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SOME REMARKS ON THE RELATIVE GENUS FIELDS
By KoICHI TAKASE

§1. Introduction.

Let £ be a finite algebraic number field and K its finite extension. We
denote by K* the maximal abelian extension of £ such that the composite field
K*K is unramified over K at all the finite or infinite primes, and the field
K*K is called the genus field of K with respect of k. (If K* were defined as
the maximal abelian extension of 2 such that K*K was unramified over K at
all the finite primes, the field K*K was called the narrow genus field of K. We
do not treat the narrow genus field in this paper.)

The field K* is explicitly determined when % is the rational number field
(see M. Ishida [5], [6] or M. Bhaskaran [1]). In §3 of this paper we discuss
the fundamental structure of K* for general k. In §4 we treat, as an example,
the case of k=quadratic field of class number one in which 2 remains prime
and (K: k)=2.

In §5 we prove the following theorem; let 2 be a finite algebraic number
field of class number one, G any finite abelian group, and m a positive integer
such that ex(G)|m and m||G|=. Then there exist infinitely many cyclic exten-
sions F of % of degree m such that

Cr/CF’=G(F*/F)=G.

This paper contains the author’s master thesis at Tokyo Institute of Technology
(1981, March).

§ 2. Definitions.

Let k be a finite algebraic number field and K its finite extension. We
denote by K* the maximal abelian extension of % such that K*K is unramified
over K at all the finite or infinite primes. By the class field theory, K* is the
maximal abelian extension of % in the Hilbert class field of K, and K*N\K is
the maximal abelian extension of 2 in K. Throughout this paper the following
notations are used;

O, : the integer ring of %

U,: the unit group of &
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¢(a): the Euler function of %

Uya)={ecU,|e=1(mod a)}, for an integral ideal a of &

ky: the completion of % at a finite or infinite prime p of &

k3 : the idele group of % into which we embed £2* and k; in usual way
k9 the Hilbert class fleld of k

G(K/k): the Galois group of Galois extension K/k

J(K/E): the conductor of abelian extension K/k.

§3. Structure of genus field.

Let & be a finite algebraic number field, K its finite extension, and fix them.
For a finite prime p of %, we put

p=Pé1 - Por (P, -+, B: distinct primes of K, ¢,>0)
ex(P=g.c.d. {ey, -, e}, guP)=¢M)/Usw: Uily)),
dr(p)=g.c.d. {ex(p), g:(p)} .

Let S(p) be the ray class field modulo p of k. Then S(p)/k™ is a cyclic
extension of degree g,(p), and we put

k(p): unique intermediate field of S(p)/k® such that (k(p): kP)=d (D).

Then we have
LEMMA 1. k(p)CK* for any finite prime p of k.

Proof. This lemma is proved in [4]. Another proof using Abhyanker’s
lemma is given in [3].

We define two subfield K* and K% of K* by
K ’{‘zI;Ik(p): composite field, K*=C\T p),

where p runs over all finite primes of %2 such that ex(p)|g.(h), and T(p) is the
inertia field of p in K*/k. Notice that, for distinct finite primes bp,, -, p, of
k, the fields k(p,), -, k(p,) are linearly disjoint over k. Then we have

THEOREM 2.
KXNnK¥=k® , K*=K¥fK¥%.

Proof. Because the primes of k2 which are ramified in K¥ are unramified
in K%, the field K¥~\K% is an unramified abelian extension of .. Hence we
have K¥NK¥=£k, since K¥~\K% contains £®,

Because K*K/K is unramified, we have ex.p)|ex(p) for any finite prime p
of k. Then we have the following inequalities from which the equality
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K*=K*¥K% follows;
(KT k) =(KTKT: KH=(K*: KH=TTES: TR))
él;[(k(D)i RO)=(K¥: k™)
On the conductor of abelian extension X */k, we have the following theorem :

THEOREM 3. Suppose that K 1s a normal extension of k. Then Y(K*/k)
=Y(K*N\K/k). (Notice that the field K*N\K is the maximal abelian extension of k
m K)

Proof. Put UZ];J Ug the unit idele group of K, where P runs over all

finite or infinite primes of K and Ug is the unit group of Ky. Then, by the
class field theory, we have

K*=the class field of £ corresponding to 2*Ng,,U,
K*n\K=the class field of % corresponding to k*Ng, K.

Since K is normal over %k, we have

NK/kU:I;[ NepUs, NK/kKiszf\l;[ NyipK s

where p runs over all the finite or infinite primes of %k, B is any one of the
primes of K lying over p, and Ng, is the norm from Ky to k,. Because the
inverse image of U, by Ng,, is contained in Ug, we have {(K*/k)={K*N\K/k).

COROLLARY 4. Suppose that K 1s a normal extension of k. Then Ky=K%
of and only if K*¥*N\K/k 1s unramified at the infimte primes and ex(p)| gw(p) for
any fimte prime v of k ramified in K*N\K.

Proof. Let p,, -+, b, be the finite primes of %k such that ex(p;)|ge(p,) and
ex(p;)>1. Then we have {(K*/k)=p, - p,. Because {(K%/k) and {(K%/k) are
relatively prime and K* is the composite field of K% and K%, we have {(K*k)
={(K¥/k){(K%/k). Because K¥ K% is equal to £ and K% contains k>, K*=K*
if and only if j(K%/k)=1, that is, if and onlf if {(K*/k)|§(K%/k). Hence,
because of Theorem 3, K*=K%¥ if and only if {(K*"\K/k)|{(K¥/k), and only-if-
part of the assertion is proved.

If K*~nK/k is unramified at the infinite primes and ex(p)|g.(p) for any
finite prime p of 2 which is ramified in K*"\K/k, K*N\K is tamely ramified
over k at the finite primes and hence YK *NK/k) is square-free. Because the
set {p;, -, b} includes the prime factors of J(K*\K/k) by hypothesis, we have
FEENK/ )| IKE/ R).

PROPOSITION 5. Suppose that K is an abelian extension of k which is
unramified over k at the infinite primes and that there exists ouly one finite prime
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p of k such that ex(p) f ge(p). Then we have
K*=K¥K, K¥nK=the nertia field of p in K/k.
Proof. Since p is unique prime of k£ which may be ramified in K%, p is

totally ramified in K¥/k®. Because K*K 1s unramified over K, we have
(K%: kD) eg(p). As p is unramified in K¥N\K, we have

K¥NKCT=the inertia field of p in K/k.
Therefore we have the following inequalities from which our assertion follows;
(K*¥: b)y=(K¥K: K)(K¥NK: k)
S(K*KXT: k)
=(K¥: EO)KE: kO) R k)/(K. T)S(KT: k).

In Proposition 5 the uniqueness of prime p of & such that ex(p) [ gx(p) is
indispensable as the following example shows:

EXAMPLE. Put =Q(+/—11). The polynomial f(X)=X?—3X—11is irreducible
over k. Let a be a root of f(X)=0 and put K==Fk(a). Then K is a cyclic
extension of % of degree 3 and the relative discriminant of K over & is
D(K/k)=3% The prime factors D(K/k) in k are 14+ and o where

K¥=Fk.
On the other hand, by the genus number formula proved in [2], we have
(K*: k)=9.
For the latter use, we prove the following lemma:

LEMMA 6. Let L and M be fimite extension of k such that (L: k) and
(M: k) are relatwely prime. Then we have (LM)*= L*M*.

Proof. Put K=LM. The inclusion L*M*CK* 1s obvious. We have to
prove that any finite abelian extension F of k such that FK is unramified over
K is contained in L*M* We can suppose that (F: k) is a power of a rational
prime / and the F is ramified over k.. Then, as FK is unramified over K, we
have [|(K: k) and hence [|(L: k) or [|(M: k). Suppose [|(L: k). Since
(FL: L)=(F: Fn\L) is a power of [/, the ramification index in FL/L of the
finite primes of L are power of /. Because FK is unramified over K and
LY(M: k)=(K: L), FL is unramified over L and so FC L*C L*M*.
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§4. Examples.

Let % be a finite algebraic number field of class number one in which 2
remains prime. Let (k: Q)=n and {0} (=1, 2, -, 2"—1)} be a system of
complete representatives of the squares of the multiplicative group of 0,/(4)
(its order is easily shown to be 2"—1). Let m be a square-free integer of & and
put K=k(~/m). We define an integer 6 of K by

{(w;—l—«/ﬁz)/Z: m=w? (mod 4) for some j

vm  : otherwise.
Then we have

LEMMA 7. Og 1s a free O -module with base {1, 8}, and the relative dis-
criminant of K over k 1s gien by

m: m=w} (mod 4) for some j
D(K/ k)=

4m : otherwise .
Proof. We use the following fact; for integers a, b and ¢ of &, the equation
a*—b%=0 (mod 4)

is equivalent to a=bw; (mod 2) if c=w? (mod4) for some j;, and to a=b=0
(mod 2) if c#w? (mod4) for any ;. Because m is a square-free integer of f,
we have

Ox={a+bvm|a, b€k such that 2a€0,, a*—b*mc0,}
={la+bvm)/2|a, b0, such that a*—b*m=0 (mod4)} .
If m=w? (mod 4) for some ;, we have by above remark
Ox={la—bw,)/2+b(w;+~'m)/2|a, b€ O, such that a=bw, (mod 2)}
={a+blla, beO,} .
If m=#w? (mod 4) for any 7, we have
Ox={a-+bvmla, bcO,} .
We have
K’{‘=IPI k), K%‘ZQ T(p)

where p runs over the prime factors of D(K/k) in k such that 2|g(p), and
T(p) is the inertia field of p in K*/k. For a prime factor p of D(K/k) in
k such that 2|g.(p), k(p) is a quadratic extension of %, and by Lemma
7, k(p)=k(V7 ) where = is a generator of p such that r=w? (mod4) for some
7 and satisfies conditions on its signature (if necessary).
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We treat more explicitly the case of k=quadratic field below.

1) Let % be a imaginary quadratic field of class number one in which 2 remains
prime, that is, k=Q(+/D) where D=-3, —11, —19, —43, —67, —163, and put
w=(—1++/D)/2. Then {a+bwl|a, b=0,1,2,3} is a system of complete re-
presentatives of O, modulo 4. There are only three representatives which are

prime to 2 and are congruent modulo 4 to squares, and they are named as in
the following table:

f E
Nl [oN } [0 i w3

—3,— 19 | | . o
—67, =163 | 1 | e=(ter | 3+30=o
—11, — 43 1 24 w=14w)? ' 1+3w=w?

Let m be a square-free integer of k and put K=k(+~m). Let 6 be an integer
of K defined by

1++m)/2 : m=w, (mod4)
(1+w++vm)/2: m=w, (mod4)
(w++vm)/2 : m=w; (mod4)

vm : otherwise.

9=

Then, by Lemma 7, O, is a free O,-module with base {1, §} and the relative
discriminant of K over k is given by

M=w;, W, w; (Mmod 4)
D(K/k):{

4m: otherwise.

For a finite prime p of %, we have

k(p):{ B(VT): if p=(x) where 7=, s, ; (mod 4)
k: otherwise.

ExAMPLE 1. Put k=Q(+/—11), K=k(~/5). Because 5 is a square-free
integer of 2 and 5=w,; (mod4), we have D(K/k)=5. The prime factors of
D(K/k) in k are 1—w and 24w. Since g,(l—w)=g.24+w)=2 and l—w=w,
(mod 4), 24+w=w, (mod 4), we have by Corollary 4

EXAMPLE 2. Put £=Q(~/— 3), K=k(+/26). Because 26 is a square-free
integer of 2 and 26#w,, w,, ws (mod 4), we have D(K/k)=2°13. The prime
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factors of D(K/k) in k are 2, 3—w and 4+w. Since g.(2)=1, g.3—w)=g.(4+w)
=2 and 3—w=w, (mod 4), 4+w=w, (mod 4), we have by Proposition 5

K*=K{K=k(~/26, V3—0 , Vito).

2) There are ten real quadratic field of discriminant less than 100 of class
number one in which 2 remains prime, that is, Q(~/D) where D=5, 13, 21, 29,
37, 53, 61, 69, 77, 93. Let k be one of the ten real quadratic fields and put
w=(—1++/D)/2. Then {a+bw|a, b=0, 1, 2, 3} is a system of complete repre-
sentatives of O, modulo 4. There are only three representatives of O, modulo
4 which are prime to 2 and are congruent modulo 4 to squares, and they are
named as in the following table

\\\ 1 [
7PA ‘\\gn\e\ W, B 77} B W; ‘; ws
5,21, 37 | ;
53, 69 1 i 2+o=1+0) |  1+3v=0’
13,29, 61 | - | |
77, 93 1 L o=(14o0)? 3+3w=0’

! I

Let m be a square-free integer of % and put K=k(v/m).

of K defined by
J (1++/m)/2

i

Let # be an integer

m=w,; (mod 4)

f— (14+w-+vm)/2: m=w, (mod 4)
(w++m)/2 : m=w, (mod4)
v'm otherwise .

Then, by Lemma 7, Ok is a free O,-module with base {1, #} and the relative

discriminant of K over k is given by
D(K/ k)———{
dm:

For a finite prime p of &, we have

k(p):{ FWr):
k

otherwise

m: M=, w,, w; (mod 4)

otherwise .

if p=(x) where r=w,, w;, w; (mod 4) and ==0

where 7#=0 means that = is totally positive.

ExAMPLE 3. Put k=Q(v13), K=k(+/53). Because 53 is a square-free
integer of £ and 53=w, (mod4), we have D(K/k)=53. The prime factors of
D(K/k) in b are 7—w and 8+w. Since g(7T—w)=g(8+w)=2 (see the tables
at the end of this §), and 7—w=w, (mod 4), 84+w=w, (mod 4), 7—w=0, 8+w=0,
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we have by Corollary 4
K¥*=K*=k(vT—w , V8+w).

EXAMPLE 4. Put k=Q(v29), K=k(+~/10). Because 10 is a sequare-free
integer of %2 and 10%w;, w,, w; (mod4), we have D(K/k)=25. The prime
factors of D(K/k) in k are 2,4+w, and 3—w. Since g;2)=1, g.(4+w)
=g1(3—w)=2, and 4+w=w, (mod4), 3—w=w; (mod 4), 4+w=0, 3—w=0, we
have by Proposition 5

K*=KtK=k(v10, Vi+o , vV3—0).

EXAMPLE 5. Put £=Q(+/53), K=k(~/221 ). Because 221 is a square-free
integer of k£ and 221=w, (mod 4), we have D(K/k)=13-17. The prime factors
of D(K/k) in k are 13+ 3w, 1744w, 5—w, and 6+w. Since g,(1343w)=g(17+4w)
=g,6—w)=g(6+w)=2, and 13+3w=w; (mod 4), 17+40=w, (mod 4), 5—w=w,
(mod 4), 6+w=w, (mod 4), 134+3w=0, 17+4w=0, 5—w=0, 6+w=0, we have

K*=K*=k(V/13+F3w , V1I7T+dw , V/5—w , V6+w).

Let L be the genus field of K with respect to the rational number field, that
is, the maximal abelian extension of Q such that KL/K is unramified. Then we
have by the genus number formula

(L:Q)<28 e (L:k)<s2?
On the other hand, we have (K*: k)=2* and hence LEK*.

Tables.
Table of g,(p) and prime elements of 2 above each rational primes. (Blanks

mean that the rational prime remains prime in %.)

a) k=QW'5), w=(—1++/5)/2, fundamental unit=(14++/5)/2=1+w
2 s s 7| u (1 w| 1 | 28| 29
L -0 (30 tto, | [4-0|5te] | 5—4&5

g 111 s 22112 ]2
st s | a0 |43 47 B 5 |

7420 5-2  |6-0|T+e| | |

L 20720
L2 11| 37 |

|
_— |
|

323213 1 | 1

b) E=Q(~/13), w=(—1++/13)/2, fundamental unit=(3++/13)/2=2-4-w

2| 3 5 7 || 13 79| 23
(I \ ® : 1+o J [‘ j 1+2e )-4-—0) 1 5+ | ! 1—3w] 4+3w
a® 1| 11| 2 ENEE EERERE i !
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29 31| 37 | 41 8 | a| 58 |5 61
2430|1430 | 1-4w§5+4w! | 7—w1 84w 8— 30| 11+3w
1 1| 35 2-32[22-3-5| 1 ] 1 | 23 { 2 ’ 2 |529| 2 | 2
¢) E=0Q(V29), o=(—14+/29)/2, fundamental unit=(5++/29)/2=3+w
2 | 3 5 7 11| 13 17 | 19 23
l—w|24+0| o =l+w i4—w 5+w 5—w| 6+w
gk(p>11221|15[1123}3211
29 | 31| 37 | 41 | 43 \ 47 53 | 59 61
1+ 20 | 5+30] 2-0|1-30 4+ 30
7 35| 23235 3.7 23 | 1| 1| 1| 1 |235
d) E=Q37), w=(—1++/37)/2, fundamental unit=6++/37=7+20w
2 3 s 7 | om |1 1719|282
ﬂ 2—w§3+wi !1—w}2+w14—w%5+w! i
a® 3 1|1 ’ 2 |11 1 1] 23] 2 L3 | 11| 2.5.7
alwl owm s8] w | m |59 | 61 |
1420 8430 5-30| | 7-0|8+0 !4—3«; T+30) '
3503 [ 1| 1|37 1| 1| 1| 1|2 235
e) k=Q(+53), w=(—1++/53)/2, fundamental unit=(7++/53)/2=4+w
2 3]s 7| 1 B 7 19 | 23
u i 2—w13+w*1—wi2+wi w ;1+w 5—w|6+wi
gk(p)ijljljz 3}3}1}1]2}2{2‘2[323.11
2 s | ¥ |4 8 | w 5
6-0|T+o|  |5+203-20| T—0| 840|730/ 0410 L+20
1]1'3-5}1 122.5]3]3‘1 1| 13
f) k=Q(+v61), 0=(—14+/61)/2, fundamental unit=(39+5v61)/2=22+50
iz! 3 5 |7|11| B | 19 23
 [4re[3-0l4-0l5r0] [ [1-0]2+e 11—30| U+30
ge(¥) 1!1}1 1‘1{3‘5}2.3 23 2 | 1 | 1 |31
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29{31|37 41

| |43 | 47 [ 53| 59 | 6L | 67 |
’ } !7—w 8+mi :H+&J8—3wt i ;1+2w?
| * |

I

2%7[345'2-32 22 37/ 1 | 1 23.13520] 3.5 2 |

g) k=Q21), w=(—1+4/21)/2, fundamental unit=(5++/21)/2=3+w

23| 5 |7 || w '19!23!29:31
ﬁ il—wil+w’ ® |3—w! | .3+2wh 2w { i E

e 1| L[ 113 25 23] 1| 1|23 23112437 235
¥ | a 8 4o s 5 e

6—ow 7+w].3w4+3w9+2w7 2w2+3w1+3w} 7+4w3 40| |
It+2oil—20 l

|
1-%0 ‘ :
2]2[1’ 111}1;22.13;1{12235

h) k= Q(«/69),w (—14-4/69)/2, fundamental unit=(25+34/69)/2=4-+3w -
|2 5 7 1 | 13 | 1w 19l 23

J j4—w¢3—wi4+wi ;2—w\3+w}5—w!6+w; ) !l+w% hmﬁw

gk(P)%’llflgl“l 23 1 1 .2 2|1/ 1 28 1

20 | 31 |37 41 |43 47 53 | 59 | 61 67 |

1420 9-20 | | 5420320 |
1 122329 22352311

|
| ‘
20T 1 | 1| 2037 25 2:3.7 2223 1

i) k=QT7), w=(—1++/77)/2, fundamental unit=(9+\/777)/2_:;5+w

|

§’zj315{7l11i13:17;19i23

{ | l3— w:o 0, 2—w 34w 1- w‘2+w %) !1+w 6—w| T+o
|
|

2i22!315‘151§1i1)1!1»1%1

[5]
©
w
—

37 ? 41 143 f 47 53 . 59

T-0|8t0 T+205-20] | |8-w|9tw| |

27235 2 | 2 | 1|1 2372223 2 | 2 209

i) E=Q(~/93), o=(—1+4/93)/2, fundamental unit=(29--3+4/93)/2=16-+3w
2 35| 7 | u w1l 1w | 1

4—w} 5—w| 6+w[3 a)|4+w} 32—w3

| !
@ 11 2|1 11 23111
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o |1+ 9420720 1—o| | l‘14+3a, 11—3(01
| | !

s w3t 3w a4 s |5 |6
| T
| _—

— — .
1| 1 0 7 | 7 | 3.5 2:32] 255 92.3.72.3.23° 1 | 1 | 2.29 22345
L | ‘ ! _ J B

§5. Construction of genus field.

For a finite abelian group G, we denote by |G| the order of G, ex(G) the
exponent of G, that is, the smallest positive integer which annihilates G. For
integer m and n, n|m® means that n|m’ for sufficiently large t.

THEOREM 8. Let k be a fimte algebraic number field of class number one,
G any fimte abelian group, and m a positive nteger such that ex(G)|m and
m|G|=. Then there exist infimtely many cyclic extensions F of k of degree m

such that
Cp/CF =G(F*/F)=G

where Cp 15 the ideal class group of F on which G(F/k) acts in usual way and

o 1s one of the generators of cyclic group G(F/k).

To prove this theorem, we use the following lemma proved in [7]. For a
rational prime number / and a positive integer n, we put

RU, n)=R(E, eV r U™
where /° is the number of [-power roots of unity in k, ¢ is a primitive [°+*-th

root of unity, and {e;, ---, ¢,} is the fundamental units of .. Then we have

LEMMA 9. Let k be a fimte algebraic number field. For a rational prime
number [ such that 1} h,, a positive integer n, and a finite prime p of k, the
following three conditions are equivalent ;

1) Let S be the ray class field modulo p of k. Then there exists an inter-
mediate field L of S/k such that (L: k)=I"

2) ™ divides ¢(p)/(Uy: Up(p)).

3) vl and p splits completely n k(l, n).

When these three equivalent conditions are fulfilled, L 1s a cyclic extension of k
and P 1s totally ramified in L. Therefore the intermediate field of 1) 1s unique.

Proof of Theorem 8. Suppose first that G is [-primary for a rational prime
number /. Then we have

G=GX - XG,;, m=l[+

where G, is cyclic group of order /% and 1<¢;,<, -, <e¢,<e,;;. By Lemma 9,
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there exist distinct finite primes py, -+, p+y Oof % such that (% divides
6(0,)/(Up: Uylpy). Let S, be the ray class field modulo p, of %, L, the inter-
mediate field of S;/k such that (L,: k)=[%, and ¢, a generator of cyclic group

G(L;/k). Put K= Lij L, composite field, then we have
5=

GK/R)y=G(L/R)X -+ XG(L¢si/ k).

Let H be the subgroup of G(K/k) generated by {o;ok};": (1=;=t)}, and F the
fixed field of H (the construction of F is due to [7]). Then G(F/k)=G(K/k)/H
is a cyclic group of order m whose generator is o+, H, and o, generates the
inertia group of p, in K/k, for 1<;<t+1. Therefore K is unramified over F,
and hence KCF*. Since h,=1, we have (K: k)=(F*: k) by the genus number
formula, and hence K=F* Then we have

G(F*/F)=H=G,X -+ XG,=G.
For general G, we have
G=G;X - XGy, M=qy - gs

where G, 1s the /,-primary part of G for a rational prime number [, and g, is
a power of /,. Then there exists a cyclic extension F, of £ of degree ¢, such
that

G(F¥/F)=G,.

Let F= Ii[1 F, composite field. Then, by Lemma 6, we have F*= f[l F¥ composite
= 7=

field. By the genus number formula, {(F¥: k): (1=<;=s)} are mutually prime,
therefore we have

GUF*/F)=GF¥/F)X - XGF¥/F)=G, X - XGy=G.

The infinity of F is follows from the way of construction of F and from
Lemma 9. The fact that the Artin mapping gives the isomorphism C,/Cy°
~G(F*/F) is proved in [8].
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