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UNICITY THEOREMS FOR MEROMORPHIC
OR ENTIRE FUNCTIONS, II

By HIDEHARU UEDA

0. Introduction. Let f and g be meromorphic functions. If f and g have
the same a-points with the same multiplicities, we denote this by f=aZg=a
for simplicity’s sake. And we denote the order of f by p;.

In [5] Ozawa proved the following result.

THEOREM A. Let f and g be entire functions. Assume that py, pg<oo,
f=0=2g=0, f=1=g=1 and 00, f)>1/2. Then fg=1 unless f=g.

It is natural to ask whether the order restriction of f and g in Theorem A
can be removed or not. In our previous paper [6] we showed the following fact.

THEOREM B. Let f and g be entire functions. Assume that f=0Zg=0,
f=1=2g=1 and 6(0, f)>5/6. Then fg=1 unless f=g.

In this paper we shall show first that in Theorem A the order restriction of
f and g can be removed perfectly.

THEOREM 1. Let f and g be entire functions. Assume that [f=0Z=g=0,
f=122g=1 and 060, f)>1/2. Then fg=1 unless f=g.

In Theorem 1, the estimate “4(0, f)>1/2” is best possible. In fact, consider
f=e%(1—e®), g=e *(l—e %) with a nonconstant entire function a. Then f=
—ge*®, f—1=(g—1)e** and 0(0, f)=1/2. f=*g and fg=l are evident.

In place of Theorem 1, we prove more generally the following

THEOREM 2. Let f and g be meromorphic functions satisfying f=0=g=0,
f=12g=1 and f=o0og=oo. If
i M, 0, )N, o, f)
Hm T(r, f) <172,
then f=g or fg=1.
In order to state our second result, we introduce a notation: If %2 is a pos-
itive integer or oo, let

Received July 14, 1981

26



UNICITY THEOREMS FOR MEROMORPHIC OR ENTIRE FUNCTIONS, II 27
E(a, k, /)={z=C, z is a zero of f—a of order<k.},

where C is the complex plane.
In [7], we showed the following

THEOREM C. Let f and g be nonconstant entire functions such that f=0=
g=0 and f=1Zg=1. Further assume that there exists a complex number a
(0, 1) satisfying E(a, k, f)=EFE(a, k, g), where k 1s a positive integer (=2) or oo.
Then f and g must satisfy one of the following four relations:

(i) f=g, (i) (f—1/2)(g—1/2)=1/4 (This occurs only for a=1/2),
(iii) fg=1 (a=-1), (@(v) (f—D(g—D=1 (a=2),

We shall extend this result for meromorphic functions.

THEOREM 3. Suppose that [ and g are nonconstant meromorphic in C such
that f=022g=0, f=12g=1 and f=ocoZg=co. Further assume that there exists
a complex number a (#0, 1) satisfying E(a, k, f)=E(a, k, g), where k is a posi-
tive integer (=2) or co. Then [ and g must satisfy one of the following seven

relations

(i) f=g, (ii) f+g=1 (This occurs only for a=1/2.),
(i) fg=1 (a=-1), (V) f+g=2 (a=2), (v) (f—D(g—D=1 (a=2),
(vi) f+g=0 (a=-1), (vi) (/—1/2)(g—1/2)=1/4 (a=1/2).

We remark that Theorem 3 has been proved by Gundersen [1] for the case
k=co, Theorem 3 is an improvement of a well known theorem of Nevanlinna

[3, p122].

1. Lemmas. In this section we state three lemmas. The first lemma is
due to Niino and Ozawa [4].

LEMMA 1. Let {aj}} be a set of non-zero constants and {g;}? a set of entire
functions satisfying

Then
éaw, g)=p—1.

The second lemma is very straightforward, but important for the proof of
Theorem 2.

LEMMA 2. Let f be a nonconstant meromorphic function. Put

F=f"/f=2(f"]f).
Then
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N(r, 00, F)=2N(r, 0, f)+N(r, o, f).

Proof. Let a be a pole of F. Then it is clear that ¢ is a zero or a pole
of f.

Case 1. Assume that g is a zero of f with multiplicity »=1. In this case
we have

F(2)=g(z)(z—a)"
with a meromorphic function g(z) satisfying g(a)=+0, co. Hence

nntl) 5

n gk | g7 o8y
(z—a)* z—a g(2) g(2) 2( )

Heo== g(z)

Case 2. Assume that g is a pole of f with multiplicity n=1. Then we have
f(@)=glzlz—a)™
with a meromorphic function g(z) satisfying g(a)#0, co. Hence

Foy=— "D oon g@) | g"@) g’<2>,)2_

(z—a? " z—a gl ' gk 2(z)

The above two simple computations combine to show that
N(r, co, F)=2N(r, 0, /)+N(r, o, f).

The third lemma, which is due to Hiromi and Ozawa [2], plays an important
role for the proof of Theorem 3.

LEMMA 3. Let hy, hy, -+, hw be meromorphic functions and ky, ks, -+, ko
be entire functions. Suppose that

T(r, hj):o(niiT(r, e"n)> 7=0,1, -, m
holds outside a set of fimte linear measure. If an identity
3 h(2)etn O =ho(2)
holds, then for suitable constants {C,}™, not all zero,

3 Coha(2)etn® =0
n=1

2. Proof of Theorem 2. By assumption, we have
2.1) f=e*g, [f—1=ef(g—1)

with two entire functions « and S.
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(A) Suppose that ef=c(#0). If f has at least one zero, (2.1) implies c¢=1,
i.e. f=g. If f has no zeros and c¢#1, we have

f—cg=1—c+#0.
Put fi=f"* g,=g* Then f,, g, are entire functions satisfying
g
cfs

A G S

Since g; is an entire function, 1—(1—¢)f,=¢’, where y is entire. Hence

3 1—c¢
f:fllzT:eif .

Thus
N(r, oo, [)=N(r, 1, e")=1+40o1)T(, e")=1+oL)T(r, )

(reE, r— o).

(Here and throughout this paper, the letter £ will denote sets of finite linear
measure which will not necessarily be the same at each occurrence.)

This is impossible.

(B) Suppose that e*f=c¢(#0). If ¢=1, we have f=g. If c#1, (2.1) gives

_—clef—1)
I=—=

Thus
N, 0, /)=N(r, 1, eF)=(1+o(INT(r, e®)=1+o(1)T(r, )

(re&eE, r— o).

This is untenable.

(C) Suppose neither ¢f nor ¢ # are constants. In this case, we have from
(2.1)

1—ef 1—ef |

2.2) [=q g 8=l

Now, we use the argument of impossibility of Borel’s identity. (cf. [3]) Put
1=/, ps=—fef = and @,=ef. Then by (2.2)

@3 piteete=1, o tete=0  (n=1,2).
Further put
1 1 1 / /
(2.4) A=\ gi/o: oiles oilps |, 4= vi/os 93/0s |
©i/¢2 @5/

Ol/o1 05/ @5/ s
Assume first that 4=0. Then by (2.3)
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©®1 Q2 Qs ©O1 Qe 1 , ,
! !’ 7 4 SD! gDZ
0=le1 ¢ @5 |=|le1 ¢ 0= .
o1 9§
ol o5 @il 1ol o3
This implies ¢,=Cq;+D (C, D: constants), i.e. —fef-*=Cf+D. If C+0, we have
—D
I= cperma
so that N(r, oo, f)=1+0(1)T(r, ) (r&E, r—oo), a contradiction. Hence C must
vanish, i.e. f=-—De¢%" %, Substituting this into (2.3), we have

~

—De*fLef=1-D.

Using Lemma 1, we have D=1 and ef=¢*#. It follows from these and (2.2)
that fg=1.
Assume next that 40. Then by (24) ¢,=f=4'/4. Thus

(2.5) m(r, NEmlr, 4)+m(r, 47)
<m(r, 4)+m(r, )+N(r, co, 4)+0(1).
Here we estimate m(r, 4’) and m(r, 4). By (2.1)
T(r, )=T(r, ))+T(r, g)+01)
T, e?~OZT(r, ®)+T(r, e=%)
=2T(r, /)+2T(r, g)+0().
By the second fundamental theorem,
(A=o(NT(r, )=N(r, 0, g)+N(r, 1, g)+N(r, , g)
=N, 0, /)+N(r, 1, )+N(r, oo, f)

Z@+o(INT(r, /) (&EE, r—o0).
Hence
T(r, oo)=T(r, e )=A+oNT(r, f)  (r&E, r—o0),

T(r, 0)=T(r, [)+T(r, ?~=O4+0(INT(, f) (F&EE, r—0),

Therefore
m(r, 47), m(r, 4)=0Uog rT(r, f)) (r&E, r—o0).

Substituting these into (2.5), we have
(2.6) m(r, NZN(r, oo, 4)+0og rT(r, f)) (r&E, r—o0).

Also, a direct computation shows that
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A=Lf"/f=20f"/ YU —a)+(f'/ LB —(a'—2p' —a’)
—(B"—a") ]+ (B —a )+ (B —a')— (B’ —a "+ (B)].
It follows from this and Lemma 2 that
(2.7) N(r, oo, H=Z2N(r, 0, /)+N(r, o, f).
Combining (2.6) and (2.7), we have
T(r, [)Z2LN(r, 0, /)+N(r, c0, /)1+0(0g rT(r, /))  (r&kE, r—c0).

Hence,

FEp N(ry 0’ f)+N(7’; OO, f)

lim -~ e e >1/2

N Y I
This is a contradiction.

This completes the proof of Theorem 2

3. Proof of Theorem 3. By assumption we have with two entire functions
a and B

(8.1) f=e%g, [f—1=e(g—1).
We divide our argument into the following five cases.

(A) B(z) is a constant. (B) a(z)—p(z) is a constant.
(C) a(z) is a constant. (D) B(z)—a(B(z)—alz)) is a constant.
(E) None of B(z), a(z)—p(z), a(z) and B(z)—a(f(z)—a(z)) are constants.

(A) Suppose that ef=c¢(#0). If f has a zero, c=1. Hence f=g. If f has
no zeros and c#1, (3.1) implies
1—c f=(=c)

(3.2) I S

where 7 is a nonconstant entire function. Assume first that a=1—c¢. In this
case, f=a has no roots, so that E(a, k, g)=0 (k=2). By (3.2)

e 1
I—a " e7—1"

g_

Hence, if a+#2, g=a has infinitely many simple roots, a contradiction. On the
other hand, if =2, g=a has no roots, and we have from (3.2)

_ _ 2
g:2—f, f"‘ 1—e °

Next, assume that a#1—c¢. In this case, f=a has infinitely many simple
roots. Hence by (3.2)
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a—(1—c)
= i ,
which implies a=1, a contradiction.
(B) Suppose that e® f=c¢(s0). If c=1, we have f=g. If c#1, (3.1) gives

_ _ c(l—ef) e f-1
(3.3) = carier T i

By the same reasoning as in (A), we deduce from (3.3) that c=—1, a=1/2, and
_ _1-éf

=91 /= 9
(C) Suppose that e*=c¢(+0). If ¢=1, we have f=g. If ¢#1, (3.1) gives

_f _ c(1—=ef) _1=ef
(3.4) g=",, =" &= '

By the same reasoning as in (A), we deduce from (3.4) that c=—1, a=—1, and

_ _1=ef
g:_fy f_ 1+€‘B .

(D) Suppose that B(z)=a(f(z)—a(z))4C, where C is a constant. By (3.1)

1—ef 1—ef —e
= - = - 7_/;: - ——
(3:5) f 1—e"”’ S Y l—e 7’

where y=8—a.
Assume first that there exists a sequence {w,} satisfying

(3.6) flw)=a, e ®w=1,
Let w be an element of {w,}. Clearly
3.7) PO ES I eB W) £ pTCw) |

By (3.5), (3.6) and (3.7), g(w)#a. Hence, by assumption, w is a zero of f—a
with multiplicity=%-+1 (=3). Then an elementary calculation shows that

7 (w)=r"(w)= - =r®(w)=0.
Here, we show that
(3.8) ${r(wa)=1.

If the set {y(w,)} contains 7, and 7. (71#7.), all the roots of 7(z)=7, (=1, 2)
satisfy f(z)=a, ¢"™®=1. Then the above reasoning shows that y™(z)=0, /=
1,2, -, k. Hence

i M7, 1) ok (=1, 2),

O, N=1=lim =y 2T



UNICITY THEOREMS FOR MEROMORPHIC OR ENTIRE FUNCTIONS, II 33

and so
;@(c, NZ0(, N+0(rs, 1)+60(c0, 1)>2.

This is a contradiction. Thus (3.8) holds.
Let {z,} be the sequence satisfying
(3.9 erem =gfem =]
We claim here that
(3.10) glrzat =1.
If 7, 72 (n#72) € {7(z2)}, then by (3.9)
7,=2lm1, ay;+C=2s;m1 (=1, 2),
where [y, [,, s, S, are integers such that [,#/;, s;#s,. Hence

= 51_‘52
11—12

is a rational number. By (3.8) {y(w.)}={0,}), where §, is a complex number.

Since 7(z) is a nonconstant entire function, 7(z) omits at most one finite value.

Hence 7(z2)=60,+2(l,—1)xi or y(z)=0,—2(/;—I,)mz has roots. This implies that

01+2(l—ly)m e {f(w,)} or 8,—2(I,—Il)mi € {y(w,)}. This is a contradiction.
Now, consider the function

(3.11) F()=l—a—ef+ae’=(f—a)l—e).
By the second fundamental theorem
N, 1—a, F)ST(r, F)SN(@, 0, F)+N(r, oo, F)+N(r, 1—a, F)—N(r, 0, F')
+o(T(r, F))=N(r, 0, F)+N(, a, ef")—N(r, 0, e#7—1)
+o(T(r, F))=N(r, 0, F)+0o(T(r, e ")+o(T(r, F))
(re&E, r—00).
Hence
(3.12) N, 0, F)Z(1—o()T(r, F)=(1—o(1))T(r, e#7)  (r&E, r—o00).

Let {x,} be the roots of F(z)=0 with multiplicity=3. Then x, is a root of
F(z)=e{ay’—B'eP T} =p’e" {l—ef 7} =0 with multiplicity=2. Applying the sec-
ond fundamental theorem to G=p'(1—ef"7), we have

(I4+0)T(r, G)<N(r, 0, G)+N(r, o, G)+N(r, 0, B’ef7)
=N, 0, G)+o(T(r, ef7))
=N, 0, G)+o(T(r, G)) (r&E,r—oo),
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which implies

T(r, G)=1+o(1)N(r, 0, G)=1+o(1)N(r, 0, G)  (r&E, r— ).
Hence

. Ny(r,0,G) .. Ny, 0,G) ..
3.13 IV Y T oy B =
.13) NG, 0, F) i TG, ) AR T, 6)
TEE T¢E T7¢€E

Combining (3.12) and (3.13), we have

Ni(r, 0, 6) _

(3.14) N(r, 0, F)z—;— {N(r, 0, F)=Ny(r, 0, G)} =(1/2—0(INT (r, e77)

(re&E, r—o00).
Further, we claim that

(3.15) {z: F(2)=0} = {wa} Y {za} .

By (3.6) and (3.11) F(w,)=0. By (3.9) and (3.11) F(z,)=0. Hence {w,}\J{z,} C

{z: F(z)=0}. Conversely, assume that F(z)=0. If e'®=1, then f(z)=a, i.e.

z&{wy}. If e7®=1, then ef® =], i.e. z€ {z,}. Hence {z: F(z)=0} C{w,}\J {z.}.
Now, by (3.8) and (3.10)

(3.16) N(r, {wz})+Nr, {z.1)Z2T(r, 1)=0(T(r, ?-7)) (re&E, r—o00).
On the other hand, by (3.15) and (3.14)
N@r, {w.})+ N, {z.1)=N(r, 0, F)=(1/2—0(I)T(r, #77)  (r&E, r—o0),

which contradicts (3.16). This implies that if f(w)=a, then "> =1. Then by
(3.11) e#™ =1, hence by (3.5) g(w)=a.

Now, we show that f=a has at least one root. If not, by (3.11) F(w)=0
implies 7™ =¢f =1, so that F/(w)=p"(w) (e’ —ef*)=0. Hence all the zeros
of F(z) has multiplicities=2. Thus by (3.11) and (3.14)

N(r, 0, y)=Ny(r, 1, e")=Ny(r, 0, F)=N(r, 0, F)=(1/2—o(1)T(r, ¢#7)

(reE, r—o00),
This is impossible.
It the same way, we conclude that g=a has at least one root, and if g=a,
then ¢ 7™ =1, so that by (35) e #™ =1, f(w)=a. Therefore E(a, oo, f)=
E(a, oo, g)#0. In this case, by a result of Gundersen [1, Theorem 17,

g=S(f),

where S is a linear transformation which fixes a, a, and permutes a,, as;, and
the cross ratio (a,, as, a, a)=—1, where {ai, a,, a;} ={0, 1, oo}. From this we
obtain one of the following three relations:

gzl_f (a:1/2, GIIOO),
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gEf_l ([l:—'l, alzl),
g=f/(f-1) (a=2, a;=0).

(E) Suppose that 8, a—8, «, —ay+# constant, where y=—«. Consider the
function F(z) (defined by (3.11)) and its logarithmic derivative H(z):

or

_ @)
(3.17) H(z)= o)
Then
(3.18) T(r, HY=o(T(r, F))--N@, 0, F) (re E, r—o0),

By (3.11) F(w)=0 implies (i) f(w)=a, e =1 or (ii) e’ =ef®> =1, First,
consider the case (i). In this case, g(w)+#a, so that w is a zero of F(z) with
multiplicity=%-+1=3. Then w is a zero of G(z)=ay’—p’ef~" with multiplicity
=>Fk=2. Hence, by the second fundamental theorem

(3.19) N(r, (wh=N(r, 0, G)=0o(T(r, e®)+T(r, "))  (r&k, r— o).

Next, consider the case (ii). In this case, f(w)=g(w). In particular we note
that 7 =¢f =1 and f(w)=g(w)=0, 1, co, a imply B(w)=0, a'(w)=0, 7"(w)=0,
B/(w)—ar’(w)=0, respectively. Hence by (3.18), (3.19) and (3.11)

(3.20) T(r, H)=0(T(r, e®)+T(r, &)+N(r, 0, B'—ay)+N, 0, §7)
+N(r, 0, a")+N(r, 0, 7)+Nolr, 0, f—g),

where N, counts only those points of N where f(z)=g(z)#0, 1, co, a.
Here we estimate N,(r, 0, f—g). By the second fundamental theorem

(3.21)  2T(r, NENE, 0, /)+Nir, 1, N+N(r, 0o, [)+N(r, a, [)-+o(T(r, 1))
(r&E, r—co),

and similarly for g. Let N(r, a; f, g) denote the counting function of the num-
ber of common roots of f=a and g=a. Then by (3.21) and (3.19)

Ny(r, 0, f—g)+N(r, 0, N+N(r, 1, H+Nr, oo, )+Nr, a: f, g)
=N, 0, [=)=T(r, f—)=T(r, H+T(r, =N, 0, f)
+N(r, 1, )+N(r, oo, )+Nr, a; f, @+o(T(r, ef)+T(r, €1)
+o(T(r, H+T(r, g) (&EE, r—o0), le.
(3.22) Ny(r, 0, f—g)=0o(T(r, e®)+T(r, e") (r&E, r—o0).
Substituting (3.22) into (3.20), we have
(3.23) T(r, H)=0o(T(r, e®)+T(r, e")) (r&E, r—oo).
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Now, by (3.11) and (3.17)
(3.24) (B’—H)eP+a(H—7")e'=(a—1)H.
Case 1. Assume that f’=H. In this case F(z)=Def, where D is a non-zero
constant. Hence by (3.11)
(D+1)ef—ae'=1—a+0.
Using Lemma 1, we have D+1=0. Then ¢’=(a—1)/a, a contradiction.
Case 2. Assume that H=y’. In this case F(z)=De’, where D is a non-zero
constant. Hence by (3.9)
e +(D—a)e’'=1—a+0.
Using Lemma 1, we have D—a=0. Then e¢f=1—gq, a contradiction.

Case 3. Assume that B’—H=0 and H—y’'#0. In this case, we use Lemma 3.
Noting (3.23), we have from (3.24)

(3.25) Cy(B'—H)eP +Co(H—7")e’=0,
where C,, C, are non-zero constants. Hence
s C, (a—1)H . C, (a—1)H
el = ——— — — gl = -,
C2—0C1 ‘B,—H ’ acl_C2 H_T/

Therefore by (3.23)
T(r, ef)+T(r, e\SAT(r, H)+T(r, B)+T(r, 1)+0L)=0(T(r, e#)+T(r, "))

(r&E, r—o00),
a contradiction.
This completes the proof of Theorem 3.
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