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UNICITY THEOREMS FOR MEROMORPHIC

OR ENTIRE FUNCTIONS, II

BY HIDEHARU UEDA

0. Introduction. Let / and g be meromorphic functions. If / and g have
the same β-points with the same multiplicities, we denote this by f—a^g—a
for simplicity's sake. And we denote the order of / by pf.

In [5] Ozawa proved the following result.

THEOREM A. Let f and g be entire functions. Assume that pf, pg<cof

f=0^g=0, f=l^g=l and 3(0, /)>l/2. Then fg=l unless f=g.

It is natural to ask whether the order restriction of / and g in Theorem A
can be removed or not. In our previous paper [6] we showed the following fact.

THEOREM B. Let f and g be entire functions. Assume that f—O^g—0,
f=l^g=l and 3(0, /)>5/6. Then fg=l unless f = g.

In this paper we shall show first that in Theorem A the order restriction of
/ and g can be removed perfectly.

THEOREM 1. Let f and g be entire functions. Assume that f=0^1g=0,
f=l^g=l and 3(0, /)>l/2. Then fg=l unless f=g.

In Theorem 1, the estimate "3(0, / ) > l / 2 " is best possible. In fact, consider
f—ea(\—ea), g=e~a(l—e~a) with a nonconstant entire function a. Then / =
-geZa, f-l = (g-l)e2a and δ(0, / )=l/2 . f=£g and fg^l are evident.

In place of Theorem 1, we prove more generally the following

THEOREM 2. Let f and g be meromorphic functions satisfying f=0^1g=0,
f=l^lg=l and f=co^g=oo. If

then f = g or fg=l.

In order to state our second result, we introduce a notation: If & is a pos-
itive integer or oo, let
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E(a, k, / ) = { Z G C , Z is a zero of f—a of orders &.},

where C is the complex plane.

In [7], we showed the following

THEOREM C. Let f and g be nonconstant entire functions such that f—O ϋ
g=Q and f=l^lg=l. Further assume that there exists a complex number a
{Φθ, 1) satisfying E(a, k, f)=E(a, k, g), where k is a positive integer (^2) or oo.
Then f and g must satisfy one of the following four relations:

( i) f=g, (ii) (/-l/2)(£-l/2)==l/4 (This occurs only for α = l/2.),
(iii) fg=l (fl = - l ) , (iv) (/- l) te- l) = l (fl=2),

We shall extend this result for meromorphic functions.

THEOREM 3. Suppose that f and g are nonconstant meromorphic in C such
that f—O^lg—Q, f=l^±g=l and f=oo^g=oo. Further assume that there exists
a complex number a (ΦQ, 1) satisfying E(a, k, f) = E(a, k, g), where k is a posi-
tive integer (^2) or co. Then f and g must satisfy one of the following seven
relations

( i ) f=g> (ϋ) f+g=l (This occurs only for α = l/2.),
(iii) fg=l (α = - l ) , (iv) f+g=2 ( f l=2), (v) ( / - l ) t e - l ) Ξ l ( f l=2),
(vi) / + ^ - 0 (α = - l ) , (vii) ( / - l

We remark that Theorem 3 has been proved by Gundersen [1] for the case
k — oo. Theorem 3 is an improvement of a well known theorem of Nevanlinna
[3, p 122].

1. Lemmas. In this section we state three lemmas. The first lemma is
due to Niino and Ozawa [4].

LEMMA 1. Let {aj}v

x be a set of non-zero constants and {g3}
vι a set of entire

functions satisfying

Then

The second lemma is very straightforward, but important for the proof of
Theorem 2.

LEMMA 2. Let f be a nonconstant meromorphic function. Put

F=f"/f-2(f'/f)\
Then
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N(r, oo, F)^2N(r, 0, f)+N{r, oo, / ) .

Proof. Let α be a pole of F. Then it is clear that a is a zero or a pole
of /.

Case 1. Assume that a is a zero of / with multiplicity n ^ l . In this case
we have

f(z)=g(z)(z-a)n

with a meromorphic function g(z) satisfying g{a)Φθ, oo. Hence

F( w _ _ n ( n ± 1 I _ 9 _n_ £_<>) . 8"W of g'fr) V
W ' U-fl)8 2T-fl g(z) ^ ^(Z) V g{z) ) '

Case 2. Assume that a is a pole of / with multiplicity n ^ l . Then we have

with a meromorphic function g{z) satisfying g(a)Φθ, oo. Hence

g{z) ) •

The above two simple computations combine to show that

N(r, oo, F)^2N(r, 0, f)+N(r, oo, / ) .

The third lemma, which is due to Hiromi and Ozawa [2], plays an important
role for the proof of Theorem 3.

L E M M A 3. Let h0, hu ••• , hm be meromorphic functions and klf k2y ••• , km

be entire functions. Suppose that

( m \

ΈT(r,e"n)) y=0, 1, ..-,
.71 = 1 /

holds outside a set of finite linear measure. If an identity
in

Σ A,,(z)e*»w = λo(z)
71 = 1

holds, then for suitable constants {Cn}f, not all zero,

m

2. Proof of Theorem 2. By assumption, we have

(2.1) f=eag, /-l=^te-D

with two entire functions a and β.
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(A) Suppose that eβ = c(Φθ). If / has at least one zero, (2.1) implies c=l,
i.e. f=g. If / has no zeros and cΦl, we have

f-cg=l-cΦ0.

Put fi=f~\ gi=g~ι. Then fu gx are entire functions satisfying

cfi

Since gλ is an entire function, l—(l — c)f1=er

} where γ is entire. Hence

Thus

N(r, CXD, f)=N(r, 1, ̂ ) =

(Here and throughout this paper, the letter E will denote sets of finite linear
measure which will not necessarily be the same at each occurrence.)

This is impossible.
(B) Suppose that ea-β = c(Φθ). If c = l, we have f = g. If cΦl, (2.1) gives

r

c-1
Thus

N{r, 0, / ) =

This is untenable.
(C) Suppose neither eβ nor gα"^ are constants. In this case, we have from

r

(2.1)

(2.2)

Now, we use the argument of impossibility of BoreΓs identity, (cf. [3]) Put
φx=f, φ2=-feβ-a and φs=e^ Then by (2.2)

(2.3) ^1 + ̂ 2 + ̂ 3 = 1,

Further put

1 1

(2.4) J= ψΊlψi <pί/' ψi

ψ'Ίlψi ψ'ίlψi

Assume first that J=0. Then by (2.3)

= l, 2).

φί/φ2
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φί

φ'ί
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φ'ί
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:=

ψl

φΊ

φ'ί

ψ2

φί

φ'ί

1

0

0

ψl

φ'ί

ψ2

ψ'i

This implies φi=Cφ1+D (C, D : constants), i. e. -feP'a=Cf+D. If CΦO, we have

so that N(r, oo, /)=(l+o(l))T(r, /) ( r $ £ , r->oo), a contradiction. Hence C must
vanish, i.e. f——Dea~β. Substituting this into (2.3), we have

Using Lemma 1, we have D — l and eβ = ea~β. It follows from these and (2.2)
that fg=l.

Assume next that JΞ£0. Then by (2.4) φ1=f=Jf/J. Thus

(2.5) m{r, f)^rn{r, jd')+m(rf J'1)

^m(r, Δ')+m(r, A)+N(r, oo,

Here we estimate m(r, Δ') and m(r, Δ). By (2.1)

T{r, eβ)^T{r, f)+T{r9 g)+O(l

T(r, eβ~a)^T(r, eβ)+T(r, e~a)

^2T(r, f)+2T(r,

By the second fundamental theorem,

a-o(l))T(r, g)^N(r, 0, g)+N(r, 1, g)+N{r, oo,

^N(r, 0, f)+N(r, 1,

Hence

T(r, ψs) = T(r, β's)^

T(r, ψ2)^T(r, /)+

Therefore

77i(r, JO, m(r, J) = O(log rT(r, /

Substituting these into (2.5), we have

(2.6) mix, f)^N(r, oo, J)+O(log rT(r,

Also, a direct computation shows that

, r->oo),

, r->oo).

oo).
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It follows from this and Lemma 2 that

(2.7) Mr, oo, Δ)^2N(r, 0, f)+N(r, oo, / ) .

Combining (2.6) and (2.7), we have

T(r, f)^2lN(r, 0, f)+N(r, oo, /)] + O(log rT{r, /))

Hence,

This is a contradiction.
This completes the proof of Theorem 2

3. Proof of Theorem 3. By assumption we have with two entire functions
a and β

(3.1) f=e°g, f-l=eHg-l).

We divide our argument into the following five cases.

(A) β(z) is a constant. (B) a(z)—β(z) is a constant.

(C) a(z) is a constant. (D) β(z)—a(β(z)—a(z)) is a constant.
(E) None of β(z), a{z)—β{z), a{z) and β(z)—a(β(z)—a(z)) are constants.

(A) Suppose that eβ = c(Φϋ). If / has a zero, c = l. Hence / Ξ = £ . If / has
no zeros and cΦl, (3.1) implies

where γ is a nonconstant entire function. Assume first that a — l — c. In this
case, f=a has no roots, so that E(a, k, g)=θ (k^2). By (3.2)

Hence, if aφ2, g—a has infinitel}^ many simple roots, a contradiction. On the
other hand, if a=2, g~a has no roots, and we have from (3.2)

Next, assume that aΦl — c. In this case, f=a has infinitely many simple
roots. Hence by (3.2)
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fl-(l-c)
α = c ,

which implies α = l, a contradiction.
(B) Suppose that β α ^Ξc(^0) . If c = l, we have / = # . If c^ l , (3.1) gives

[ό'6) g~ (l-c)f+c ' ! ~ c-\ ' g~ c-1 '

By the same reasoning as in (A), we deduce from (3.3) that c — — 1, α = l/2, and

g~ 27-1 ' 2 '

(C) Suppose that ea = c(Φθ). If c = l, we have f=g. If c^ l , (3.1) gives

(3 4) *=T' / = - ^ / > - ^7-T^
By the same reasoning as in (A), we deduce from (3.4) that c = — l, a — — l, and

(D) Suppose that β{z)=a(β(z)—a(z))+C, where C is a constant. By (3.1)

where γ=β—a.

Assume first that there exists a sequence {wn} satisfying

(3.6) f(wn)=a, e

Let w be an element of {wn}. Clearly

(3.7) eβcυnΦl, eβ

By (3.5), (3.6) and (3.7), g{w)Φa. Hence, by assumption, w is a zero of f—a
with multiplicity^k+1 (^3). Then an elementary calculation shows that

Here, we show that

(3.8)

If the set {γ(wn)} contains γλ and γ2 (jxΦγ?), all the roots of γ{z)=γ3 (; = 1, 2)
satisfy f(z)=a, enz)φl. Then the above reasoning shows that 7c ί )(z)=0, /=
1, 2, •••,£. Hence
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and so

, γ)>2.

This is a contradiction. Thus (3.8) holds.
Let {zn} be the sequence satisfying

(3.9) er<*n>=eβ<*n>=im

We claim here that

(3.10) #{r(^)}^i.

If n, Ϊ2 (Λΐr«)e«2»», then by (3.9)

γ}=2ljπt, aγj+C—2sjπt 0 = 1,2),

where lu /2, su s2 are integers such that hΦh, SiΦs ,. Hence

S 1 5 9

/1-/2

is a rational number. By (3.8) {γ(wn)} = {δ1}, where δλ is a complex number.
Since γ(z) is a nonconstant entire function, ^(^) omits at most one finite value.
Hence γ(z)=δ1+2(l1-ί2)πi or γ(z)=δ1-2(ί1-l2)πι has roots. This implies that
δi+2(l1—l2)πι^ ir(wn)} or δ1—2{l1—l2)πι^{γ{wn)}. This is a contradiction.

Now, consider the function

(3.11) F(

By the second fundamental theorem

N(r, I-a, F)£T(r, F)^N{r, 0, F)+N(r, oo, F)+N(r, I-a, F)-N(r, 0,

, F))=N(r, 0, F)+N(r, a, e^r)-N(r, 0, β^-1)

r, F))=N(r, 0, F)+o{T(r, e^r))+o(T(rt F))

{r&E, r—>oo).

Hence

(3.12) Mr, 0, F ) ^ ( l - 0

Let {xn} be the roots of F(z)—0 with multiplicityΞ>3. Then xn is a root of
F'(z)=er{ar'-FeP-r}=Fer{l-eP-r}=0 with multiplicity^2. Applying the sec-
ond fundamental theorem to G=β/(l—eβ~r), we have

^iV(r, 0, G)+iV(r, oo, G)+7V(r, 0, jSV'O

=N(r, 0, G)+o(T(r, ^"0)

=Λ[r, 0, G)+o{T{r, G)) (r&E, r-^oo) ,
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which implies

T(r, G)=a+o(l))N(r, 0, G)=(l+o(l))Λ(r, 0, G) (r&E, r->oo).

Hence

( 3 13) ^ WΓOΓFT = I S T ( r Γ ^ - 7 = ? 3 T(r,G) =°
Combining (3.12) and (3.13), we have

(3.14) Mr, 0, F ) ^ - ί {7V(r, 0, D-N^r, 0, G)} =(l/2-o(l))Γ(r, ^ " 0

, r->co).

Further, we claim that

(3.15) fc:TO=0} = W υ ω .

By (3.6) and (3.11) F(wn)=0. By (3.9) and (3.11) F(zn)=0. Hence {M>n

{z:F(z)=0}. Conversely, assume that F(z)=0. If erwΦl, then f(z)=a, i.e.
^ s f u i j . If e^^ = l, then ^ ( ί ) = l, i.e. z e {zn}. Hence {z: F(z)=0}c

Now, by (3.8) and (3.10)

(3.16) N{r, {wn})+N(r, {zn})^2T{r, γ)=o(T(r, e^)) {r^Ef r->oo).

On the other hand, by (3.15) and (3.14)

N{r, {wn})+N{r, {zn})=N(rf 0, F)^(l/2-0(l))Γ(r, e*'*) {r^E, r - o o ) ,

which contradicts (3.16). This implies that if f(w)=a, then ercw>=l. Then by
(3.11) eP<w> = l, hence by (3.5) g(w)=a.

Now, we show that / = α has at least one root. If not, by (3.11) F(w)=0
implies erw=e^w:> = l> so that F'(w)=β'(w) (erw-e^w:>)=0. Hence all the zeros
of F(z) has multiρlicities^2. Thus by (3.11) and (3.14)

N(r, 0, r')^AΓi(r, 1, e^N^r, 0, F)^N(r, 0, F)^(l/2-o(

(r$E, r->oo).

This is impossible.
It the same way, we conclude that g—a has at least one root, and if g=a,

then β-r<w> = l, so that by (3.5) β-^c^ = l, f(w)=a. Therefore £(α, oo, / ) =
E(β, oo, ^ )^0. In this case, by a result of Gundersen [1, Theorem 1],

g=S(f),

where 5 is a linear transformation which fixes a, ax and permutes a2, as, and
the cross ratio (α2, α8, α, fli)——1, where {β2, α2, as} = {0, 1, °°} From this we
obtain one of the following three relations:

g=l-f (α=l/2, fl!=oo),
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or
£=//(/-!) (fl=2, fll=0).

(E) Suppose that β, a—β, a, β — aγ^ constant, where γ=β—a. Consider the
function F(z) (defined by (3.11)) and its logarithmic derivative H(z):

(3.17) H(z)=-ζ^l.

Then

(3.18) T(r, H)=o(T(r, F))+N(r, 0, F)

By (3.11) F(w)=Q implies (i) f(w)=a, er™Φl or (ii) e

rw=e^w)=l. First,
consider the case (i). In this case, g(w)Φa, so that w is a zero of F(z) with
multiplicity^ ^ + 1 ^ 3 . Then w is a zero of G(z) = aγ'~β'eβ~r with multiplicity
^k^2. Hence, by the second fundamental theorem

(3.19) N{r, {w^N^r, 0, G)=o(T(r, et)+T(r, e?)) (r$E, r->co).

Next, consider the case (ii). In this case, f(w)=g{w). In particular we note
that enw>=eP<w> = l and f(w)=g(w)=0,1, oo, a imply β\w)=0, a\w)=0, f(w)=0,
β'(w)-ar'(w)=0, respectively. Hence by (3.18), (3.19) and (3.11)

(3.20) T(r, H)=o(T(r, e^)+T{r, er))+N(r, 0, β'-af)+N(r, 0, β')

+N(r, 0, a')+N{r, 0, γ')+N2(r, 0, f-g),

where N2 counts only those points of TV where f(z)=g(z)Φθ, 1, oo, a.
Here we estimate N2(r, 0, f—g). By the second fundamental theorem

(3.21) 2T(r, f)SN{r, 0, /)+JV(r, 1, f)+N(r, co, f)+N(r, a, f)+o(T(r, /))

, r->oo),

and similarly for g. Let N(r, a; f, g) denote the counting function of the num-
ber of common roots of f=a and g=a. Then by (3.21) and (3.19)

N2(r, 0, f-g)+N{r, 0, f)+N(r, 1, f)+N(r, ex., f)+N(r, a: f, g)

^N{r, 0, f-g)^T{r, f-g)^T(r, f)+T(r, g)^N{r, 0, /)

+N{r, 1, f)+N(r, oo, f)+N(r, a f, g)+o{T{r,

+ o(T(r, f)+T(r, g)) (r&E,r-+oo), i.e.

(3.22) N2{r, 0, f~g) = o(T(r, e?)+T{r, e')) (rGE, r^

Substituting (3.22) into (3.20), we have

(3.23) T(r, H)=o(T(r, e^+Tir, er)) (r$E, r->oo).
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Now, by (3.11) and (3.17)

(3.24) {β'-H)eβ + a(H-γ')er=(a

Case 1. Assume that β'=H. In this case F{z)—De^, where D is a non-zero

constant. Hence by (3.11)

Using Lemma 1, we have Z)+l=0. Then er=(a — l)/a, a contradiction.
Case 2. Assume that H=γ\ In this case F(z)=Der, where D is a non-zero

constant. Hence by (3.9)

Using Lemma 1, we have D—α=Q. Then eβ = l—α, a contradiction.
Case 3. Assume that β'—H^O and H—γ'=£0. In this case, we use Lemma 3.

Noting (3.23), we have from (3.24)

(3.25) Cάβ'

where Cu C2 are non-zero constants. Hence

d (fl-l)ff
P=_*___(?

6 Ct-αd β'-H ' e αCi-Cz H-f '

Therefore by (3.23)

T(r, e?)+T(r, e?)^4T(r, H)+T(r, β')+T(r, γ/)+O(l) = o(T(r> e?)+T(r, er))

(r$E, r->oo),
a contradiction.

This completes the proof of Theorem 3.
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