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ANOTHER CONSTRUCTION OF REAL

SIMPLE LIE ALGEBRAS

BY KENJI ATSUYAMA

Introduction.

In 1966, J. Tits [6] and E.B. Vinberg [7] made explicit models of excep-
tional simple Lie algebras independently. It is known that Tits' models contain
all the real forms of these Lie algebras (cf. N. Jacobson [4]). In this paper we
shall give first another construction of compact (real) simple Lie algebras which
are isomorphic to Tits' and Vinberg's models in the case of exceptional Lie
algebras. Furthermore we shall make all involutive automorphisms in each Lie
algebra and also give all the real forms explicitly, corresponding to the involutive
automorphisms, which are simpler than Tits' Lie algebras.

1. Preliminaries.

Let 2Ϊ be a composition algebra over the field R of real numbers. Let a, b, c
be elements in 51. If a conjugation — : a^ά is usually defined in % we have
a symmetric inner product (α, b)=l/2(ab+ab). If the commutator and the as-
sociator are written as [α, b~] — ab—ba and (a, b, c)=(ab)c—a(bc) respectively,
any inner derivation of 9ϊ can be generated by Da>b where Datb(c)=[£a, b"], c}
-3(fl, b, c).

In the composition algebra 9Ϊ, it is well known that the following identities
hold (cf. R. D. Schafer [5]).

LEMMA 1.1. For a, b, ce^ί, we have that

(1) (ab, c)=(bc, a),
(2) {a, b, c)=(b, c, a)=—{b, a, c),
(3) Da,b=-Db,a, Datb(c)=Dά>b(c),
(4) (Da,b)+(a,Db)=0,

(5) ID, Da,b2=DDa,b+Da,m,
(6) Dab.e+Dbe.a+Dea.b=0,

where D is any inner derivation of 91.

Let M(n, R) denote an nXn matrix algebra over R with coefficients in R.
Let X, Y be elements in M{n, R). We usually define a transposed operator
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T : X-*XT in M(n, R) and define a symmetric inner product by {X, Y)=tr(XY)
where tr(X)=l/n(xn-\ \-xnn) for X=(xtJ)^M(n, R). Then we have ( I F , Z)
= (YZ, X).

Let X, Y and Z be in M(3, JR). If /(Z, 7, Z) is a polynomial of X, Y and
Z, then Σ f(X, Y, Z) means the sum over all permutations of (X, Y, Z) relative
to f{X, Y, Z) and &f{X, Y, Z) means the sum over cyclic permutations of
{X, Y, Z).

In M(3, R) we can prove the following proposition by direct calculations.

PROPOSITION 1.2. For X, Y, ZeAί(3, R), we have the following identities
where I is the 3x3 unit matrix.

(1) // X, Y and Z are symmetric matrices with the trace being 0,

ΣXYZ-3&{X, Y)Z-6tr(XYZ)I=0.

(2) // X and Y are skew-symmetric matrices,

2XYX=3(X, Y)X.

(3) // Y and Z are skew-symmetric matrices and X is a symmetric matrix
with the trace being 0,

2(XYZ+YZX+YXZ)-2{Y, Z)X-6tr(XYZ)I=0.

(4) // X is a symmetric matrix with the trace being 0 and Y is a skew-
symmetric matrix,

2(XΎ+XYX+YX2)=3(X, X)Y.

Let 2ί(1)(g)M(ft, R)<g>yim be a tensor product over R of one matrix algebra
and two composition algebras. We write aXu instead of a®X®u. In this
tensor space we can define a product by xy — abXYuv for x — aXu and y—bYv.
Moreover an involution and a trace Tr can be given by aXu-^άXτΰ and
Tr(aXu) = a tr(X)Iu respectively where / is the nXn unit matrix. If f{xyy,z)
is a polynomial of x, y and z, two sums Σf(x, y, z) and S/(x, y, z) are defined
as before.

2. Exceptional Jordan algebra J.

Let (£ be the Cayley algebra of non-split type (cf. Section 5) and let M(3, (£)
denote the matrix algebra over R of all 3x3 matrices with coefficients in (£.
Then we can define an isomorphism between two algebras M(3, K) and S®M(3, R)
(resp. M(3, jR)(g><£) by (^αt;)-^®^./) (resp. (aιj)<ξ§eι) for ^ e δ and (cz^)e
M{3, R). Hence, if necessary, we shall identify these elements in the following
way where we neglect the notation (g):

(eiatJ)=eiA (resp. Aet) for A=(alJ)^M(3, R);
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especially, for the Jordan product x°y = l/2(xyJ

Γyx) and the Lie product [x, y~]
= #3; —yx, we can write

l(eίaιj), {ertιbι

where eu g m £ δ and A—(aXJ), B — {bij)^M{3, R).
Let / denote a vector space over R composed of all symmetric matrices in

M(3, (£) with respect to the involution: aX-^άXτ. Then / becomes an excep-
tional Jordan algebra by the Jordan product °. If an element x e / h a s the form

a3 ά2

a2 dx <

we can define the generic norm (x, x)j by (x, x)j — l
2a2ά2

J

Γ2a3ά3). If we put Lx{y) — x°y and Ad{z)y — [_zy y~] for x, y^J and Ά

( G M ( 3 , K)) with the skew-symmetric form, we have the following proposition.

PROPOSITION 2.1. For aX, bY, cZ^J, we obtain that

(1) {aX, bYh=(a, b){X, Y),
(2) Σ(aX*bY)*cZ-Z<&{aX, bY)jcZ-6(aX°bY, cZ)jI=0,
(3) 4[L α X , LbYl = (X, Y)Da,b+Ad{ZaX, bY^-Tr[_aX, bY~]),

where Da>b{cZ) = {Da,b{c))Z and Tr(dW) = dtτ(W)I for dW^M(3f )K.

Proof. (2) is the characteristic polynomial which is well known in the ex-
ceptional Jordan algebra / (cf. [5]). For (3), in the case of the trace of aX, bY
and cZ being 0, if we operate 4[Lα X, Lbγ]-{Xy Y)Da>b~Ad([aX, bY^-Tr[aX,
bYJ) on cZ, we can have -{a, b, c){XYZ+ZYX+YXZ+ZXY-XZY-YZX-
3(X, Y)Z). This is identically 0 by (2) in Proposition 1.2 and from the fact that
the associator (a, b, c)—0 if one of the elements is real, i.e., a — ά as an example.

Remark. Let x be an element in M(3, K) which is skew-symmetric and has
the trace being 0. Then, by (3) in Proposition 1.2, we can prove directly that
Ad(x) is a derivation of /. Hence (3) in Proposition 2.1 can be considered a
sharpened fact the operator \_LaX, Lbγ] is a derivation in the Jordan algebra /.
The automorphism group Aut(J) of / is the real simple Lie group of type Fi(-δ2).
If we use the Cayley algebra of split type in the above argument (cf. Section 5),
we can have the exceptional Jordan algebra with the automorphism group of
type F4 ( 4). As for the type F4(_20), the corresponding algebra is given in Sec-
tion β. We note that Proposition 2.1 also holds for these algebras and moreover
the identity (3) is true for other real simple Jordan algebras.
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3. A construction of Lie algebras.

We use the same notations as the last part of Section 1. Let Wl denote a
vector space over R which is generated by all elements in $ϊ(1)(g)M(ft, R)^W2)

with the trace Tr being 0 and the skew-symmetric form with respect to the
involution aXu-+άXτϋ. Let Der%a) and ΏerW2) are the Lie algebras of all
inner derivations of 2Ϊ(1) and 5I(2) respectively.

Let L(ΨΏ, Mn, 2ί(2)) be the vector space DerWι)®m®Der%{2) (direct sum)
over R. In this space we define an anti-commutative product [, ] in the follow-
ing way:

i t h e L i e P r o d u c t i n

I 0
(2) [ £ ( 1 ) , aXu^(D(1)a)Xu and [L>(2

(3) For x = aXu, y = bYv in 9tt,

Zx, yl = (X, Y)(u, v)Da.b+(xy-yx-Tr(xy-yx)) + (X, Y)(a, b)Du,υ,

where D(ί\ i — l, 2, are elements in DerWl).

THEOREM 3.1. L(2ί(1), Mn, 2I(2)) becomes a real Lie algebra by the anti-com-
mutative product [ , ] where, if 2ϊ(1) or 2Ϊ(2) is a Cayley algebra, n —1 or 3.

Remark. L(2I(1\ Mn, ψ2)) is isomorphic to L(Ψ2), Mn, 5ί(1)). If Ψί}=R,
L(R, Mn, %{2)) is a compact simple Lie algebra of type B(n-1)/2 (or Dn/2), An^
or Cn according as %{2) is R, C or Q where C and Q are the field of complex
and quarternion numbers with the non-split type respectively. If 9ί(1)— (£,
L(K, M3, 5ί(2)) is a compact simple Lie algebra of type F4, £ 6 , EΊ or £ 8 accord-
ing as 2ί(2) is /^, C, Q or ®. We note that Theorem 3.1 also holds for all com-
position algebras with the split type. In this section we shall prove only
Theorem 3.1 and, in Section 4, establish an isomorphism between the above
models and Tits' Lie algebras instead of the proof for the compactness and the
simpleness of L(2Ϊ(1\ Mn, 2ί(2)). Then we shall have a new viewpoint for Tits'
construction.

Proof of Theorem 3.1. In the case of n=3 and 2I(1) being the Cayley algebra
with the non-split or the split type, we shall prove that the Jacobi's identity
holds for x, y, z^S$R. In other cases, we can prove easily it by Lemma 1.1 and
the definition of L(2Ϊ(1), Mn, 2f(2))

For χ — aXu, y — bYv, z=cZw^W, from long calculations, we obtain that

CO, yl, zl+ZZy, * 1 * ]+[[>, * ] , y]=( i )+(U)+(iii)+(iv) H v ) :

( i ) = {XY, Z)(uv, w)&Dab,c+(XY, Z)(ab,

-{YX, Z){vu, w)&Dba>c-(YX, Z){ba,

=0 by Lemma 1.1,
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(ii)=(α, b, c){ΣXYZ(uv)w} + {Σa{bc)XYZ}{u, v, w),

(iii)=-(α, b, c){Σ tr(XYZ)I(uv)w}-{Σa(bc)tr(XYZ)I}(u, v, w),

(iv)=@{-[α&, c](X, Y)Z(uv)w-c(ab)(X, Y)Z\uυ, w~]

+[ba, cJX, Y)Z(vu)w + c(ba)(X, Y)Z[υu, wl}

and

(v )=©(*, Y)(u, v)Ha, bΊ, clZw-3(a, b, c)®(X, Y)(u, v)Zw

+©(Z, Y){a, b)cZ[_[_u, v], w;]-3{@(Z, 7)(fl, ^)cZ}(w, v, M;) ,

where for (ii) and (iii) the definition a(bc) — (ab)c—(a, b, c) is used repeatedly
and for (v) we use £ α > δ (c)=[[α, b~\, c~]—3(α, ^, c).

Here our proof is divided into the four cases:
(case 1) a, b, c, u, v, w are purely imaginary numbers,
(case 2) a, b, c are real numbers,
(case 3) a, b are real numbers and c is a purely imaginary number,
(case 4) a is a real number and b, c are purely imaginary numbers,

where that αeSί is a real number means a — a and that a is a purely imaginary
number means a —— a.

(case 1) By three identities ΣXYZ(uv)w=Σ(Xu°Yv)°Zw+l/2{ΣXYZ
(u, v, w)}, Σa(bc)XYZ=Σ(aX°bY)°cZ-l/2{Σ(af b} c)XYZ) and Tr((Xu°Yv)°Zw)
~(Xu°Yv, Zw)jl, we obtain

(ii)=(α, b, c){Σ(XuoYv)°Zw} + {Σ(aX°bY)°cZ}(u, v, w),

(iii)=-(α, b, c){Σ(Xu°Yv, Zw)jl}- {Σ(aX<>bY, cZ)jI}(u, v, w).

And, by ab+ba~2(a, b) and [[α, b~], c~\=2\_ab, c], we have

(iv)=-©(Z, Y){u, v)Ha, bl, c~]Zw-&(X, Y)(a, b)cZ[£u, v~], w~].

Hence the total sum (ii)+(iii)+(iv)+(v) is

(α, b, c){Σ(Xu°Yv)°Zw-3®(Xu, Yv)jZιv-6(Xu>Yv, Zw)jl}

+ {Σ(aX°bY)°cZ-3(&(aX, bY)jcZ-6(aX°bY, cZ)jI}(u, v, w).

This is identically 0 by (2) in Proposition 2.1.
(case 2) The total sum gets

abc{ΣXYZ-3<5(X, Y)Z-Σ tr(XYZ)I}(u, v, w).

This is also 0 by (1) in Proposition 1.2.
(case 3) The total sum becomes

abc{ΣXYZ-3(X, Y)Z-Σ tr (XYZ)I}(u, v, w)-abc&{X, Y)Z[£u, v~], w]

+ abc(X,
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If u, v, w are purely imaginary numbers, the sum is 0 by (4) in Proposition 1.2
and (X, Z)=(Y, Z)=0. If not so, it gets 0 obviously.

(case 4) If u is a real number, the sum is 0 evidently. Hence we can as-
sume that u is a purely imaginary number. If v or w is a real number, the
sum becomes

a{-lb, cJX, Y)Z\u, v]w + [b, cJZ, X)Y£w, ιί]υ-bc{Y, Z)X[yw, u~\

+ cb(Y, Z)X{_wvi ul) .

Especially, in the case of v and w being real numbers, it is 0 because all \_u, v\
[w, u]f [yw, u] are 0. If υ is a real number and w is a purely imaginary num-
ber, X and Y are symmetric matrices and Z is a skew-symmetric matrix. Hence
it is 0 because [M, V~], (X, Z) and (Y, Z) are 0. If v is a purely imaginary num-
ber and w is a real number, X and Z are symmetric matrices and Y is a skew-
symmetric matrix. Hence it is also 0 because [w, u~], (X, Y) and (Y, Z) are 0.
Finally, if v and w are purely imaginary numbers, Y and Z are skew-symmetric
matrices and X is a symmetric matrix with the trace being 0. Then, by {X, Y)
= {X, Z)—Q and vwJrwv—2(v, w), the sum can be rewritten as

{Σa(bc)XYZ-3(Y, Z){b, c)aX-Σa(bc)tr(XYZ)I}(u, v, w).

Furthermore, from (3) in Proposition 1.2, it becomes

a(b, c){2(XYZ-\-YZX+YXZ)-3(Y, Z)X-6tτ(XYZ)I}(u, v, w)

and at last 0 identically.

4. An isomorphism to Tits' Lie algebras.

We shall establish an isomorphism between our Lie algebra L(8ί(1), M3, 2I(2))
and one of Tits' Lie algebras. Let 8ί0 (resp. Jo) denote a vector space over R
composed of all elements in an composition algebra 81 (resp. the exceptional
Jordan algebra / in Section 2) which are orthogonal to the unit element with
respect to the inner product (,) (resp. (, )j). Let Der J be the Lie algebra of
all inner derivations of /, i.e., [_LX, Ly~] where x, y^J0. Now we give an anti-
commutative product [, ] after Tits in the vector space Der /(£
over R such that

the original Lie product for Dlf D^Der J or

(1) [0i, Aα = « Du

0 for D^DerJ and L
(2) [0i, x ® α ] = 0 i x ® α and [_D2, x®a~] — x(ΪZ)D2a for

and
(3) for x®a,

— {a, b)ZLx, Ly~]Jrx*y®a*b+l/A(x, y)jDa,b,
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where x*y = x°y — (x, y)jl and a^b — ab—{a, b)eQ (I is the 3x3 unit matrix and
e0 is the unit element in Si). This algebra becomes a real simple Lie algebra.
The above definition is taken from H. Freudenthal [2] and it is similar to our
construction except (3).

Let Wire and 9ftim be vector subspaces of Wl which are composed of all
elements aXu where each M is a real number or a purely imaginary number
respectively. Then ^ = ^ r e 0 ^ i m . Now we give an isomorphism / between
the two Lie algebras:

where D(1)(cZ) = (D(1)c)Z for cZ<=J and 2ί ( 1 )=(L By Remark of Proposition 2.1,
we can see that the definition of / is well-defined. And that / is a homomo-
rphism can be proved by {aX, bY)j — (a, b)(X, Y) and the following proposition.

PROPOSITION 4.1. // aX and bY are skew-symmetric matrices in M(3, (£) with
the trace being 0, we have

(1) ίΛd(aX), Ad(bY)l = (X, Y)Da,b+Ad{laXy bY~]-Tr[_aX} bY~]\
(2) [_D, Ad(aXn = Ad((Da)X) for

(1) is obtained from (4) in Proposition 1.2. This proposition also holds for
other real simple Jordan algebras.

THEOREM 4.2. The Lie algebra L(Sl(1), M3, 2Γ2)) is isomorphic to one of Tits'
Lie algebras.

Remark. If we use two matrix algebras M3, M3^, composition algebras of
split or non-split type and the exceptional Jordan algebras (cf. Section 2, 6), we
can construct all Tits' Lie algebras by the isomorphism /.

We also know that E. B. Vinberg [7] gave a construction of exceptional Lie
algebras. Noting that (α b)-=l/2(ab~J

Γbά) is used in [7] as the inner product
of composition algebras, we can give easily an isomorphism between our and
Vinberg's models. So we can say that these algebras stand at the same stand-
point in essential.

5. Composition algebras.

First we give a basis explicitely in the Cayley algebra K of non-split type
over R as follows:

the basis: e0, eu •••, eΊ;
the rule of the product:
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exeJ = —ejeι (z, ^ l and Z^F/) , eιeι=—e0

e0 is the unit element;

the conjugate operator — : eo-^eo, eι->—eι ( l ^ z ^

Then in the Cayley algebra (£ we can realize R, C or Q as subalgebras generated
by {e0}, {e0, ex) or {eQ, eu e2, es} respectively. In each composition algebra
(except R) of non-split type, we have essentially one kind of involutive auto-
morphism a (cf. K. Atsuyama [1]) defined by

C Q g

βθ, &1 βθ, 0 1 , 0 2 , ^ 3 0 0 , ••• , 0 3 , 0 4 , ••• , £ ?

0 0 , — 0 1 0 0 , 0 1 , — 0 2 , — 0 3 0 0 , ••• , 0 3 , — 0 4 , •'• , — 0 7 ,

This α makes the inner product (a, b) and the unit element eQ invariant.
Now we consider the Cayley algebra K as an example. The (—l)-eigenspace

for the involutive automorphism a is a vector space of the basis {eA, es, eG, e7}
Then we can obtain the other real Cayley algebra (£α with the split type by the
complexification of this (—l)-eigenspace. And the basis of Sα is given by

Co, e1? e2, e8, ie4, ie5, iee, ie7 (i2—~l).

In this way we can get all composition algebras of split type, i.e., Ca, Qa and
Sα. Each of these algebras has the conjugation defined by in (£α, for example,
eo->eo, ei->-eι (l^z^3) and ίei-^-ieι (4gι^7).

A basis in Der % is also given according as % is R, C, Q or (£ by {0}, {0},
{Deuej} with (ί, ;) = (1, 2), (2, 3) and (3, 1) or {Deι>ej} with (/, ;) = (1, 2), (2, 3),
(3, 1), (4, 5), (6, 4), (4, 7), (1, 4), (5, 1), (1, β), (7, 1), (4, 2), (2, 6), (7, 2) and (3, 4).
And the dimension of the (—l)-eigenspace for an involutive automorphism:
Daίb~^Daa,ab in Der% is 0, 0, 2 or 8 respectively.

6. Matrix algebras.

The nXn real matrix algebra M(n, R) (=Mn) has two kinds of involutive
automorphisms β, γ. β is defined for any natural number n—p-^q such that

P Q
pi A : B \ I A B

. C I D I \-C D

It makes the inner product (X, Y) and the unit matrix / invariant. Note that β
depends on p (or q). Especially, if n—3, there exists only one involutive auto-
morphism (up to conjugation) corresponding to p = l and q=2. The other kind
of involutive automorphism γ is defined only for an even number n=2p such that
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γ:(Axj)—>0vM for Λ ; G M ( 2 , R) and l^t,j^p,

where γ0 is an involutive automorphism in M(2, R) which is given by

(a ,)->( \ ) for α, b, c, (LSLR. 7 also makes the inner product (X, Y) and
\c a/ \—b a'
the unit matrix / invariant. We note that γ0 relates to an involutive auto-
morphism in Qa and, if p and q are even number, β and γ are commutative, i.e.,
βγ is an involutive automorphism again.

Next we construct real matrix algebras Mn

β and Mn

γ corresponding to β and
γ respectively. Mn

β is the matrix algebra with the basis obtained by the com-
plexiίication of the (—l)-eigensρace for β: The forms of the basis are

( ί 2 = - l ) .

Mn

γ is the matrix algebra with the basis obtained by the complexiίication of the
(—l)-eigenspace for γ: The forms of the basis are

(Atj) or i(BtJ) (i2=-l),

(d

\c —

A

0

°\
D

or
/°

Ί\c

B

0

where AlJ=( a

u \ BtJ=(d .C)GM(2, R) and l^i, j^p.
\—b a' \c —α/

Remark. Here we can give an exceptional Jordan algebra with the auto-
morphism group of type F4^20) by making use of β for n—3. In fact, let / be
the exceptional Jordan algebra of type Fu-52) (in Section 2). Then the algebra
can be obtained in the similar way above by the complexification of the (—1)-
eigenspace for an automorphism: aX-^aβX in /.

7. Real forms.

We can see later that any involutive automorphism in each compact simple
Lie algebra can be made of three kinds of involutive automorphisms a, β and γ
in the composition or the matrix algebras. First we extend these maps to in-
volutive automorphisms in the Lie algebra L(2ί(1), Mn, 2ί(2)) by the following way :

Du,υ—> Daa.ab+(occ)Xd+Du,v,

oc i' Datb+cXd+DUίΌ —> Da,b

J

rcX(ad)JrDaUιaυ,

β : Da,b+cXd + Du,Ό —> Da,b+c(βX)d+Du,v

and γ is defined by the same way as β. In this definition we use the same
notations for the extended involutive automorphisms. Then we can see easily
that aιt β, γ, aιa2, a1a2β, aiβ and aj (r—1,2) are again involutive automorphisms
but βγ and aφγ (ι = l, 2) are involutive under the condition that both p and q
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{n — p-\-q) of β are even number. Note that γ, βγ, aj and oLφγ (z —1, 2) exist

only if n (of Mn) is even number.

Now we can give all the real simple Lie algebras in the following table.

We write in (a) compact simple Lie algebras, in (b) those involutive automo-

rphisms, in (c) the dimension of the (—l)-eigenspace for each involutive automo-

rphism, in (d) and (e) the types of the irreducible Riemannian symmetric space

and the models of the non-compact simple Lie algebra respectively corresponding

to each involutive automorphism (cf. S. Helgason [3]) and in (f) the types of

exceptional Lie algebras. We can know that the models in (e) are real simple

Lie algebras by the followmg commutative diagrams (up to isomorphism) in the

case of L(Mn8, Ca), for example,

L(Mn, C) κ-!—^L(Mnβ, Ca)

A A

where (1) is the duality by aβ, i.e., the complexiflcation of the (—l)-eigenspace

of aβ, (2) is the duality by a and β for C and Mn respectively and L is the

our construction of Lie algebras.

We omit R from the notation L(2I(1), Mn, 2I(2)) if one of these algebras is R

and also omit the suffix ι of a% unless the confusion does not occur.

Table Real Simple Lie Algebras

(f)(a)

A»-i L(Mn, C)

Cn L(M», Q)

(b)

a, aβ

aγ, aβγ

β, r> βr

β

a, aβ, γ, βγ

β, aγ, aβγ

(c)

(ft — l)(n+2)/2

(w—2)(w+l)/2

2pq

Pq

Apq

(d)

.4 1

>4Π

.4ΠI

5 1 , BR

CI

CU

(e)

L(Mn

L(Mn

L(Mn

L{Mn

L(Mn

L(Mn

L(Mn

,Ca)
β, Co)

γ, (^n)

βγ, Ca)
β,C)
r,C)
βr, C)

L(Mn

β)

L(Mn

L(Mn
,Qa)

L(M\,Q)
L(Mn

L(Mn

L(Mn.
L(Mn

βr, Q)

β,Q)
r, Qa)
βr, Qa)
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Table Continued

Dnlt

Er, 1

EΊ 1

E, I

FtL

G2 I

(a)

L(Mn)

:(©, M\ c)

:(S, M\ Q)

:(®, M\ g)

.(<£, M 3 )

(b)

r, βr

Cdcci, axaφ

au aφ

β
a2, aφ

a\a<L, a\aφ

au aλβ, β

a2, aφ

aλa2f β
aλaφ

ax, a2, aλβ

aφ

ax, aλβ

β

a
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(c)

pq

n(n-2)/4

42

40

32

26
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