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SPECTRAL GEOMETRY OF CR-MINIMAL SUBMANIFOLDS
IN THE COMPLEX PROJECTIVE SPACE

By ANTONIO ROS

Introduction. In the first part of this paper we will study an isometric
imbedding of the complex projective space in the Euclidean space, see [7].

In the second part we use this imbedding and the total mean curvature
theory, see [4], in order to obtain certain boundaries of the volume and the
first eigenvalue of the spectrum of CR-minimal closed submanifolds of the
complex projective space, such as certain characterizations of some of these
submanifolds, in function of these geometric invariants. We give a A;-charac-
terization of totally geodesic complex submanifolds, a spectral reduction of
codimension theorem for totally real submanifolds and some other results.

Manifolds are assumed to be connected and dimension n=2 unless mentioned
otherwise. For the necessary knowledge and notations of the geometry of sub-
manifolds, see [2], and for spectral geometry, see [1].

1. An imbedding of the complex projective space in the Euclidean space.
Let HM(n)={A=gl(n, C)/A=A"} be the set of nxn-Hermitian matrices.
HM(n) is a n®-dimensional linear subspace of gi(n, C). We define in HM(n)
the metric
g(A, B)=2trace (AB) for all A, B in HM(n).

Let CP*={A=sHM(n+1)/AA=A, trace A=1} and U(n) be the unitary group.

LEMMA 1.1. CP™ s a submamfold of HM(n+1) diffeomorphic to
Un+1)/U0Q)xU(n).

Proof. Let A be in CP" Since A is a Hermitian matrix, there exists P
in U(n-+1) such that
ho
PAP =

ha

As PAP'=(PAP-%)? h,=h? so that h,=0 or h,=1, but trace (PAP Y)=1I,
therefore there exists an index 1z, such that h,=1 and h,=0 for all z#q,.
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Hence, we see that there exists P in U(n+1) such that
1
PAP- = . =4,.

We will say that A4, is the origin of CP". Moreover CP" is the orbit of
A, for the action of U(n+1) over HM(n—+1) given by (P, A)y—PAP~!, where P
is in U(n+1) and A isin HM(n-+1). The isotropy subgroup of A4, is U(1)xU(n).
Therefore CP"=U(n+1)/U(1)XU(n). (Q.E.D.)

For any A in CP™, we denote by T CP™) the tanget space of CP™ at A
identified by means of the immersion with a subspace of HM(n-+1). In the
same way we denote by T4(CP™) the normal space of CP™ in HM(n-+1) at
the point A.

LEMMA 1.2. For any point A in CP™, we have
(L.1) TACPM)={XeHM(n+1)/XA+AX=X},
(1.2) THCP"={ZeHM(n+1)/AZ=ZA} .

Proof. Let a: ['-CP™ be a curve such that a(0)=A4 and «’(0)=2X, where
I” will denote an open interval of real numbers which contains 0. Then from
alt)at)=a(t) we obtain XA-+AX=X. Therefore we have one inclusion. Since
the applications L,: HM(n+1)—»HM(n-1) given by A—PAP™!, where P is in
U(n+1), are isometries, it is enough to establish this equalities at the origin.
Now we will compute the dimension of the subspace {XeHM(n-+1)/XA,+
A X=X},

For any Xe HM(n+1) we put

a b
X:< . ) where a€R, beC™ and c=HMn).
bt ¢

Then XA,+ A, X=X if and only if ¢=0 and ¢=0, so that

0 b
X=| _ , with beC™.
bt 0

The real dimension of this subspace is 2n=dim T (CP™)=dim U(n-+1)/U(1)
xXU(n) and so we have (1.1).

A vector Z isin T4, (CP")if and only if 2 trace (XZ)=0 for all XeT,(CP").
Let
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Then, 2 trace (XZ)=4 Real trace (by'). Therefore g(X, Z)=0 for all X in
T 4,(CP™), if and only if y=0.

On the other hand, ZA,=A,Z if and only if y=0. (Q.E.D.)

Remark 1.3. The vector fields given by A— A and A—1I (where I denotes
the identity matrix) are normal to CP™ The vector fields given by A—AQ
+QA—2AQA are tangent to CP™ for all Q in HM(n+1).

Hence forth, we will use the following relations which can be obtained by
direct calculus. Let A be in CP™ and X, Y in T 4CP"). Then AXY=XY A,
AXA=0, X(I—-2A)=—T—-2A)X, I—2A%=I, (I—2A)XY=XY({I—2A).

PROPOSITION 1.4. Let D be the Riemanman connection of HM(n-+1), V the
mnduced connection in CP™, & the second fundamental form of the immersion, V*
and A the normal connection and the Weingarten endomorphism and H the mean
curvature vector of CP™. Then

(1.3) VxY=ADsY)+(DxY)A—2A(DxY)A,
(1.4) (X, Y)=(XY+YX)I—-24),

(1.5) N4Z=DyZ+2A(DxZ)A—(DxZ)A—A(DxZ),
(1.6) A X=(XZ—-ZX)I—-24),

@ =5 [I~(n+DA],

where X and Y are tangent vector fields to CP™, and Z is a normal vector field
to CP™.

Proof. Let V and ¢ be as in (1.3) and (1.4). Let X be any vector in
T.CP™ and Y any tangent vector field to CP*. If a: I —CP™ is a curve
which satisfies a(0)=A and «’(0)=X, we have a@)Y(@®)+Y(@)a(t)=Y (). There-
fore

(1.8) XY+YX+ADxY)+H(DxY)A=DxY .
On the other hand, we have a()Y(#)a(t)=0. Therefore
(1.9) XYA+A(DyY)A4+AY X=0.

From (1.8) and (1.9), we get DxY=VyY+ad(X, Y).

A simple calculations proves that VyY (resp. (X, Y)) is tangent (resp.
normal) to CP*. Then we have (1.3) and (1.4).

Let V* and A be as in (1.5) and (1.6). Let Z be any normal vector field

to CP"*. We have a(t)Z({#)=Z)a(t), then
XZ+ADxZ)—(DxZ)A—ZX=0,
A X=(XZ—-ZX)I—-2A)=[(DxZ)A—ADxZ)JI—-2A4)
=2ADxZ)A—(DxZ)A—ADxZ)=N%Z—DxZ .
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From (1.1) (resp. (1.2)) we see that AzX (resp. V%Z) is tangent (resp.
normal), hence we have (1.5) and (1.6).

It is enough, to verify (1.7) at the origin.

Let {E,, --- E,, E¥, --- E¥} be an orthonormal base in T 4CP™) defined by

(k)
0 0010 -0
0
1 P
2ol 0 ’
0
(k)
0°0 -0 1 - 0
0
- «
Er=V_"1L
T2 ) -1 0
5
0!
A direct calculation proves that
—nl 0 - 0
A=l 01l ian (Q.E.D)
Ay=— 2n : { . = zn n 0 - NS VRS N
S
0 1

LEMMA 15. a) Let f be the diffeomorphism obtained 1n lemma 1.1. Then f
is an 1sometry when we consider on U(n+1)/U(1)XU(n) the Fubini-Study metric
with holomorphic sectional curvature c=1, and on CP™ the metric induced by that
on HM(n-1).

b) The complex structure induced by the isometry f in CP™ 1s gwen by

JX=~—1U—-2A4)X, for all X in T (CP™).

Proof. a) Since both metrics are U(n-+1)-invariant, it is enough to see that
the differential of f at the origin is an isometry between the corresponding
tangent spaces.

Let [P] be the coset of PeU(n+1) in U(n+1)/U1)xU(n). Then f([PI)
=PA,P~! and so

0
To(U(n+1>/U(1)><U(n))={( ) g)/aEC"}, 0=[1].
—at
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The Fubini-Study metric of the constant holomorphic sectional curvature
c=1 at the origin is given by

0 a 0 b abt 0
o , _ =2 trace .
—at 0 —bt 0 0 at

0
Let a: I'->U(n—+1) be a curve such that a(0)=1I and a’(O)Z( ] Z ) We
—at
consider the curve B:I'—-Un+1)/U1)xU(n) given by p#)=La@)].
0 a 0 —a
dfo( )i(fﬁ)/(o):a’(o)/lo&@‘—I—a(O)AocT’(_—)‘ ( ) and we

—at 0 —at 0

0 a 0 b abt 0
have g\ (df) , (df) _ =2 trace . This show a).
—at 0 —bt 0 0 a'

b) The complex structure f at the origin of U(n+1)/U(1)xXU(n) is given
. 0 a 0 —a 0 a

by J =+/—1 , see [6]. Let be a vector in

—at 0 —at 0 at 0

T 4,(CP™). Therefore the complex structure induced in CP™ is given by

0 a . 0 a [0 —a
(o] © 870
at 0 at 0 at 0

On the other hand
i} 0 a ) 0
V=1 (I—24)) V=1 (
at 0

a—t

I

—a
). (Q.E.D.)
0

The following proposition resumes some properties of the immersion. For
other properties, see [5], [7].

PROPOSITION 1.6. The wvmmersion of CP™ in HM(n+1) verifies the following
properties -

a) It 1s an isometric U(n-1)-equivariant imbedding.

b) ¢(JX, JY)=d(X,Y) and V5==0, that s, the second fundamental form s
parallel.

¢) It s mimmal wn the sphere S, whose center is [1/(n+1)1I and whose

radius 15 v/2n/(n-+1).

Proof. a) It is a consequence of lemma 1.1 and 1.5.
b) It is easy to see that ¢(JX, JY)=46(X, Y) for all X, YT (CP™. Let
X, Y,, Y, be any three vector fields tangent to CP*. Then we have

(Na)x(JY 1, JY2)=Vx6(JY 1, JY)—6(Nx JY 1, JY2)—6(JY 1, V2 JY5)
:VX(}(YI’ Y2)—&(VXY1, Y2)_&(Y1; VxYs)
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=(Va)x(Yy, Vo).

Therefore we have (Va)x(Y, JY)=0, for all ¥ in T4CP™), and so from
Codazzi’s equation (Vé)p(X, JY)=0. If we choose X=]JY, we have
0=Na)(JY, JY)=F3s)(Y, Y). Hence V&=0.

. n 1 1 _,El?

¢) If Ais in CP" then g(A—-—~7—1»3r-Iv1, A=y I)= o1 Therefore
CP™ isincluded in S. Let H be the mean curvature vector of CP™ in HM(n+1).
~ 1 __ n+l __7_71“7_ n . . .
A=y - U—(+DA)=—" (4 " I). Therefore CP" is minimal in S,
see [2]. (Q.E.D.)

LEMMA 1.7. Let E,, E, be any two vectors in T 4(CP™) such that g(E,, E,)=0
and g(E,, E\)=g(E,, E;)=1. Then

a) g(a(Ey, Ey), 6(Ey, Ev))=1,

b) 1/2=g((E,, Ey), 5(Eq E)<1.
Moreover if we have g(Ei, JE5)=0, then
c) g(a(E,, Ey), 6(E,, En)=1/2,

d) g(3(E,, Ey), 6(E,, E)=1/4.

0 a 0 »
Proof. Let E1:< ) and E2:< _ ) Then g(E,, E;)=1 if and
at 0 bt 0

only if aa'=1/4, g(E,, E;)=0 if and only if ab*=+/— 1 h, where he R. More-
over g(E,, JE;)=0 if and only if ab'=0. Now a), ¢) and d) are obvious.

1/16 0
b) g(a(Ey, Ey), 6(E,, E.)=8trace (E1E})=38 trace( o ):1/2
0 «/—1ha

“+8h% But h*=|ab'|*<|a|?|b|*=1/16. (Q.E.D.))

2. CR-minimal submanifolds in the complex projective space.

For CR-submanifolds see for example [4]. In the following we write
M?***P for a CR-submanifold of CP", where 2n=dim 9 and p=dim 9*, 9 being
the holomorphic distribution and 9+* the totally real distribution of M.

LEMMA 2.1. a) Let M™ be a submanifold of CP™. Let H* be the normal
component of the mean curvature vector of M™ in HM(m-+1) to CP™. Then

2.1) (n+1)/2n=g(H*, H*)<1.
b) Let M***? be a CR-submanifold of CP™. Let H* be as in a). Then
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(2.2) g(H*, H*)=[2n+p)+4n+p1/2@2n+p)*.

Proof. a) Let {E,, --- E,} be an orthonormal base of T «(M™") where A is
any point in M™. Let & be the second fundamental form of CP™ in HM(m-1).
Then le%z é(E,, E,). By using lemma 1.7 we have (2.1).

b) We can choose an orthonormal base of T (M) of the type {E,, - E,,
JE,, - JE,., Fy, -+ F}, where E,, JE, are in 9 and F, is in 9*. From lemma
1.7, we have (2.2). (Q.E.D.)

LEMMA 2.2. Let M?**? be a CR-submanifold of CP™, G the second funda-
mental form of CP™ in HM(m+1) and &y its restriction to M. Then

(2.3) 8(3y, 3)=1/DLEn+p)*+4n+3p].

The proof can be obtained by using lemma 1.7. From the expresion of the
scalar curvature for submanifolds in the Euclidean space, we obtain the following

COROLLARY 2.3. Let M*"*? be a CR-submamfold of CP™. Let H be the
mean curvature vector of M?*"*? in CP™, r the scalar curvature of M®***?, and o
the second fundamental form of M**? in CP™. Then

(2.4) r=[Cn-+p>+dn—pl/4+Q2n+p)g(H, H)—g(o, o).
B.Y. Chen has proved the following theorems:

THEOREM A. [2]. Let M be an n-dimensional closed submanifold of E™.
Then we have

(2.5) SMa"dvgcn ,

where a=~/g(H, H) is the mean curvature of M and c, s the volume of unit
n-sphere. The equality holds if and only if M is imbedded as an ordinary n-
sphere i an affine (n+1)-space.

For an isometric immersion of a closed manifold M in the Euclidean space
x: M—E™ we put x=(x,, -+ x,), Where x, is the 7-th coordinate function of
M in E™ We call an isometric immersion x is of order 2 if each coordinate
function x, of x is an eigenfunction of the Laplace Beltrami operator of M
corresponding to eigenvalue A,.

THEOREM B. [3]. Let x: M—E™ be an isometric immersion of a closed n-
dimensional Riemanman mamfold M wnto E™. The total mean curvature of x
satisfies

2.6) SMa"dz;g(%)n/zvol (M),
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where vol (M) denotes the volume of (M, g) and 2, denotes the first eigenvalue
of the Laplace-Beltrami operator of (M, g) acting on differentiable functions in
C=(M). The equality holds if and only if there is a vector ¢ mn E™ such that
x—c is an tmbedding of order 1.

COROLLARY 2.4. Let M™ be a closed mummal submanzfold of CP™. Then

we have
2.7 vol (M)=c¢, .

Proof. Let H be the mean curvature vector of M™ in HM(m--1). Let 1+
be the same as in lemma 2.1. Since M™ is minimal in CP™, H=H*. Now we
use theorem A and lemma 2.1. (Q.E.D.)

COROLLARY 2.5. Let M?"*? be a closed CR-nummal submanifold of CP™.
Then we have

@utpirintp P
2.8) k St o [T

The equality holds if and only 1f M=CP" 1s imbedded as a totally geodesic
complex submanifold in CP™,

Proof. By using theorem A and lemma 2.1 we obtain (2.8).

We suppose that the equality holds. Then M is isometric to a sphere of
radius R. We have vol(M)=R*"*?¢,,,,, and then R*=2(2n+p)*/[(2n-+p)*+4n-+p].
Let ¢ and » be the sectional curvature and the scalar curvature of M respective-
ly. Then ¢=1/R? and

(2.9) r=c@n+p—1)2n+p).
From corollary 2.3
(2.10) r=1/HLEn+pY+4n—p].

From (2.9) and (2.10) we have

[@2n+p)+dn]@n+p—2)+ p6n-+3p—2)=<0.

But this occurs if and only if n=1 and p=0. Therefore M is a unit 2-sphere
imbedded as complex submanifold in CP™. Since M and CP™ have the same
holomorphic sectional curvature ¢=1, we get that M is totally geodesic in CP™.
The converse is trivial because CP' is imbedded in HM(2) as a standard
sphere. (Q.E.D.)
The following corollaries can be obtained from theorem B and lemma 2.1.

COROLLARY 2.6. Let M™ be a closed munimal submanifold of CP™. Then
we have
(2.12) A=n.

COROLLARY 2.7. Let M?®*"*? be a closed CR-minimal submanifold of CP™.
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Then we have

(2.13) A=L@2n+p)i+4n+pl/2@2n+p) .

In particular, 1f M*®*® 1s a compact complex (resp. M? is a closed nunimal totally
real) submanifold of CP™ then

(2.14) A=n+1
(2.15) (resp. LW=(p+1)/2).

The following result gives a complete classification of the CR-minimal sub-
manifolds of CP™ which are minimal in some sphere of HM(m--1).

THEOREM 2.8. Let M*™*? be a CR-minimal submanifold of CP™. Then
M2+ 15 mummal in some sphere of HM(m~+1) 1f and only if one of the follow-
g cases holds:

a) p=0 and M*®* is a totally geodesic complex submanifold of CP™.

b) n=0 and M? is a totally real submanifold of CP™ for which there exists
a totally geodesic complex submanifold M*® of CP™, such that MP 1s a totally
real submanifold of M?®?,

Proof. We suppose that M?®***? is minimal in a certain sphere S of
HM(m-1). If Q denotes the center of S, we can suppose that @ is a diagonal
matrix (otherwise we can use an isometry of HM(m-1) of the type A—PAP™,
where P is in U(m+1)). Let H be the mean curvature vector of M in HM(m+1).
From the minimality of M in S we have H=h-(A—Q), for any A in M where
h is a real number with A+0. It is clear that QT 4(CP™). Therefore AQ=QA
for any A4 in M. That is, M is contained in the linear subspace, L of HM(n-+1),
which is defined by the equation AQ=QA. We put

a;
a;
Q_—_
ar
a-
Then
Ay
A, AA=A,
CPrnL= >itrace A,=1
Ar

Since A,A,=A,, we see that trace A, is a natural number. Hence for any A in
CP™N\ L there exists an index j such that trace A,=1 and trace A,=0 for all
1#7, which implies A,=0 and
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[ O l
e A A=A
CP™"L= A, / e

1 . trace A,=1 I
0

Therefore M is contained in a connected component of CP™~\L. Each of these
component is evidently a totally geodesic complex submanifold of CP™ (it is a
CP?, g=m), and M is a minimal submanifold of the sphere S~ L. Consequently
the problem is reduced to the study of CR-minimal submanifolds of CP? which
are minimal in some sphere of HM(q+1) whose center is al where a is a real
number and [ is the (g-+1)X(¢+1)-identity matrix.

We have H=h-(A—al). As M is contained in the sphere we know that

g(Hr A_(ZI):—"]. »

and since M is CR-minimal in CPY,

_ @ntpytintp
8 = oy
Therefore
e (2ntp)rdnp

20n+p2r

2(2n—+p)*
2. —al. A—al)=- . 2\“ A
(2.16) gh—al, AmaD= G ptan

for all A in M. On the other hand,
(2.17) g(A—al, A—al)=g(A, A)—2ag(A, )+a’g(l, I)
=2(qg+1)a*—4a+2.
From (2.16) and (2.17) we obtain
(q+DICn4p)*+4n+pla*—2[@2n+p)+4n-+plat+dn+p=0.
Since the discriminate of this equation must =0, we get
@Cn+py+in+p—(g+1)dn+p)=0,
that is 2n-+p)*=¢@n-+p). But ¢=n-+p, and so
(@n+pr=@n+p)n+p).

Therefore 4np=5np, which implies n=0 or p=0.
x) Suppose p=0. Then we have ¢=n, that is M*" is open in CP™
x) Suppose n=0. Then p=q.
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Conversely: If M®" is a totally geodesic complex submanifold of CP™,
then from proposition 1.6, M is minimal in some sphere. Let M? be a totally
real minimal submanifold of CP?. For any A€M, let {E,, --- E,} be an ortho-
normal base of T,M). Then we have that {E,, - E,, JE;, --- JE,} is an
orthonormal base of T,(CPP?). Hence, if H is the mean curvature vector of
M? in HM(p—+1) it is easy to see from proposition 1.6, that

1
HZWEI—(])-H)A],

and so M? is minimal in some sphere. Q.E.D)

COROLLARY 2.9. Let M?™*? be a closed CR-minimal submanifold of CP™.
1) If M is in the cases a) or b) of theorem 2.8, then [(2n-+p)*+4n-+p1/2(2n+p)
25 1 Spec (M).

2) If 2=[@n+p)+4n+p]/22n+p), then M is imbedded and is in the cases
a) or b) of theorem 2.8, where Spec (M) is the spectrum of the Laplace-Beltrami
operator of M and 2y 1s the first eigenvalue of this operator.

Proof. 1) From the proof of theorem 2.8 and from a well know theorem
of Takahashi [8], if M is minimal in S then 1,=dim (M)/R? for some A in
Spec (M), where R is the radius of S. Then 2,=[(2n-+p)*+4n+p]/22n+p).

2) From theorem B, we see, by choosing a suitable origen, that the immer-
sion is an imbedding of order 1. In particular it is minimal in some sphere,
[8]. Now from theorem 2.8, M is in the cases a) or b). Q.E.D.)

COROLLARY 2.10. Let M®** be a complex compact submanifold of CP™.
Then we have 2 =n+1. Moreover M*®" is totally geodesic in CP™ if and only if
/11:7'1—1—1.

Proof. We consider corollaries 2.7 and 2.9, and Spec (CP™), see [1].

COROLLARY 2.11. Let M? be a totally real closed munimal submanifold of
CP™  Then we have 1) If there exists M*® such that M?®® is a totally geodesic
complex submanifod of CP™ and MP? s a totally real submanifold of M?®?, then
(p-+1)/2 belongs to Spec (MP?).

2) If 2=(p+1)/2, then there exists a totally geodesic complex submanifold
M?®? of CP™ such that MP is a totally real submanifold of M?®.

Proof. We consider corollary 2.9.

The author has known that corollaries 2.7 and 2.10 has been recently
obtained by N. Ejiri.
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