K. ATSUYAMA
KODAI MATH. J.
6 (1983), 122—133

ANOTHER CONSTRUCTION OF REAL
SIMPLE LIE ALGEBRAS

By KENJI ATSUYAMA

Introduction.

In 1966, J. Tits [6] and E.B. Vinberg [7] made explicit models of excep-
tional simple Lie algebras independently. It is known that Tits’ models contain
all the real forms of these Lie algebras (cf. N. Jacobson [4]). In this paper we
shall give first another construction of compact (real) simple Lie algebras which
are isomorphic to Tits’ and Vinberg’s models in the case of exceptional Lie
algebras. Furthermore we shall make all involutive automorphisms in each Lie
algebra and also give all the real forms explicitly, corresponding to the involutive
automorphisms, which are simpler than Tits’ Lie algebras.

1. Preliminaries.

Let U be a composition algebra over the field R of real numbers. Let a,b,¢
be elements in Y. If a conjugation —: a—d is usually defined in %, we have
a symmetric inner product (a, b)=1/2(ab-+ab). If the commutator and the as-
sociator are written as [a, b]=ab—ba and (a, b, ¢)=(ab)c—a(bc) respectively,
any inner derivation of U can be generated by D, , where Dg i(c)=[[a, b], ¢]
—3(a, b, ¢).

In the composition algebra %, it is well known that the following identities
hold (cf. R.D. Schafer [5]).

LEMMA 1.1. For a, b, ce¥, we have that
1) (ab, c)=(bec, a),

2) (a, b, )=, ¢, a)=—(b, a, ¢),

(3) Da,b:_‘Db,a; Da,b(c):Dd,E(E)x

4) (Da, b)+(a, Db)=0,

) [D, Da,b]:DDa,b_I_Da,Db;

(6) Dab,c+Dbc,a+Dca.b:Oy

where D 1s any inner derivation of .

Let M(n, R) denote an nXn matrix algebra over R with coefficients in R.
Let X,Y be elements in M(n, R). We usually define a transposed operator
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T:X—-XT in M(n, R) and define a symmetric inner product by (X, Y)=tr (XY)
where tr(X)=1/n(xy+ - +x4,) for X=(x,,)eM(n, R). Then we have (XY, Z)
=YZ, X).

Let X, Y and Z be in M(3, R). If f(X,Y, Z) is a polynomial of X, Y and
Z, then Yf(X,Y, Z) means the sum over all permutations of (X, Y, Z) relative
to f(X,Y,Z) and &f(X, Y, Z) means the sum over cyclic permutations of
(X, Y, Z).

In M(3, R) we can prove the following proposition by direct calculations.

PROPOSITION 1.2. For X,Y, ZM(@3, R), we have the following identities
where I 1s the 3X3 umit matrix.
1) If X, Y and Z are symmetric matrices with the trace being 0,

2XYZ-38(X, Y)Z—6tr (XY Z)[=0.
(2) If X and Y arve skew-symmetric matrices,
2XY X=3(X, )X.

(3) If Y and Z are skew-symmetric matrices and X is a symmetric matrix
with the trace being 0,

AXYZAYZX+Y XZ)=3(Y, Z)X—6tr (XY Z)I=0.

4) If X is a symmetric matrix with the trace being 0 and Y s a skew-
symmetric matrix,

2AXY+HXY XY XH)=3(X, X)Y.

Let APRQM(n, R)YQU® be a tensor product over R of one matrix algebra
and two composition algebras. We write aXu instead of a@®@XXu. In this
tensor space we can define a product by xy=abXYuv for x=aXu and y=bYw.
Moreover an involution and a trace Tr» can be given by aXu—adXTa and
Tr(aXu)=a tr (X)Iu respectively where I is the nXn unit matrix. If f(x, y,z2)
is a polynomial of x, y and z, two sums 2 f(x, v, z) and &/(x, v, z) are defined
as before.

2. Exceptional Jordan algebra .J.

Let € be the Cayley algebra of non-split type (cf. Section 5) and let M(3, €)
denote the matrix algebra over R of all 3X3 matrices with coefficients in €.
Then we can define an isomorphism between two algebras M(3, €) and CQM(3, R)
(resp. M3, R)YRE) by (e,a,;)—e@(a,;) (resp. (a.,;)Qe;) for ¢,€€ and (a,)e
M(3, R). Hence, if necessary, we shall identify these elements in the following
way where we neglect the notation &:

(e;a,,)=e,; A (resp. Ae;) for A=(a,,)eM@3, R);
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especially, for the Jordan product xey=1/2(xy+yx) and the Lie product [x, y]
=xy—yx, We can write

(era,)°(emb.s)=1/2(e;en AB+ene, BA),
L(eia.), (emb.y)]=eiemAB—ene,BA,

where ¢,, ¢,=€ and A=(a,,), B=(b;,)e M(3, R).

Let J denote a vector space over R composed of all symmetric matrices in
M3, €) with respect to the involution: aX—aX?. Then J becomes an excep-
tional Jordan algebra by the Jordan product -. If an element x <] has the form

& ay a,
a & a &eR, a;e€,
a, a; &

we can define the generic norm (x, x); by (x, x);=1/3(6.24€.2+E2+2a.d,—+
2a,d,+2a,a;). If we put L,(y)=x-y and Ad(z)y=[z, y] for x, yeJ and z
(e M(3, €)) with the skew-symmetric form, we have the following proposition.

PRrOPOSITION 2.1. For aX, bY, cZ <], we obtain that

(1) (aX, bY);=(a, b)(X, Y),
(2) Y(aXbY)ecZ—38(aX, bY),;cZ—6(aXbY, ¢Z);1=0,
(3) 4[Lax, Liy]=(X, Y)Dg »+Ad(LaX, bY]—-Tr[aX, bY]),

where Do, o(cZ)=(Dao,o(c))Z and Tr(dW)=d tr W) for dW e M3, )E.

Proof. (2) is the characteristic polynomial which is well known in the ex-
ceptional Jordan algebra J (cf. [5]). For (3), in the case of the trace of a X, bY
and ¢Z being 0, if we operate 4[L,x, Loy 1—(X, YY)Dy »—Ad([aX, bY]—Tr[aX,
bY]) on ¢Z, we can have —(a, b, ) XY Z+ZY X+ Y XZ+ZXY —-XZY—-YZX—
3(X, Y)Z). This is identically 0 by (2) in Proposition 1.2 and from the fact that
the associator (a, b, ¢)=0 if one of the elements is real, i.e.,, a=4 as an example.

Remark. Let x be an element in M(3, €) which is skew-symmetric and has
the trace being 0. Then, by (3) in Proposition 1.2, we can prove directly that
Ad(x) is a derivation of J. Hence (3) in Proposition 2.1 can be considered a
sharpened fact the operator [L.x, Lyy] is a derivation in the Jordan algebra J.
The automorphism group Aut(J) of J is the real simple Lie group of type Fy(s.).
If we use the Cayley algebra of split type in the above argument (cf. Section 5),
we can have the exceptional Jordan algebra with the automorphism group of
type Fyu. As for the type Fy( .0, the corresponding algebra is given in Sec-
tion 6. We note that Proposition 2.1 also holds for these algebras and moreover
the identity (3) is true for other real simple Jordan algebras.
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3. A construction of Lie algebras.

We use the same notations as the last part of Section 1. Let 9 denote a
vector space over R which is generated by all elements in AVRM(n, R)YQU®
with the trace T being 0 and the skew-symmetric form with respect to the
involution aXu—aXTu. Let Der AP and DerA® are the Lie algebras of all
inner derivations of A and A® respectively.

Let L(AP, M™, A®) be the vector space Der AVPMP Der A® (direct sum)
over R. In this space we define an anti-commutative product [, ] in the follow-
ing way:

@ oo jthe Lie product in Der A (=),

M 0w, D9I={ ) ).

(2) [D?, aXul=(DYa)Xu and [D?, aXul=aX(D®u),
(3) For x=aXu, y=bYv in M,

Lx, y1=(X, Y)(u, v)Do,p+(xy—yx—=Tr(xy—yx))+(X, Y)(a, b)Dy,o,
where D@, =1, 2, are elements in Der AP,

THEOREM 3.1. L(AP, M, A®) becomes a real Lie algebra by the anti-com-
mutative product [,] where, 1f AP or A® 15 a Cayley algebra, n=1 or 3.

Remark. LAY, M", A®) is isomorphic to L(A®, M, APV). If APV=R,
LR, M™, A?®) is a compact simple Lie algebra of type B(,-1)/2 (0r Dyys), Au-y
or C, according as A® is R, C or Q where C and @ are the field of complex
and quarternion numbers with the non-split type respectively. If AW =G,
L@, M3, A®) is a compact simple Lie algebra of type F,, E,, E; or E; accord-
ing as A is R, C, Q or €. We note that Theorem 3.1 also holds for all com-
position algebras with the split type. In this section we shall prove only
Theorem 3.1 and, in Section 4, establish an isomorphism between the above
models and Tits’ Lie algebras instead of the proof for the compactness and the
simpleness of L(AY, M, A®). Then we shall have a new viewpoint for Tits’
construction.

Proof of Theorem 3.1. In the case of n=3 and AV being the Cayley algebra
with the non-split or the split type, we shall prove that the Jacobi’s identity
holds for x, y, zeM. In other cases, we can prove easily it by Lemma 1.1 and

the definition of L(AY, M, A?)
For x=aXu, y=bYv, z=cZweM, from long calculations, we nbtain that

(Cx, 33, 23400y, 21, x1+[lz, x1, yI=Ci)+D)+GiD+3Ev) F(v):
(1)=(XY, Z)uv, w)SDgp, (XY, Z)ab, ¢)SD v v
—Y'X, Z)wu, w)SDpe,.— Y X, Z)ba, ¢)BDyy, w
=0 by Lemma 1.1,
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(i)=(a, b, XY Z(wv)w} + {2 abo) XY Z} (u, v, w),
(ii)=—/(a, b, ) {2 tr (XY Z)I(uv)w} — {2 albc) tr (XY Z2)I} (u, v, w),
(iv)=&{—"Lab, cJ(X, )Z(wv)w—c(ab)( X, Y)Z[uv, w]
+[ba, c I X, VVZ(vu)w+cba) X, Y)Z[vu, wl}

and
(v)=&(X, Y)u, v)La, b], cJZw—3(a, b, )&(X, Y)(u, v)Zw

+&(X, Y)(a, b)cZ[[u, v], wl-3{8(X, Y)a, b)cZ}(u, v, w),

where for (ii) and (iii) the definition a(bc)=(ab)c—(a, b, ¢) is used repeatedly
and for (v) we use D, y(c)=[La, b], ¢1—3(a, b, ¢).

Here our proof is divided into the four cases:

(case 1) a, b, ¢, u, v, w are purely imaginary numbers,

(case 2) a, b, ¢ are real numbers,

(case 3) a, b are real numbers and ¢ is a purely imaginary number,

(case 4) a is a real number and b, ¢ are purely imaginary numbers,
where that ¢ is a real number means a=3 and that q is a purely imaginary

number means a=-—4da.

(case 1) By three identities X XY Z (uv)w=23(Xu-Yv)e Zw-+1/2{Z XY Z
(u,v, w)}, 2abe) XY Z=23(aX-bY)ocZ—1/2{2(a,b,c)XY Z} and Tr(Xu-Yv)Zw)
=(Xu-Yv, Zw),;I, we obtain

(i)=(a, b, ) {X(Xu-Yv)e Zw} +{3(aXbY)ecZ} (u, v, w),
(ii)=—(a, b, )T (Xu-Yv, Zw),;I} —{Z(aX-bY, cZ);I} (u, v, w).
And, by ab+ba=2(a, b) and [[a, b], c]=2[ab, c], we have
(iv)=—6(X, Y)(u, v)[[a, b], c1Zw—&(X, Y)a, b)cZ[[u, v], w].
Hence the total sum (ii)+(ii)+(Iv)+(v) is
(a, b, N (Xu-Yv)e Zw—38(Xu, Yv);Zw—6(Xu-Yv, Zw),I}
+{2(aXbY)ecZ—38(aX, bY)scZ—6(aXbY, ¢Z) I} (u, v, w).

This is identically 0 by (2) in Proposition 2.1.
(case 2) The total sum gets

abc{EXYZ—-36(X, ) Z—2tr (XY Z)[}(u, v, w).

This is also 0 by (1) in Proposition 1.2.
(case 3) The total sum becomes

abc{ZXYZ-3(X, Y)Z-2tr (XY Z)]}(u, v, w)—abc&(X, Y)Z[[u, v], w]
+abe(X, Y)Z[[u, v], w].
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If u,v, w are purely imaginary numbers, the sum is 0 by (4) in Proposition 1.2
and (X, Z)=(Y, Z)=0. If not so, it gets 0 obviously.

(case 4) If u is a real number, the sum is 0 evidently. Hence we can as-
sume that u is a purely imaginary number. If v or w is a real number, the
sum becomes

a{—"[b, cIX, Y)Z[u, vJw-+I[b, cYZ, X)YTw, uJv—bc(Y, Z)X[vw, u]
+cb(Y, Z)XTwv, ul} .

Especially, in the case of v and w being real numbers, it is 0 because all [u, v],
[w, u], [vw, u] are 0. If v is a real number and w is a purely imaginary num-
ber, X and Y are symmetric matrices and Z is a skew-symmetric matrix. Hence
it is 0 because [u, v], (X, Z) and (¥, Z) are 0. If v is a purely imaginary num-
ber and w is a real number, X and Z are symmetric matrices and Y is a skew-
symmetric matrix. Hence it is also 0 because [w, u], (X, Y) and (Y, Z) are 0.
Finally, if v and w are purely imaginary numbers, ¥ and Z are skew-symmetric
matrices and X is a symmetric matrix with the trace being 0. Then, by (X, })
=(X, Z)=0 and vw+wv=2(v, w), the sum can be rewritten as

{2abe)XYZ-3(Y, Z)b, c)aX—2 albe)tr (XY Z)[} (u, v, w).
Furthermore, from (3) in Proposition 1.2, it becomes
alb, V2AXYZ+YZX+YXZ)-3(Y, Z)X—6tr (XY Z)I}(u, v, w)

and at last 0 identically.

4. An isomorphism to Tits’ Lie algebras.

We shall establish an isomorphism between our Lie algebra L(A®, M3, A®)
and one of Tits’ Lie algebras. Let U, (resp. J,) denote a vector space over R
composed of all elements in an composition algebra A (resp. the exceptional
Jordan algebra J in Section 2) which are orthogonal to the unit element with
respect to the inner product (,) (resp. (,)s). Let Der J be the Lie algebra of
all inner derivations of J, i.e., [L,, L,] where x, y=J,. Now we give an anti-
commutative product [,] after Tits in the vector space Der JBJ,QUPDer A
over R such that

the original Lie product for D,, D,eDer J or
(1) [Dy, D.]= Dy, DyeDer %,
0 for D, Der | and Dy,eDer U,
(2) [Dy, xQal=DxQa and [D,, xQal=xQDya for D, Der ], Dy Der U
and x®a< J,QU,,
3) for x®a, yRbe [, QU,,

[x®a, yQbl=(a, b)[ L., L,J+xxyQaxb+1/4(x, ¥)sDa,s,
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where x*y=x-y—(x, y),I and axb=ab—(a, b)e, (I is the 3X3 unit matrix and
¢, 1s the unit element in o). This algebra becomes a real simple Lie algebra.
The above definition is taken from H. Freudenthal [2] and it is similar to our
construction except (3).

Let M. and M, be vector subspaces of M which are composed of all
elements aXu where each u is a real number or a purely imaginary number
respectively. Then M=M.DMi,. Now we give an isomorphism f between
the two Lie algebras:

DY+ aXu-+bYv+D® & Der AP BM, DM@ Der A
(D 4 uAd(aX)+2bY Qv+ D® < Der JOJ@UYSDer A

where DV (cZ)=(DP¢)Z for ¢Z<] and AP =E. By Remark of Proposition 2.1,
we can see that the definition of f is well-defined. And that f is a homomo-
rphism can be proved by (aX, bY);=(a, b)(X, Y) and the following proposition.

PROPOSITION 4.1. If aX and bY are skew-symmetric matrices in M(3, €) with
the trace being 0, we have

(1) [Ad(aX), AdbY)]=(X, Y)Dq,,+Ad(LaX, bY]—Tr[aX, bY]),
(2) [D, Ad(aX)1=Ad(Da)X) for D& Der AD.

(1) is obtained from (4) in Proposition 1.2. This proposition also holds for
other real simple Jordan algebras.

THEOREM 4.2. The Lie algebra L(AY, M?, A®) s isomorphic to one of Tits’
Lie algebras.

Remark. 1f we use two matrix algebras M?®, M?s;, composition algebras of
split or non-split type and the exceptional Jordan algebras (cf. Section 2, 6), we
can construct all Tits’ Lie algebras by the isomorphism f.

We also know that E.B. Vinberg [7] gave a construction of exceptional Lie
algebras. Noting that (a;b)=1/2(ab+ba) is used in [7] as the inner product
of composition algebras, we can give easily an isomorphism between our and
Vinberg’s models. So we can say that these algebras stand at the same stand-
point in essential.

5. Composition algebras.

First we give a basis explicitely in the Cayley algebra € of non-split type
over R as follows:

the basis: e, €1, -+, @1;
the rule of the product:

€18;=208;3, €184=@;5, @€gl;—E€1, €365=@7, €36,4=@7, €3€5=€, €cC4—03,
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e.e,=—eze, (1, 7=1 and 13¢7), e.e,=—e, (1=1),
¢, is the unit element;

the conjugate operator —: e,—e, ¢,——e, (1=:<7).

Then in the Cayley algebra € we can realize R, C or @ as subalgebras generated
by {es}, {es, ei} or {ey, e;, e, e;} respectively. In each composition algebra
(except R) of non-split type, we have essentially one kind of involutive auto-
morphism « (cf. K. Atsuyama [1]) defined by

C Q €

€y, €1 €y, €1, €3, €3 €&y, ', L3 €y v, €
«
€y, —€1 €y, €1, —@3, —E€3 &y, ', O3 —@y, r, —€r,

This « makes the inner product (a, b) and the unit element ¢, invariant.

Now we consider the Cayley algebra € as an example. The (—1)-eigenspace
for the involutive automorphism « is a vector space of the basis {e., e, ¢, e}
Then we can obtain the other real Cayley algebra €, with the split type by the
complexification of this (—1)-eigenspace. And the basis of €, is given by

Co, €1, @3, 3, ey, o5, Ieg, Te;  (I*=—1).

In this way we can get all composition algebras of split type, i.e., C,, @, and
€,. Each of these algebras has the conjugation defined by in €,, for example,
ey—ey, e;——e, (1=1=<3) and ie;——ie, 4<i<7).

A basis in Der U is also given according as U is R, C, Q@ or € by {0}, {0},
{Devept with (2, )=(,2), (2,3) and (3, 1) or {D.,.} with (7, j)=(1, 2), (2, 3),
(3,1), 4,5), 6,4), 4,7), (1,4), 5, 1), (1,6), (7, 1), 4, 2), (2,6), (7,2) and (3, 4).
And the dimension of the (—1)-eigenspace for an involutive automorphism:
Do s=Daq ap in Der A is 0, 0, 2 or 8 respectively.

6. Matrix algebras.

The nXn real matrix algebra M(n, R) (=M™") has two kinds of involutive
automorphisms B, y. B is defined for any natural number n=p-+¢ such that

A B A B
& q<C%D>“)<—c D)‘

It makes the inner product (X, Y) and the unit matrix / invariant. Note that f
depends on p (or q). Especially, if n=3, there exists only one involutive auto-
morphism (up to conjugation) corresponding to p=1 and ¢=2. The other kind
of involutive automorphism 7 is defined only for an even number n=2p such that
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7 (Ay) —> (164, for A,,eM2, R) and 1=, j<p,

where 7, is an involutive automorphism in M(2, R) which is given by
(Zz 3)»»( Z _2) for a, b, ¢, d=R. 7 also makes the inner product (X, Y) and
the unit matrix I invariant. We note that 7, relates to an involutive auto-
morphism in @, and, if p and ¢ are even number, 8 and 7 are commutative, i.e.,
37 is an involutive automorphism again.

Next we construct real matrix algebras M"; and M", corresponding to 8 and
7 respectively. M"; is the matrix algebra with the basis obtained by the com-
plexification of the (—1)-eigenspace for 8: The forms of the basis are

A 0 0 B
( ) or i( ) (iP=—1).
0 D c 0

M*, is the matrix algebra with the basis obtained by the complexification of the
(—1)-eigenspace for y: The forms of the basis are

(Ayy) or UB,y) (F=-1),

where A,,:(_Z 111]>’ B,,:(f _;)EM(Z, R) and 1=:, j=p.

Remark. Here we can give an exceptional Jordan algebra with the auto-
morphism group of type F,s, by making use of 8 for n=3. In fact, let J be
the exceptional Jordan algebra of type F,;, (in Section 2). Then the algebra
can be obtained in the similar way above by the complexification of the (—1)-
eigenspace for an automorphism: aX—eBX in J.

7. Real forms.

We can see later that any involutive automorphism in each compact simple
Lie algebra can be made of three kinds of involutive automorphisms «, 8 and y
in the composition or the matrix algebras. First we extend these maps to in-
volutive automorphisms in the Lie algebra L(A, M™, A®) by the following way :

247 Da,b+CXd+Du,v - Daa,a‘b+(ac)Xd+Du,vr
Ay Da,b+CXd+Du,v I Da,b+CX(ad)+Dau,nv;
,8: Da,b+CXd+D1¢,v I Da,b+c(‘BX)d+Du,u

and 7 is defined by the same way as 3. In this definition we use the same
notations for the extended involutive automorphisms. Then we can see easily
that a,, 8, 7, aua,, asa8, a8 and a7 (1=1, 2) are again involutive automorphisms
but 87 and «,8r (:=1, 2) are involutive under the condition that both p and ¢
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(n=p-+q) of 8 are even number. Note that 7, 87, @,y and «;87y (=1, 2) exist
only if n (of M™) is even number.

Now we can give all the real simple Lie algebras i the following table.
We write in (a) compact simple Lie algebras, in (b) those involutive automo-
rphisms, in (¢) the dimension of the (—1)-eigenspace for each involutive automo-
rphism, in (d) and (e) the types of the irreducible Riemannian symmetric space
and the models of the non-compact simple Lie algebra respectively corresponding
to each involutive automorphism (cf. S. Helgason [37]) and in (f) the types of
exceptional Lie algebras. We can know that the models in (e) are real simple
Lie algebras by the following commutative diagrams (up to isomorphism); in the
case of L(M"s, C,), for example,

Lo, 00— oo, €

LT L
2
Mn’ C—L)_)Afnﬂy Cfr »

where (1) is the duality by «f, 1.e., the complexification of the (—1)-eigenspace
of af, (2) is the duality by « and 8 for C and M" respectively and L is the
our construction of Lie algebras.

We omit R from the notation L(AP, M™, A®) if one of these algebras is R
and also omit the suffix ; of «, unless the confusion does not occur.

Table Real Slmple Lie Algebras

(a) (b) (C) (d) (e) ()
A,y LM, C) a, 01,8 (n 1)(n~l—2)/2 41 L(M” a)
L(M*g, Co)
ay, afr (n—=2)(n+1)/2 Al L(M™, C.)
L(M"g;, Co)
8,1, Br 2pq Al L(M*5, C)
L(Mm*,, C)
L(M",e;, C)
B(n /2 L(iw) B P(] BI BH L(A/]”ﬂ)
C. L(M", @) a, aB, 1, Br n(n+1) CI L(M™, Qa)
L(M™3, Q.)
L(M™, Q)
L(M"g;, Q)
3, ar, aBy 4pq cl L(M™s, @)
L(M";, Q.)
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Table Continued
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(b)

@

Press, New York, 1978.
[4] N. JacoBson,
[51 R.D. SCHAFER,

New York, 1966.

(a) (c) (e) ()
Dn/z L(Mn) ‘B p(] DI ,DH L(Mnﬁ)
7, Br n(n—2)/4 DIl L(M™,)
L(Mnﬁr)
E, L€, M? C) aias, aia,f 42 E1 L&, M3 C,) E
L(€,, M®s, Cp) %
ay, auf 40 El L@, M C) g
L(€,, M?, C) —¢®
B 32 Em L, M?s;, C) Eg-1p
a, a3 26 EIV LG, M?, C,) E
L(@, M35, Ca) 6(-26)
E; L6, M*, Q) o, oy 70 EV LG, M:, Q) g
LG, M, Q) ~™7
ay, aB, 3 64 EVI L€, M*, @)
(@m Mgﬁy Q) E’Z(—ﬁ)
L€, M?s, @)
o, a3 54 EvVi L€, M3, Q.,) E
L, M*;, Q,) 7(-25)
Es LG, M3, 6) a0, fB 128 EVI LG, M3 G,
ala'z.B L(E, Mgﬁ, ) Egs
L<@ay Msﬁ: @a)
ay, O, a3 112 EIX L@,, M?, §)
a LM, 6
L(€,, M?g, €) 78020
LG, M?, €,)
F, LG, M?) ay, af 28 FI LG, M?) F
((gm M:;ﬁ) 4(4)
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