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ON THE GROWTH OF MEROMORPHIC
FUNCTIONS OF ORDER LESS THAN 1/2

By HIDEHARU UEDA

0. Introduction. Let f(z) be meromorphic in the plane. Throughout this
note, we shall assume familiarity with elementary aspects and notations of
Nevanlinna’s theory and in particular with the meaning of the symbols

m(r, f), n(r, a, ), N, a, f), T, f), oa, ).
Further we define

M(r, fi=max|f()|, m*r, f=min|f()],

and denote by p and p, respectively, the order and lower order of f(2).
A real-valued function L(») defined for all »=r, (=0) is said to be a slowly
varying function (at co) if

(i) L(r) is positive and continuous in r,<r<oo

o 1. L(A7)
and (i) EHEW

This concept was introduced by Karamata [4]. He proved that for each ¢>0,

=1, for every fixed A>0.

(1) r*L(r)—oo, r*L(r)—0 (r—co).

Let f(z) be an entire function of order p, 0<p<1/2. If f(z) is of minimal
type, then a well-known theorem of Kjellberg [5] implies that

log m*(r, f)>coszplog M(r, f)

on an unbounded sequence of . If f(z) is of mean type, then the following result
is valid. (See [2].)

THEOREM A. Let h(r) (r=r,) be a slowly varying function such that h(r)—0
(r—o0) and

(2) 20 4

7o

If f(2) 1s an entire function of order p (0<p<1/2) and mean type, then
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log m*(r, f)>cosmp(l—h(r)log M(r, f)
on a Sequence of r—co,

If A(r) does not satisfy condition (2), then there is an entire function of order
o (0<p<1/2) and mean type for which

log m*(r, f)<coszp(l—h(r))log M(r, f) (r=r).

In Theorem A, Barry [2, p. 45] assumes also that A’(r)>—0(r"Y) (r—co). How-
ever, this condition is unnecessary (cf. [7]).

It is natural to consider the analogous problems to the above results for mero-
morphic functions. That is, for a meromorphic function f(z), what can we say
about the relation between log m*(», f) and T'(», f)?

In this note we shall prove the following two results.

THEOREM 1. Let f(z) be meromorphic of order p (0<p<1/2) and munimal
type. Assume that there is a 60, 1] such that

(3) costp—1+d6>0

and

(4) N(r, oo, /)=(1=8)T(r, /)+0(logr) (r—c0).
Then

log m*(r, f)>——t—(cosmp—148)T(r, f)—O(log?)
sin 7p

on an unbounded sequence of r.
THEOREM 2. Let h(r) (r=r,) be a slowly varying function satisfying h(r)—0

(r—o0) and (2). Let f(z) be meromorphic of order p (0<0<1/2) and mean type.
Assume that there is a 0<(0, 1] satisfying (3) and (4). Then

log m*(r, f>>~sh’f’; 5 (coszp—1+0)1A=hT(, £)

on a sequence of r—oo,

For the case that f(z) is entire—in this case we can choose 0=1—Theorems
1 and 2 have been proved in [7].

1. Lemmas

LEMMA A. ([1, p. 189]) Let f(z) be meromorphic in the plane and such that
Sfor some p, 0<p<1, either

ToN(r, 0, f)<sinzplog M(r, f)+mpcoszpN(r, o, f)
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or
sinwplog m*(r, f)=wpcoszp N(r, 0, f)—npN(r, o, f)

for all large v. Then 11m me , [)/re>0.

LEMMA B. ([5, p.280]) Let f(2) be a nonconstant meromorphic function.
Then for a gwen ¢>0 (0<e<1) and every sufficiently large value r,,

N(?’, a, f)ZT(?’, f)—ZT(r, f)(1+s)/2

for r=r,, with the possible exception of a set E, of values a whose capacity s at

most
exp(—eT (ro, F)°/4).

LEMMA C. (cf. [7] and [2, p.54]) Let h(r) (r=v,) be a slowly varying
Sfunction satisfying h(r)—0 (r—o0) and (2). Set h(t)=(t/ro)h(ro) (ro=t=0), and let

L(r)-—exp{ S (t) } (6: a positive constant).

Consider the positive harmonic function H(z) in C—(—oo, 0] defined by

r'*(r+s)s? L(s)cos —g—

6
Hreit)= So 2 cos gy 45 (0<P<L/2).

Then we have

H(r) 1+[140(1)16h()C(p) cos mp
< A P —
H(—7) cos p

(r—o0; C(p): a positrve constant depending only on p).

If f(z) 1s an entire function of order p, mean type and all of whose zeros are
negative, then there 1s an unbounded sequence r=v, such that

logl/(nl . H&)
0< gl f(—n| = Hn
and
N, 0, ) b -~ .
log|f(—n)| 70 cot n,o{ _\t/airzlip 5C1(p)h( )}{1— fiaﬁ (Z)}

(Cilp): a positwe constant depending only on p).

2. Proof of Theorem 1. Since f(z) is of order p (0<p<1/2) and minimal
type, we deduce from Lemma A that

2.1) sinmplogm*(r, f)>rpcoszpN(r, 0, f)—mpN(r, oo, f)
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on an unbounded sequence of ». We denote this sequence by {r,}¥ 1 co.
First, we show that

(2.2) log m*(r,, f)=0
for sufficiently large n. By (2.1), (4) and (3)
sinzplogm*(r, f)+mpcoszom(r, 1/f)
2.3) >rpcosapT(r, f)—npNr, oo, f)—O0(1)
>rplcosmp—1-+01T(r, f)—O(ogr)>0 (r=r,, n=n,).
Assume that logm*@,, /)>0 for some k=n,. Then
m(ry, 1/f)=max log|1/f(riei®)| =—logm*(rs, f).
From this and (2.3) it follows that
sinzplogm*(r,, f)—rmpcosmplogm*(ry, f)>0.

Hence tanmp<mp, a contradiction. This proves (2.2), which in particular implies
that

(2.4) m(ra, 1//)=0. (n=n,).

Substituting (2.4) into (2.3), we obtain

*(p _To 12 . _ =
log m*(ry, f)> sin 7p (cos tp—1+0)T (rn, f)—O(logr,) (n—0c0).

This completes the proof of Theorem 1.

3. Proof of Theorem 2; Preliminaries.
3.1. Assume first that there is a positive number A1<p such that

lim inf T(r, f)/r*=0.
Then as in the proof of Theorem 1 we deduce that

* .20 _ _
3.1) log m*(rn, f)> e (cos tA—14+0)T (rn, f)—OUog r,),

where {r,}% is a suitable increasing sequence tending to oo. Since the function

X

sin (cos x—a) («: a nonnegative constant)
X

decreases strictly as x€[0, 7/2) increases, we deduce from (3.1) that
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8 TL',04 .
IOg 7)1,"((}”,” f)> EIH;T‘O (COS To l+5>T(7’n, f)

for sufficiently large n. Hence, in what follows, we may consider only the case
that

(3.2) lim inf T'(r, f)/r*>0

for all 2€(0, p).
3.2. By Lemma B, there is a complex number a such that

(3.3) N@, a, /)=T@, ))=2T@, ) (r=R,>0).
Put
(3.4) Fl2)=f(2)—a.

It is clear that F(z) satisfies all the assumptions of Theorem 2. Assume now
that the conclusion of Theorem 2 holds for F(z), i.e. there is a sequence
{ra}3 1 oo such that

(3.5) l0g m*(ry, F)>— L (cos mp—1408)1—h(ry))T(rs, F).
sinzp

By (3.2), (3.4), (3.5) and (3)

(3.6) T (rn, F), log m*(rn, F)>O0(r}) (n—co)

for any fixed 2€(0, p). Further by (1) for each ¢>0,
(3.7 reh(r)—oco  (r—o0).
From (3.5), (3.6) and (3.7) follows that

log m*(ra, F)—O(1)
T(ra, F)+0Q)

log m*(rn, F)[1—0@7*)]
T(ra, F)[1+0(rz*)]

log m*(rn, F)[1—o(h(r.)]

T(rn, F)[1+0(h(ry)]

log m*(ry, f)
T(rn) f)

v

L (cos tp—1+0)[L—(1+o()h(r)] (n—o0).
sinzp
This implies that we may prove Theorem 2 only for F(z).
3.3. Let {a.}, {ba} (an, b,#0) be the sequences of the zeros and poles of
F(z). Then we can write

H(l—z/anlzczp
II(1—z/b) — Q(

P(z)
z)

3.8) F(z)=cz? =cz?F,(z) (c#0, p: an integer).
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From (4) and (3.8) we deduce that
(3.9) N(r, oo, F)=(1—0)T(r, F1)+0(logr) (r—o).

Assume that there is a sequence {r,}7 1 oo such that
* o _ _
(3.10) log m*(ry, Fy)> sin7p (cos tp—14+0)1—h(r DT (rn, Fy).

Then as in §3.2, we have from (3.10), (3.8), (3.6) and (3.7)
log m*(rn, F) _ log m*(ra, F1)—0O(log 7x)

T(ra, F) = T(ra, F)+0(logr,)

log m*(ry, F)[1—0(rz*log 7,)]
T(ry, F)[1+0(rz*log r4)]

log m*(rn, F1)[1—0(h(rs))]
T(ra, F)[1+o0(h(ry))]

sizfrp (cos tp—1+0)[1—1+o()h(ra)] (n—00).

Hence it suffices to show that the conclusion of Theorem 2 holds for Fy(z2).

4. Proof of Theorem 2; Conclusion.
Define P(z) and Q(z) as follows:
Py=I(1+z/]a.]), Q@=I(1+z/|b]).
First, we show that P(z) is of order o and mean type. By (3.8), (3.4) and (3.3)
4.1) log M(r, Py=m(r, P)=N(, 0, 13)=N(r, 0, Fy)

=(1—oNT(r, F) (r—o0).
On the other hand,
= N, 0, P)

(4.2) log M(r, P):rSO 77777777 dt<N(r, 0, P)—E—rS

= N, 0, P)
(t+r) :

t
T t d

=T, F1)+rSwI£tt’—2th=O(rf’) (r—c0).

(4.1) and (4.2) implies that P(2) isAof order p and mean type.
Now, we apply Lemma C to P(z). Then we see that there is a sequence

{ra}T 1 oo such that
log P(r,) H(rn) _ 14[1+0(1)16h(r.)C(p)cos mp

—= <
@3 O< g B—rm)| = Hi—rm) < cos7p

(n—o0)

and
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(4 ) N(rn; Oy Fl)‘< 1
) log| P(—7,)| _N27p _ 46%h*(ra)s
mp cot np{l tan o Bcl(p)h(r")}{l pztan%rp}
(n—o0).

By (3.3), (3.4) and (3.8)
N, 0, F))=2T(r, F))—T(r, F})**—0logr) (r—co),
and so we have
4.5) T(r, F))SN(@, 0, F))4+2T(r, Fy)*'*
=N, 0, F)+0@r¢®e)  (r—oo).
From (3.9) and (4.5) it follows that

N(r, oo, F)S(1—0)N(r, 0, F))+0@®'®¢)  (r—o0),
which gives

(4.6) tog Q=r{, X022 1) i< 1-9y10g P+ 0(199) (rc0)
By (43, (4.1), (32) and (3.7)
rame F@/0p pGIap
@7 log| P(—r,)| éo(log P(rn)><O<T(m, Fl))
<007 (0<e<(1/4)p)
=o(h(ra).

Hence by (4.6), (4.3) and (4.7)
(4.8) log m*(rn, F)=log|P(—r,)| —log Q()
=log | P(—r,) | —(1—0)log P(r,)—O0@r§oe)

H(rn)

gloglﬁ(—rn)l{l—(l‘a) H(—r»)

—o(h(ra)}

zloglﬂ—rn)l{l—(l—a)—co—sl—ﬂ—{; —(EC(p)+o)h(ra)}

141

}

On the other hand, we deduce from (4.5), (4.4) and (4.7) that
T(rn: Fl)éN(rn, 0, F1)+0(7’;,3/4)‘0)
5 1
<log|P(—7,)] — o
_V27p _ 40%h*(ra)
mpeos mp{l— Y 270 SC oL

+o<h<rn>>] (n—c0).
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Combining (4.8) and (4.9), we obtain

Tog m*(ra, Fy) )
Tl F) z{1-0-9) —(3C(p)+o)h(rn)}
xzp cot mp{1— \t/f "0 5, (0)h(rm H1— ?E;_‘%L} U—o(h(r)}

o . _ R
sinzp (cos tp—1+08)(1—h(r,)) (n—o0),

if § (>0) is sufficiently small.
This completes the proof of Theorem 2.

5. A counterexample. It is natural to ask in Theorem 2 whether the con-
dition (2) is necessary or not. As the answer to this question, we give the
following example.

Let h(r) (r=r,) be a slowly varying function such that h(r)—0 (r—o0) and
(5.1) I LN
ro

Let p and & be numbers with 0<p<1/2, 1—coswp<d=1. Then there is a mero-
morphic function f(z) satisfying the following conditions (1)-(iv).

(i) f(2) is of order p and mean type.

(ii) d(oo, f)=4.

(iii) N(r, oo, f)<(1—5)T(7’, f)+0dogr) (r—o0).

~(c037rp 14+0)(A—=hrNT(r, f)

(iv) logm*(r, /)< s

for all sufficiently large r.

For convenience, we state two lemmas which will be used to construct the
above example.

LEMMA D ([3]). Let g(z) be meromorphic in the plane. For a measurable
set I1C[0, 2x), define

nir, g D= o Slog |gtrei®)|do  (r>0).

Then
1
771(7” g, 1)5227‘(27’, g) '[I [l—l—log"'_m] s

where |I| is the Lebesgue measure of I.

LemMA E ([2], [7]). Let g be an entire function of genus zero, all of whose
zeros are negatwe and such that g(0)=1 and n(r, 0, g)=[r?L(»)], where L(r) is
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defined as in Lemma C. Then we have

Ne, 0, =" 20 1= SETE ) |+ 0tog ) (e,
log M(r, g):r-"L(r)[ Sin’;p +5C1(p)(1-l—o(l))h(r)]-i—O(log ’

oo

(r—o0, Ci(p)= P (=D™{(n+1=p)*—(n+p)?}),

=0

and
2

OOy — 0 TCOSTP & W ]
log| g(re®™)| =7 L(r)[ Snme sy (oM |+ Otlog )

(r—oo, 0)=n—r% with K>1).

Construction of a counterexample. Let a and S be numbers such that
acoswp>pB=0. Let
o 2z &z
P@=M(1+ ), e@=3(1-) (anb:>0
be canonical products satisfying n(r, 0, P)=[ar®L()], n(r, 0, Q)=[Br*L(r)], re-
spectively. Set 0=(a—p)/a (>1—coszp). Then we shall show that f(z)=

P(2)/Q(z) satisfies all the conditions (i)-(iv).
Using Lemma E, we have

log| f(re'? )| =log | P(re’™)| —log Q(—7)
_ rlacoswp—f) ~ 7 _
=re L) TGO (a5 ) o(h(r))
—0(log >0 (r>R)).
Hence by Lemma D

(.2) mir, 0, f)=%g log*

0(r

1
Foen 40

<44T @2r, 1/f>(n—0<r>>[1+1°g+’n—l«%r)]

=44T Q2r, )r X[1+Klogr]l (>R)).

Since T'(r, f)<m(r, P)+m(r, @) =log M(r, P)+log M(r, Q), we deduce from Lem-
ma E and (5.1) that

(6.3) T(r, [)=0(@*) (r—co).
In view of (5.2) and (5.3) we have

(5.4) m(r, 0, /)=0@r+%) (r—o0)
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for any fixed ¢>0.
Thus (5.4) and Lemma E give

ar®L(r) [1 _ 5(1—1—09})
0

G5 T, H=T(, 1/)= h) | +0(log ) (r—c0).

On the other hand,

BreL(r) [1 _ 6(14-0(1))
o

5.6 NG, oo, f)=N(r, 0, Q)= ll(r)]+0(logr) (r—00).

Combining (5.5) and (5.6) we have
o(co, fl=1—a/B=0.
Further,

<INt 0, )4 log rIZA—0)T(r, F)+0(ogr) (r—oo).

44

It remains to show (iv). Using Lemma E and (5.5), we have

(6.7 logm*(r, f)=log|P(—7r)|—log Q(—7)

grﬂL(r)[ (a csc:Is1 ZZ —B i Sizj; - ﬁc1<p>)h(r)+o(h(r))] +0(log )

s CL S ) e e
_p(T(r, f)—O(logr))

+0O(log »)
a[l-—ih(r)-—o(h(r))]
0 .

_p[rlacosmp—f) < an’ _ m(acosmp—p)
B a[ sinzp 5( sin’zp +8Gi(e) osinzp )h(r)

+o<h<r>>]T<r, £)+0(log 7).

Here, we note that

arn? _ n(acos Tp—pf)
sin*zp +8C(p) posinzp >0.

(5.8 Alp)=

In fact,

R sin*z p __sinwp(acos rp—p)
)= {at827E Citp) —~ }

e L B )
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R _ sin2zp sin®zp/ mp
N Sinzn'p{ (1 2zp )+B m2p? (sinnp

+0* 3 (=) [n+1—p)—(n+ )]}

: in2 11
= rimp 5y ) el st (= 7))
8

m*a ¢ sin2zp\ B¢ p* To
n sinznrp( 2mp >+ p<(1—p)2 + sinzp 1)>0'

Since T'(r, f)~(a/p)r? L(r),

(5.9) logr=0(h()T(r, f) (r—co).

Therefore, choosing § large enough, we obtain from (5.7), (5.8) and (5.9)

log m*(r, )< — " (cos mp—14+8)1—h(MT(, f) (r=Ry).
sinwp

Remark. The method of this section can be used also when we prove the
following result.

Let h(r) be gwen as in Theorem 2. Let p and 6 be numbers with 0<p<1/2,
1—costp<d=1. Then there 1s a meromorphic function f(z) satisfying the fol-
lowing (1)-(iv).

(1) f@ is of order p and mimimal (maxvmal) type.
(ii) d(co, f)=a.
(iii) N(r, oo, I=A—=0)T(r, /)+0(ogr) (r—oo).

iv) logm*(r, )< —~C(cos mp—1+0)(1+h)—h)T(r, f)
sinwp

for all sufficiently large r.
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