_{1}(x) \cdots f_{n}(x)\right)$ for $f_{2}: X \rightarrow S^{1}$ such that $f_{i *}\left(\alpha_{j}\right)=p_{j i}$, $P=\left(p_{\imath j}\right)$.

Then sub-lemma 2 and 3 shows that the square is commutative up to homotopy and the triangle in the left hand is also commutative up to homotopy by the definitions of \bar{f}_{P}, \bar{f}_{Q}, and \bar{f}_{P+Q}. Thus the proof is completed by $f_{P}=$ $\left(1_{X}\right.$ © 11_{X} (C) \cdots © $\left.1_{X}\right)\left(\alpha_{1} \times \cdots \times \alpha_{n}\right) \bar{f}_{P}, \cdots$ etc.

Now the proof of lemma 6 completes from above lemmas as follows,

$$
\begin{aligned}
& \hat{f}_{A^{\prime}}, \hat{f}_{B^{\prime}}=1_{X} \Subset\left\{f_{B^{\prime}}\left(\subset f_{A^{\prime}}\left(1_{X} \subset f_{B^{\prime}}\right)\right\}\right. \\
& \cong 1_{X}\left(\left(f_{B^{\prime}}\left(\subset f_{A^{\prime}+B^{\prime} \Lambda^{\prime}}\right)\right.\right. \\
& \cong 1_{X} \bigodot f_{B^{\prime}+A^{\prime}+B^{\prime} A^{\prime}} \\
& \cong 1_{X} \text { © } f_{B-I_{n}+A-I_{n}+B A-B-A+I_{n}} \\
& =1_{X} \text { © } f_{B A-I_{n}}=\hat{f}_{B A-I_{n}}
\end{aligned}
$$

Thus the proof of Theorem A is easily obtained from lemma 5 and 6 .

§ 3. The Proof of Theorem B.

For the proof it is sufficient to show that the map:

$$
\hat{f}_{A}: X \longrightarrow X \quad(A: \text { a matrix of degree } n)
$$

is an H-map. Recall the definition of \hat{f}_{A},

$$
\begin{aligned}
\hat{f}_{A}(x) & =x \Subset f_{A}(x) \\
& =x \Subset\left(\alpha_{1}\left(f_{1}(x)\right) \Subset \alpha_{2}\left(f_{2}(x)\right) \cdots \text { © } \alpha_{n}\left(f_{n}(x)\right)\right),
\end{aligned}
$$

where $f_{\imath}: X \rightarrow S^{1}$ is given by $f_{i *}\left(\alpha_{j}\right)=a_{j i}$ for $A=\left(a_{\imath \jmath}\right)$ and $\left\{\alpha_{i}\right\}$ is a system of generators of the free part of $\pi_{1}\left(X, x_{0}\right)$.

Under the assumption we may consider that each α_{\imath} can be taken as an H-map: $S^{1} \rightarrow Z(X) \rightarrow X$ by sub-lemma 2. Then we have

$$
\begin{aligned}
& \hat{f}_{A}(x \text { © } y)=x \text { © } y \text { © }\left(\alpha_{1}\left(f_{1}(x \text { © } y)\right) \text { © } \alpha_{2}\left(f_{2}(x \text { © } y)\right) \text { (c) } \cdots \text { © } \alpha_{n}\left(f_{n}(x \text { © } y)\right)\right. \\
& \cong x \text { (c) } y \text { (c) } \alpha_{1}\left(f_{1}(x)\right) \text { © } \alpha_{1}\left(f_{1}(y)\right) \cdots \text { (c) } \alpha_{n}\left(f_{n}(x)\right) \text { © } \alpha_{n}\left(f_{n}(y)\right) \\
& \cong x \text { © } y \text { © } \alpha_{1}\left(f_{1}(x)\right) \text { © } \alpha_{2}\left(f_{2}(x)\right) \text { © } \cdots \text { © } \alpha_{n}\left(f_{n}(x)\right) \text { © } \alpha_{1}\left(f_{1}(y)\right) \text { (c) } \cdots \text { © } \alpha_{n}\left(f_{n}(y)\right) \\
& \cong x \text { © } \alpha_{1}\left(f_{1}(x)\right) \text { (c) } \cdots \text { (c) } \alpha_{n}\left(f_{n}(x)\right) \text { © } y \text { © } \alpha_{1}\left(f_{1}(y)\right) \text { (c) } \cdots \text { (c) } \alpha_{n}\left(f_{n}(y)\right) \\
& \cong \hat{f}_{A}(x) \Subset \hat{f}_{A}(y) \text {. }
\end{aligned}
$$

Here, we note that the second equality is derived from sub-lemma 2 and the following

Lemma 7. For any map $f:\left(X, x_{0}\right) \rightarrow\left(S^{1}, 1\right), f$ is an H-map.
Proof. Consider two maps:

$$
X \times X \underset{f_{2}}{\stackrel{f_{1}}{\longrightarrow}} S^{1} ; \quad \begin{aligned}
& f_{1}(x, y)=f(x \Subset y) \\
& f_{2}(x, y)=f(x) \Subset f(y) .
\end{aligned}
$$

Clearly we have $f_{1}\left|X \vee X=f_{2}\right| X \vee X$. Then the proof is completed by $\pi_{i}\left(S^{1}, 1\right)$ $=\{0\} \quad(i>1)$.

Now, let $h:\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a map contained in $\mathcal{E}_{H}(X)$ such that $\nu(h)=I_{n}$, and consider two compositions $h \hat{f}_{A}$ and $\hat{f}_{A} h$ for a matrix A.

Then the following lemma completes the proof of Corollary of Theorem B.
Lemma 8. $\hat{f}_{A} h$ is homotopic to $h \hat{f}_{A}$.
Proof. Since $\hat{f}_{A} h(x)=h(x) \Subset f_{A}(h(x)) \sim h(x)$ © $\alpha_{1}\left(f_{1}(h(x))\right.$ © \cdots © $\alpha_{n}\left(f_{n}(h(x))\right.$ and $h \hat{f}_{A}(x)=h\left(x\right.$ © $\left.f_{A}(x)\right) \sim h(x)$ © $h\left(f_{A}(x)\right) \sim h(x)$ © $h\left(\alpha_{1} f_{1}(x)\right)$ © \cdots © $h\left(\alpha_{n} f_{n}(x)\right)$ it is sufficient to show $h \alpha_{2} f_{i} \sim \alpha_{2} f_{i} h$, i. e. the homotopy-commutativity of the diagram:

Since $h^{*}=$ identity : $H^{1}(X ; Z) \rightarrow H^{1}(X ; Z)$ follows from the condition $\nu(h)=I_{n}$ we have $\left(h f_{2}\right)^{*}=f_{2}^{*} h^{*}=f_{2}^{*}$, i. e. $h f_{i} \sim f_{2}$. Moreover, $h \alpha_{i} \sim \alpha_{2}$ is clear from $\nu(h)=I_{n}$ and the additional assumption. Hence these complete the proof.

Addendum. Another proof of theorem A was informed to the author from M. Mimura and A. Kono in preparation of the paper.

References

[1] M. Arkowitz and C. R. Curjel, Groups of homotopy classes, Lecture Notes in Math. Springer-Verlag, 4 (1967).
[2] D. W. Kahn, A note on H-equivalences, Pacific J. of Math. 42 (1972), 77-80.
[3] D. M. Sunday, The self-eqivalences of an H-space, Pacific J. of Math. 49 (1973), 507-517.

Department of Mathematics
Tokyo Institute of Technology
Oh-okayama Meguro-ku
Tokyo Japan

