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ON THE GROWTH OF MEROMORPHIC

FUNCTIONS OF ORDER LESS THAN 1/2

BY HIDEHARU UEDA

0. Introduction. Let f(z) be meromorphic in the plane. Throughout this
note, we shall assume familiarity with elementary aspects and notations of
Nevanlinna's theory and in particular with the meaning of the symbols

), n(r, a, f), N{r, a, /), T(r, /), δ{a, /).

Further we define

M{r, /)=max|/(2)|, m*(r, /)=min |/(z)|,
\z\=r \z\-r

and denote by p and μ, respectively, the order and lower order of f(z).
A real-valued function L(r) defined for all r^r0 (^0) is said to be a slowly

varying function (at oo) if

(i) L(r) is positive and continuous in r 0 ^ r < o o

and (ii) lim _ , . — 1, for every fixed λ>0.
r->oo L(r)

This concept was introduced by Karamata [4]. He proved that for each ε>0,

(1) rεL(r)-+oo, r"εL(r)->0 (r->oo).

Let f(z) be an entire function of order p, 0<p<l/2. If f(z) is of minimal
type, then a well-known theorem of Kjellberg [5] implies that

log?7z*(r, /)> cos πp log M{r, f)

on an unbounded sequence of r. If f(z) is of mean type, then the following result
is valid. (See [2].)

THEOREM A. Let h{r) (r^r0) be a slowly varying function such that /z(r)->0
(r-»oo) and

(2) Γ
Jr0 t

If f(z) is an entire function of order p (0<p<l/2) and mean type, then
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logm*(r, /)>cosTΓ^CL-ft(r))logM(r, /)

on a sequence of r->oo.

If ft(r) does not satisfy condition (2), then there is an entire function of order
p (0<p<l/2) and mean type for which

logm*(r, f)<cosπp(l-h(r))logM(r, f) (r^

In Theorem A, Barry [2, p. 45] assumes also that h'{r)> — Oix'1) (r->oo). How-
ever, this condition is unnecessary (cf. [7]).

It is natural to consider the analogous problems to the above results for mero-
morphic functions. That is, for a meromorphic function f{z), what can we say
about the relation between logm*(r, /) and T(r, f) ?

In this note we shall prove the following two results.

THEOREM 1. Let f(z) be meromorphic of order p (0< io<l/2) and minimal
type. Assume that there is a <5<Ξ(0, 1] such that

(3)

and

(4)

Then

on an

N(r, oo, /)

logm*(r, /)>

unbounded sequence of

cosπp-l+δ>0

S(l-δ)T(r, f)+O{\ogr)

πp _
sin πp

r.

(r-^oo).

, /)-0(logr

THEOREM 2. Let h(r) (r^ru) be a slowly varying function satisfying Λ(r)—>0
(r—>oo) and (2). Let f(z) be meromorphic of order p (0<Jo<l/2) and mean type.
Assume that there is a δe(0, 1] satisfying (3) and (4). Then

logm*(r, /)>-^°— (cos^-l+δ)(l-A(r))T(r, /)
sin π/?

on β sequence of r—>oo.

For the case that /(z) is entire—in this case we can choose δ—1—Theorems
1 and 2 have been proved in [7].

1. Lemmas

LEMMA A. ([1, p. 189]) Let f(z) be meromorphic in the plane and such that
for some p, 0< i o<l, either

πpN(r, 0, /) fg sin πp log M(r, /) + πp cos πpN(r, oo, /)
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or
sinπplogrn*{r, f)^πρcosπρN{r, 0, f) — πρN(r, oo, /)

for all large r. Then lim inf T(r, /)/r'>0.

LEMMA B. ([5, p. 280]) Lei /(z) be a nonconstant meromorphic function.
Then for a given ε>0 (0<ε<l) and every sufficiently large value ro,

N{r, a, f)^T(r, /)-2T(r, / ) ( 1 + ε ) / 2

for r^irG, with the possible exception of a set Eo of values a whose capacity is at
most

exp(-εT(ro,/)74).

LEMMA C. (cf. [7] and [2, p. 54]) Let h{r) (r^r0) be a slowly varying
function satisfying Λ(r)->0 (r^oo) and (2). Set h(t) = (t/ro)h(ro) (ro^f^O), and tef

L(r) —expjM ύίίj- (S: a positive constant).

Consider the positive harmonic function H(z) in C—(—co, 0] defined by

y

Then we have

H(r) l + tU-o(mδh(r)C(p) cos πp
H(—r) cosπp

(r-^00 C(p): a positive constant depending only on p).

If f(z) is an entire function of order p, mean type and all of whose zeros are
negative, then there is an unbounded sequence r—rn such that

Ω . Jog I/(r) I < H{r)_
log I / ( - r ) I = H{-r)

and

N(r, 0,
_ < . / ^ . - " • • 4 ^ 2 Λ 2 ( r ) -log I/(-r) I h \Λ V2'πp~rπpcotπpU-- ^δCr r l tan ̂ r/?tan r̂/? J I ρ2tan2πp)

(Ciip): β positive constant depending only on p).

2. Proof of Theorem 1. Since /(z) is of order p (0<ρ<l/2) and minimal
type, we deduce from Lemma A that

(2.1) sin πp log m*(r, f)>πp cos πpN(r, 0, f) — πρN{r, 00, /)
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on an unbounded sequence of r. We denote this sequence by {rJ
First, we show that

(2.2) logm*(rn, /)^0

for sufficiently large n. By (2.1), (4) and (3)

sin πp log m*(r, f)-\-πp cos πpm(r, 1/f)

(2.3) >πpcosπpT(r, f)-πpN(r, oo, /)-O(l)

>7rio[cosτr/o-l+a]T(r, /)-O(logr)>0 (r=r n , n^720).

Assume that log?72*(r*, /)>0 for some &Ξ>n0. Then

™(r*, l//)^max \og\l/f(rke
iθ)\=-logm*(rk, f).

From this and (2.3) it follows that

* ^ , f) — πpcosπp\ogm*(rk,

Hence tan π/? <τr/o, a contradiction. This proves (2.2), which in particular implies
that

(2.4) m(rn,

Substituting (2.4) into (2.3), we obtain

logm*(rn, / ) > - ^ - ( c o s ^ - l + δ ) T ( r n , /)-O(logrn) (n-^oo

This completes the proof of Theorem 1.

3. Proof of Theorem 2; Preliminaries.

3.1. Assume first that there is a positive number λ<p such that

lim inf T(r, f)/r

λ=0.
r-*oo

Then as in the proof of Theorem 1 we deduce that

(3.1) Iog7τι*(rn, f)>-^~^(cosπλ-l+δ)T(rnf /)-O(logr n ),

where {rn}™ is a suitable increasing sequence tending to oo. Since the function

x
-.-•-— (cosx — a) (a: a nonnegative constant)
smx

decreases strictly as Λ E [ 0 , π/2) increases, we deduce from (3.1) that
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logm*(rΛ, f)>-^-(cosπp-l+δ)T(rn, f)

for sufficiently large n. Hence, in what follows, we may consider only the case
that

(3.2) lim inf T(r, f)/rλ>0
r-»oo

for all Λe=(O, p).
3.2. By Lemma B, there is a complex number a such that

(3.3) N(r, a, f)^T(r, /)-2T(r, / ) 3 / 4

Put

(3.4) F{z)=f{z)-a.

It is clear that F(z) satisfies all the assumptions of Theorem 2. Assume now
that the conclusion of Theorem 2 holds for F(z), i. e. there is a sequence
W I T T 0 0 such that

(3.5) logm*(rn, F)>^^-(cosπp-l+d)(l-h(rn))T(rn, F).

By (3.2), (3.4), (3.5) and (3)

(3.6) T(rn,F),logm*(rn,F)>O(rλ

n) (n-»oo)

for any fixed Λe(0, /?). Further by (1) for each ε>0,

(3.7) rεh(r)->co (r->oo).

From (3.5), (3.6) and (3.7) follows that

Jog772*(rn, /) > logm*(rw, F)-O( l )

T(rn, /) = T(rn, " '

logm*(rn>
> T(r»,

l o g m ^

S1Π7Γ/?
(n->oo).

This implies that we may prove Theorem 2 only for F(z).
3.3. Let {an}, {bn} (an, bnΦθ) be the sequences of the zeros and poles of

F(z). Then we can write

(3.8) F(z) = c z ^ ^ ^ - = cz^^-=cz^F1(z) (cΦO, p: an integer).
11(1—z Ibn) Q(z)
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From (4) and (3.8) we deduce that

(3.9) N(r>oo9F1)^a-δmr9F1) + 0(logr) (r->oo).

Assume that there is a sequence {rn}™Ίco such that

(3.10) logm*(rn, ^

Then as in §3.2, we have from (3.10), (3.8), (3.6) and (3.7)

log m*{rn,J±> }ogm*(rn, FJ — Odogrn)

T(rn, F) = T{rn, F,

log m*(rn, FJOi — Oirή

T{rn, Fx)

logm*(rn, F1)ll-o(h(rn))'2
T(rn,

] (n->oo).
smπp

Hence it suffices to show that the conclusion of Theorem 2 holds for F^z).

4. Proof of Theorem 2; Conclusion.

Define P(z) and ()(z) as follows:

P(z)=Π(l+z/\an\), Q{z)=Π(l+z/\bn\).

First, we show that P{z) is of order p and mean type. By (3.8), (3.4) and (3.3)

(4.1) logM(r, P)^m(r, P)^N(r, 0, P)=N(r, 0, F2)

On the other hand,

Γ°° Mi O P ) Γ°° Mi 0 P)
(4.2) logM(r, P) = r\ —7-r~V2—dt^N(r, 0, P ) + r l —£ at

v ' , ' ; dt=O{r<>) (r-»oo).

(4.1) and (4.2) implies that ^(^) is of order p and mean type.
Now, we apply Lemma C to P{z). Then we see that there is a sequence

{?-„}? t °° such that

(ίOΛ ns l0SP(rn) . H(rn) ^ l+Zί+oq)2δh(rn)C(p)cosπp
( 4 3 ) O < l o ^ | 7 P ^ = 7/T-^y< (M^TO)

and
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log I Λ-r.) I c o t f!_ <fϊlP_gCi()h(rn)\ί1f
tanπp pρ

(n->oo).
By (3.3), (3.4) and (3.8)

Mr, 0, F^Tir, FJ-Tir, F ^ - O d o g r ) (r->oo),

and so we have

(4.5) T(r, F1)^N(r, 0, F1)+2T(r, ^ ) 3 / 4

^N(r, 0, FJ + OCr^^O (r->oo).

From (3.9) and (4.5) it follows that

N{r, oo, FOgd-δWCr, 0, FJ + CKr^4^) (r->oo),
which gives

(4.6) logρ(r)=rΓ^%^2^ (r->oo).
J o ^ T ^ JJo

By (4.3), (4.1), (3.2) and (3.7)

r(3/4)p

( t 7 )

= o(h(rn)).

Hence by (4.6), (4.3) and (4.7)

(4.8) \ogm*(rn, F1)^\og\P(-rn)\-\ogQ(r)

-o{h{rn))

(n—>oo).

On the other hand, we deduce from (4.5), (4.4) and (4.7) that

x \[ jiy x 1/^~-*• * \ ' τiy ^ y 1/

Aδ2h2(rn) ]

+o(λ(rn))] (π-*oo).
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Combining (4.8) and (4.9), we obtain

(cosπp-l+δ)(l-h(rn)) (n->oo),
smπp

if 5 (>0) is sufficiently small.
This completes the proof of Theorem 2.

5. A counterexample. It is natural to ask in Theorem 2 whether the con-
dition (2) is necessary or not. As the answer to this question, we give the
following example.

Let h{r) ( r^r 0 ) be a slowly varying function such that h{r)—>0 (r—>oo) and

h(f)(5.1, Γ-f
Jr0 t

Let p and δ be numbers with 0< io<l/2, 1—cosπρ<δ^l. Then there is a mero-
morphic function f(z) satisfying the following conditions (i)-(iv).

( i ) f(z) is of order p and mean type.
(ϋ) δ(™, /)=a.
(iii) N(r, oo, f)S(l-δ)T(r, f) + O(logr) (r-»oo).

(iv) log?n*(r, jQ<-^—(cosπp-l+δ)(l-h(r))T(r, f)
olΠ TCp

for all sufficiently large r.

For convenience, we state two lemmas which will be used to construct the
above example.

LEMMA D ([3]). Let g{z) be meromorphic in the plane. For a measurable
set /C[0, 2π), define

m(r} g> / ) = ^ - ( \og+\g(reίθ)\dθ

Then

m{r, g, I)^22T(2r, g)\I\

where \I\ is the Lebesgue measure of I.

LEMMA E ([2], [7]). Let g be an entire function of genus zero, all of whose
zeros are negative and such that gφ) — l and n(r, 0, g) — [rpL(rY], where L{r) is
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defined as in Lemma C. Then we have

N(r, 0, ^

lθgM(r, g) = r"L(r)\ . π

L oin 7o i n 7Γ p

(r->oo, C ^ Ξ (
n=o

smπp smπp

(r->co; β{r) = π-r-κ with K>1).

r)

Construction of a counterexample. Let a and /5 be numbers such that
aco$πp>β^0. Let

be canonical products satisfying n(r, 0, P) = [_arp L(r)l, n{r, 0, Q) — [_βrpL(r)], re-
spectively. Set δ—{a—β)/a (>l—cosπp). Then we shall show that f(z) =
P(z)/Q(z) satisfies all the conditions (i)-(iv).

Using Lemma E, we have

log I f{reiθ{r)) I ^log \PiχeiHr)) \ - log Q(-r)

n τ . J π(αcos πp — β) -/ π 2 . nrΛ . Λ . . N n , NNΊ
= rpL(r)\ — : — ^ - r-1-— δl a——% YβC^p) )h{r)-o{h{r))

-O(logr)>0
Hence by Lemma D

(5.2) m(r, 0, /)=i-j*^log+

Since T(r, f)^m(r, P)+m(r, Q)^logM(r, P)+logM(r, Q), we deduce from Lem-
ma E and (5.1) that

(5.3) T(r, f)=O{rη (r->oo).

In view of (5.2) and (5.3) we have

(5.4) mix, 0, f) =
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for any fixed ε>0.
Thus (5.4) and Lemma E give

(5.5) T(r, f)=T(r,

On the other hand,

(5.6) N(r, co, f)=N(r, 0, Q) =

Combining (5.5) and (5.6) we have

Λ(r)Ί + O(logr) (r-oo).

) = l-a/β=δ.

Further,

N(r,
t ~~ αJo t

β
^ —[N(r, 0, /) + logr]^(l—δ)T(r, /) + O(logr)

It remains to show (iv). Using Lemma E and (5.5), we have

(5.7) logm*(r, /) = log |P(-r) | - logQ(-r)

α[l--A(r)-o(A(r))J

sin27Γ|0 ( } _
psmπp

(r, /) + O(logr).

Here, we note that

(5.8)

In fact,

psmπp

sm2πp

2πp πp π2
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sm2πp\\ 2πp Γp π2p2 \smπp

Γ ^P I .«/ J
L sin Γjo p M l - j

Λ > 0 .
/sm2πp\ 2πρ / |O\(1 — p) 2 SIΠTΓ/?

Since T(r, f)~(a/p)rPL(r),

(5.9) \ogr=o{h(r))T(r, f) (r->oo).

Therefore, choosing <5 large enough, we obtain from (5.7), (5.8) and (5.9)

logm*(r, f)^-~^~-(cosπp-l+δ)(l-h(r))T(r, f) (r^R2).
smπp

Remark. The method of this section can be used also when we prove the
following result.

Let h{r) be given as in Theorem 2. Let p and δ be numbers with Q<p<l/2,

1 — cos πp<δ^l. Then there is a meromorphic function f(z) satisfying the fol-

lowing (i)-(iv).

( i ) f(z) is of order p and minimal {maximal) type.
(ii) δ{co,f)=δ.
(iii) N(r, ex), / ) ^ ( l - δ ) T ( r , /) + O(logr) (r->oo).

(iv) logm*(r, f)^-??— (cosπp-l+δ)(l+h(r)(-h(r)))T(r, f)
sm iz p

for all sufficiently large r.

REFERENCES

[ 1 ] ANDERSON, J. M., Regularity criteria for integral and meromorphic functions, J.
Analyse Math. 14 (1965), 185-200.

[ 2 ] BARRY, P. D., On the growth of entire functions, Mathematical essays dedicated
to A. J. Macintyre, Ohio Univ. Press (1970).

[ 3 ] EDREI, A. AND FUCHS, W. H. J., Bounds for the number of deficient values of

certain classes of functions, Proc. London Math. Soc. 12 (1962), 315-344.
[ 4 ] KARAMATA, J., Sur un mode de croissance reguliere des functions, Mathematica

(Cluj) 4 (1930), 38-53.
[ 5 ] KJELLBERG, B., A theorem on the minimum modulus of entire functions, Math.

Scand. 12 (1963), 5-11.
[ 6 ] NEVANLINNA, R., Eindeutige Analytische Funktionen, second edition, Berlin

(1953).



146 HIDEHARU UEDA

[ 7 ] UEDA, H., On the growth of entire functions of order less than 1/2, Kodai Math.
J. vol. 5 no. 3 (1982), 370-384.

DEPARTMENT OF MATHEMATICS

DAIDO INSTITUTE OF TECHNOLOGY

DAIDO-CHO, MINAMI-KU, NAGOYA, JAPAN




