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SOME REMARKS ON THE RELATIVE GENUS FIELDS

BY KOICHI TAKASE

§ 1. Introduction.

Let έ be a finite algebraic number field and K its finite extension. We
denote by K* the maximal abelian extension of k such that the composite field
K*K is unramified over K at all the finite or infinite primes, and the field
K*K is called the genus field of K with respect of k. (If K* were defined as
the maximal abelian extension of k such that K*K was unramified over K at
all the finite primes, the field K*K was called the narrow genus field of K. We
do not treat the narrow genus field in this paper.)

The field K* is explicitly determined when k is the rational number field
(see M. Ishida [5], [6] or M. Bhaskaran [1]). In § 3 of this paper we discuss
the fundamental structure of ϋΓ* for general k. In §4 we treat, as an example,
the case of k— quadratic field of class number one in which 2 remains prime
and (K: k)=2.

In § 5 we prove the following theorem let k be a finite algebraic number
field of class number one, G any finite abelian group, and m a positive integer
such that ex(G)\m and m||G|°°. Then there exist infinitely many cyclic exten-
sions F of k of degree m such that

This paper contains the author's master thesis at Tokyo Institute of Technology
(1981, March).

§ 2. Definitions.

Let k be a finite algebraic number field and K its finite extension. We
denote by K* the maximal abelian extension of k such that K*K is unramified
over K at all the finite or infinite primes. By the class field theory, if* is the
maximal abelian extension of k in the Hubert class field of K, and K*Γ\K is
the maximal abelian extension of k in K. Throughout this paper the following
notations are used;

Ok'- the integer ring of k
Uk: the unit group of k
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φ(a): the Euler function of k
Uk(o.)={ε^Uk\s = l (modα)}, for an integral ideal α of k
kp: the completion of k at a finite or infinite prime p of k
k\\ the idele group of k into which we embed kx and k$ in usual way
k™ the Hubert class field of k
G{K/k): the Galois group of Galois extension K/k
\{K/k): the conductor of abelian extension K/k.

§ 3. Structure of genus field.

Let k be a finite algebraic number field, K its finite extension, and fix them.
For a finite prime p of k, we put

p=ψS ••• ψrr ($! , ••• , $ r : distinct primes of K, e3>G)

eκ(P)=g. c. d. {elf ••• , er} , gk(p) = φ(p)/(Uk: C/Λ(}))),

dκ(p)=g. c.d. {eκ(p), gk{p)} .

Let S{p) be the ray class field modulo p of /?. Then S(p)/kw is a cyclic
extension of degree gkip), and we put

k{p): unique intermediate field of S(p)/kw such that (k{p): kw) = dκ(p).

Then we have

LEMMA 1. k(p)dK* for any finite prime p of k.

Proof. This lemma is proved in [4]. Another proof using Abhyanker's
lemma is given in [3].

We define two subfield Kf and K% of K* by

: composite field, K%=Γ\T(p),
9

where p runs over all finite primes of k such that eκ(p)\gk{p), and T(p) is the
inertia field of p in K*/k. Notice that, for distinct finite primes plf •••, pr of
k, the fields k(p^), ••• , &Cpr) are linearly disjoint over ka\ Then we have

THEOREM 2.

Proof. Because the primes of k which are ramified in K* are unramified
in K*, the field K^r\K* is an unramified abelian extension of k. Hence we
have KfΓλKt=kσ\ since K^Kί contains kw.

Because K*K/K is unramified, we have eκ*(p)\eκ(p) for any finite prime p
of k. Then we have the following inequalities from which the equality
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K*=KΐK$ follows;

K*: T(p))

P

On the conductor of abelian extension K*/k, we have the following theorem:

THEOREM 3. Suppose that K is a normal extension of k. Then 1(K*/k)
= \(K*r\K/k). (Notice that the field K*r\K is the maximal abelian extension of k
in K.)

Proof. Put U=TIU% the unit idele group of K, where $ runs over all
SB

finite or infinite primes of K and U% is the unit group of Kψ Then, by the
class field theory, we have

if*=the class field of k corresponding to kxNκikU>
K*r\K=the class field of k corresponding to kxNKιkKl.

Since K is normal over k, we have

where p runs over all the finite or infinite primes of k, Sβ is any one of the
primes of K lying over p, and N%/p is the norm from K% to kp. Because the
inverse image of Up by Nyίp is contained in U%, we have \(K*/k)-=\(K*r\K/k).

COROLLARY 4. Suppose that K is a normal extension of k. Then K*=K*
if and only if K*r\K/k is unramified at the infinite primes and eκ(p)\gk(P) for
any finite prime p of k ramified in K*Γ\K.

Proof. Let p1} ••• , pr be the finite primes of k such that eκ(pj)\gk(pj) and

eκ(pj)>l. Then we have s\(KVk)=p1---pr. Because \(KVk) and \(K*/k) are
relatively prime and if* is the composite field of K"f and K%, we have \(K*k)
=ϊ(Kΐ/k)ϊ{ICξ/k). Because # ? n # ! is equal to &(1) and K% contains ka\ K*=K%
if and only if f(ϋf?/jfe)=l, that is, if and onlf if f(#*/*)lf(#?/fe). Hence,
because of Theorem 3, K*=Kΐ if and only if ]{K*niK/k)\'i(K:t/k), and only-if-
part of the assertion is proved.

If K*c\Klk is unramified at the infinite primes and eκ{p)\gk{p) for any
finite prime p of k which is ramified in K*r\K/k, K*r\K is tamely ramified
over k at the finite primes and hence ]{K*r\K/k) is square-free. Because the
set {pu ••• , pr} includes the prime factors of ](K*r\K/k) by hypothesis, we have
\{K*r\K/k)\\(K*jk).

PROPOSITION 5. Suppose that K is an abelian extension of k which is
unramified over k at the infinite primes and that there exists ouly one finite prime
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p of k such that eκ(p) X gk(P)- Then we have

K*=ICfK, K*λr\K=the inertia field of p in K/k.

Proof. Since p is unique prime of k which may be ramified in K*, p is
totally ramified in K%/ka\ Because K*K is unramified over K, we have
(if?: kw)\eκ(p). As p is unramified in K^r\K, we have

^trie inertia field of p in K/k.

Therefore we have the following inequalities from which our assertion follows

(if*: k)=(K*K:K)(K*nK: k)

^(if*: K)(T: k)

- ( i f * : kw){K*: £ ( 1 ) ) ( £ ( 1 ) : k)/(K. T):g(if*: k).

In Proposition 5 the uniqueness of prime p of k such that eκ(p) K gk(p) is
indispensable as the following example shows:

EXAMPLE. Put k^QiV^ϊl). The polynomial f(X) = X3-3X-l is irreducible
over k. Let a be a root of f(X)=0 and put K—k{a). Then if is a cyclic
extension of k of degree 3 and the relative discriminant of K over k is
D{K/k)—?>\ The prime factors D(K/k) in k are 1+ω and ω where

—ϊl)/2. Since ^*(l+α))=^Λ(α)) = l, eκ(\+ω) = eκ(G>)=Z> we have

On the other hand, by the genus number formula proved in [2], we have

(if*: k)=9.

For the latter use, we prove the following lemma:

L E M M A 6. Let L and M be finite extension of k such that ( L : k) and
( M : k) are relatively prune. Then we have (LM)*=L*M*.

Proof. Put K=LM. The inclusion L*M*dK* is obvious. We have to
prove that any finite abelian extension F of k such that FK is unramified over
K is contained in L*M*. We can suppose that (F: k) is a power of a rational
prime / and the F is ramified over k. Then, as FK is unramified over K, we
h a v e l \ ( K : k) a n d h e n c e l \ ( L : k) o r l \ ( M : k). S u p p o s e ί \ ( L : k). S i n c e
(FL: L) = (F: Ff~\L) is a power of /, the ramification index in FL/L of the
finite primes of L are power of /. Because FK is unramified over K and
IX(M: k)=(K: L), FL is unramified over L and so F(zL*aL*M*.
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§ 4. Examples.

Let k be a finite algebraic number field of class number one in which 2
remains prime. Let (k : Q)—n and {aή (7=1, 2, ••• , 2n—1)} be a system of
complete representatives of the squares of the multiplicative group of O*/(4)
(its order is easily shown to be 2n—1). Let m be a square-free integer of k and
put K=k(Vm). We define an integer Θ of K by

{ (ωj

JrVm)/2: m=oή (mod 4) for some j

Vm : otherwise.

Then we have

LEMMA 7. Oκ is a free Ok-moάule with base {1, θ}, and the relative dis-
criminant of K over k is given by

{ m: m=aή (mod4) for some j

Am: otherwise.

Proof. We use the following fact for integers a, b and c of k, the equation

a2-b*c=Q (mod 4)

is equivalent to a=ba)j (mod 2) if c=aή (mod 4) for some j , and to a=b=0
(mod 2) if cq^ω) (mod 4) for any /. Because m is a square-free integer of k,
we have

\a, b^k such that 2a^Ok, a2—b2nκΞθk}

= {(α+6Vm)/2|α, b^Ok such that a2-b2rn=0 (mod4)} .

If m=aή (mod 4) for some j , we have by above remark

OK-={(a-ba)j)/2+b(a)j+Vm)/2\a, btΞθk such that a = bω3 (mod 2)}

= {a+bθ\a} b<ΞΞθk} .

If m^ω) (mod 4) for any /, we have

Oκ={a+bVm\a,

We have

where p runs over the prime factors of D(K/k) in k such that 2\gk($), and
TQpi) is the inertia field of p in K*/k. For a prime factor p of D{K/k) in
& such that 2|gfeC|)), (̂t>) is a quadratic extension of k, and by Lemma
7, k(p)=k('>/π~) where π is a generator of p such that π=ω) (mod 4) for some
j and satisfies conditions on its signature (if necessary).
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We treat more explicitly the case of k=quadratic field below.

487

1) Let k be a imaginary quadratic field of class number one in which 2 remains
prime, that is, k = Q(VTJ) where ΰ = - 3 , - 1 1 , -19, -43, -67, -163, and put
ω=(—l+VZT)/2. Then {a+bω\a, b=0, 1, 2, 3} is a system of complete re-
presentatives of Ok modulo 4. There are only three representatives which are
prime to 2 and are congruent modulo 4 to squares, and they are named as in
the following table:

- 1 1 , - 43 I 1 2+ω

Let m be a square-free integer of k and put K=k(Vm). Let θ be an integer
of K defined by

(l+Vm)/2 : mΞo)! (mod4)

: m=ω2 (mod 4)

: m=ω3 (mod 4)

Vm : otherwise.

Then, by Lemma 7, O*. is a free 0 ^-module with base {1,
discriminant of K over & is given by

and the relative

D(K/k)=
m: m=ωlf ω2f o)3 (mod 4)

4m: otherwise.

For a finite prime p of k, we have

k(Vπ ): if p — (π) where π=ωu ω2, ω3 (mod 4)

k : otherwise.

EXAMPLE 1. Put k = Q(V—11), K=k(V~5). Because 5 is a square-free
integer of k and 5 ^ ^ (mod 4), we have D(K/k)=5. The prime factors of
D(K/k) in k are 1—ω and 2+ω. Since gk(l—ω)=gk(2+ω)=2 and I - W Ξ ^
(mod 4), 2-\-ω=ω2 (mod 4), we have by Corollary 4

# * = # * = j^VI^ύΓ, V2+αΓ).

EXAMPLE 2. Put * = 0(VZΓ3~), K=k(V26). Because 26 is a square-free
integer of k and 26=£α>i, ω2, ^3 (mod 4), we have D(K/k)=2313. The prime
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factors of D(K/k) in k are 2, 3-ω and 4+ω. Since g*(2)=l,
= 2 and 3-α)Ξft)3 (mod 4), 4+ω=ω2 (mod 4), we have by Proposition 5

2) There are ten real quadratic field of discriminant less than 100 of class
number one in which 2 remains prime, that is, Q(VD) where D=5, 13, 21, 29,
37, 53, 61, 69, 77, 93. Let k be one of the ten real quadratic fields and put
ω=(—l+VZ))/2. Then {a+bω\a, b=0, 1, 2, 3} is a system of complete repre-
sentatives of Ok modulo 4. There are only three representatives of Ok modulo
4 which are prime to 2 and are congruent modulo 4 to squares, and they are
named as in the following table

^ . name
D " \ ^

5, 21, 37

53,69

13, 29, 61

77, 93

1

1

0)s

Let m be a square-free integer of k and put K=k(V?n). Let θ be an integer
of K defined by

(l+Vm)/2

Vm

m=tΰι (mod 4)

7n=ω2 (mod 4)

m=o)3 (mod 4)

otherwise.

Then, by Lemma 7, 0 # is a free O&-module with base {1, θ) and the relative
discriminant of K over k is given by

D(K/k)=
m : m=o)ι, ω2, ω3 (mod 4)

4m: otherwise.

For a finite prime p of k, we have

r

^_J ^(Vπ- ): if p=(π) where π=ωu ω2} ωs (mod 4) and π^O

k : otherwise

where π^O means that π is totally positive.

EXAMPLE 3. Put k = Q(Vϊ3), K=k(V53). Because 53 is a square-free
integer of k and 53ΞΞωx (mod 4), we have D(K/k)=53. The prime factors of
D(K/k) in k are Ί-ω and 8+ω. Since gk(7-ω)=gk(8+ω)=2 (see the tables
at the end of this §), and 7—ω=ω3 (mod 4), 8+ωΞΞω2 (mod 4), 7—ω^(
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we have by Corollary 4

-ω , VS+

EXAMPLE 4. Put k = Q(V29), K=k(VlO). Because 10 is a sequare-free
integer of k and 10^ΞO>I, ω2, ω3 (mod 4), we have D(K/k)=235. The prime
factors of D(K/k) in k are 2, 4+ω, and 3—ω. Since g*(2)=l, gk(4+ω)
—gk{3—ω)—2y and A-\-ω=ω2 (mod 4), 3—ω=ω3 (mod 4), 4+ωΞ>0, 3—ω^O, we

have by Proposition 5

K*=K1fK=k(Λ/ϊ0f Vϊ+ω", -s/ξ^oύ).

EXAMPLE 5. Put k = Q(V53), K=k(V22Γ). Because 221 is a square-free
integer of k and 221 =ωi (mod 4), we have D{K/k) — l3ΛΊ. The prime factors
of D(K/k) in k are 13+3ω, lΊ+Aω, 5-ω, and 6+ω. Since gk(l3+3ω)=gk(l7+4ω)
=gk(5—ω)=gk(6+ω)=2, and 13+3ωΞω3 (mod 4), lΊ+Aω—ω! (mod 4), 5—ω=ω3

(mod 4), 6+ω=ω2 (mod 4), 13+3^^0, 17+4^^0, 5-ω^0, β+ω^0, we have

Let L be the genus field of K with respect to the rational number field, that
is, the maximal abelian extension of Q such that KL/K is unramified. Then we
have by the genus number formula

Q)^2 3 i.e. (L

On the other hand, we have (K*: /?)=24 and hence L^=K*.

Tables.
Table of gk(p) and prime elements of k above each rational primes. (Blanks

mean that the rational prime remains prime in k.)

a) k = Q(VΊ>), ω=(-l+V5~)/2, fundamental unit=(l + V~5")/2=l+cy

1 2

!!
**(P)|j 1

3

1

5

2 — ω

1

7

3

11

3 — ω

1

4 + ω

1

13

2-3

17

23

19

4 - ω

1

5 + ω

1

23

11

29

5 — ω

2

6 + ω

2

31

7+2ω|5-2ω

1 1 λ

37

2 32

41

6 —ω

1

7 + ω

1

43

3 7

47 53

3-23 2-13

59

9 + 2ω

1

7-2ω

I

b) k

gk{V)

= ζ?(Vl3), ω

2

1

ω

1

= ( — l + Vl3)/2, fundamental

3

1 + ω

1

5

2

7

3

11 13

1 l + 2ω
1

3-5 3

unit=(3+Vl3)/2=2+ω

17

4 — ω

1

5 + ω

1

19

32

23

1 — 3ω

1

4 + 3 ω

1
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29

2 + 3ω

1

l + 3ω

1

31

3 5

37

2.32

41

22 3.5

43

1—4ω 5 + 4ω

1 1

47

23

53

Ί-ω

2

8 + ω

2

59

5 29

61

8-3ω ll + 3ω

2 2

c) k = Q(V29), <w=(-l+V29)/2, fundamental unit=(5+V29)/2=3+ω

gkW

29

l + 2ω

7

2

1

31

3 5

3

1

37

2 3 2

1-ω

2

41

22.3.5

5

2 + ω

2

43

3.7

ω

1

47

23

7

1 + ω

1

11

5

53

5 + 3ω

1

2 - ω

1

13

4 —ω

1

5 + ω

1

59

l - 3 ω

1

4 + 3ω

1

17

23

61

2.3.5

19

32

23

5 — ω

1

6 + ω

1

d) k

gk(v)

= Q(V37), ω=(-l+v37)/2, fundamental unit=6+V37=7+2ω

2

3

3

2 — ω 3 + ω

1 1

5 7

1-ω 2+ω

11

4-ω 5 + ω

1 ! 1 ! 1 1 1

13

2-3

17

23

19

32

23

11

29

2.5.7

31

3.5

37 41

l + 2ω 8 + 3ω

3 2 1

5 —3ω

1

43

3-7

47

7 - ω

1

8 + ω

1

53

4-3ω

1

7 + 3ω

59

1 29

61

2.3.5

e) k = 0(V53), α>=(-l+V53)/2, fundamental

1 2

gkW 1

29

6 — ω

1

7 + ω

1

3

1

5

2

7

2 - ω

3

3 + ω

3

31

3.5

37

5 + 2ω

1

3 — 2ω

1

41

22 5

11

1-ω

1

2 + ω

1

43

7—ω 8+ω

3 3

unit=:(7+Λ/53)/2= 4 + 6

13 17

ω

2

1 + ω

2

47

7-3ω

1

5 — ω

2

53

10 + 3ω l + 2ω

1 13

6 + ω

2

0

19

32

23

3 11

f) & = Q(V6ί), ω = ( - l + V61)/2, fundamental

2

i
gk(V)\ 1

3

4 + ω

1

3 — ω

1

5

4 - ω

1

5 + ω

1

7

3

11

5

unit=(39+5Vβl)/2=22+5ω
13

1 - ω

2-3

2 + ω

2 3

17

23

19

11-3ω

1—
1

14 + 3ω

1

23

3.11
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29

22 7

0 1

3.15

37

2 32

41

7-ft)

22

8+ft)

22

43 47 53

1

, 11 +3ft) 8 — 3ft) 1

3.7

59 61

l + 2ft)

1 1 2 3 13 5 29 j 3 5

67

?

g ) £ = Q(V2Ί), ω=(-l+V2ϊ)/2, fundamental unit=(5+V2ϊ)/2==3+α>

7 11 13 17 19 23 j 29 l 31

1 - ί ω ό — ω3 - 6

3 2 5 ! 22 3 22 3212-3-11 22.3 7 22 3.5

37

6 — ω

41 43 47 53 59 61 ί

s7 + 4ft)j3-4ft

1 1 1 1 1 22 13! 1 1 22.3.5|

h) & = <2(V69), ω=(-l+V69)/2, fundamental unit=(25+3Vβ9)/2=4+3ω

11 13 17

4 - ω ! 3 - o j ! 4 + ω i j 2-ω I 3 + ω \ 5-ω 6 +

19 J 23

10 -3ft)

1 ί 1 1 2 3 I 1 : 1 ' 2 I 2 I 1 ! 1 • 2 3 2 ! 11

29

22 7

31 I 37 41 ! 43 47 i 53 59 ! 61 67

I I

22 32 23 5 ' 2.3.7 22 23 j 1 ! 1 i 22 3 29 22 3 52 3 111

i) k = Q(V77), α>=(-l + V77)/2, fundamental unit=(9+V77)/2=5+ω

29

22 7

3 5 1 1 I 1 3 17 19 23

3 — ft* j 5 —ft) I 2 —ft) 3 + ft) j 1 — ft) I 2 + ft> ft)

1 ί 1 12 2 2 I 3 ί 5 ' 1 ' 1

+ ft) J 6 —ft>! 7 + ft)

1 . 1 ί 1

31 37 41 43 I 47 ! 53 j 59 I

7 - a) b + ft> / + Zft) b — Zft)5-2ft 9 + c

2 3 5! 2 1 |22 3 7j 22 23 2 | 2 ] 2-29 j

j) & = Q(V93), α>=(-l + V93)/2, fundamental unit=(29+3V93)/2=lβ+3ω

gk(V)

2

1

3

4 — ft)

1

5

22

- ω | 6 + 0

Γί~Γ

11

3 —ft)

1

13 17

22 3

I 2 —ft) I 3 + ft)

1

19

6-ft) I 7 + 6
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23 29 31 37

1 + ω ,9 + 2ω 7-2ω|14-3α>

1 3 5 22 32

41

23 5

43

22 3 72

47

• 3-23

14 + 3

1

53

ωl\ -3ω

1

59

2-29

61

22 3.5

§ 5. Construction of genus field.

For a finite abelian group G, we denote by \G\ the order of G, ex(G) the
exponent of G, that is, the smallest positive integer which annihilates G. For
integer m and n, n\m°° means that n\mι for sufficiently large t.

THEOREM 8. Let k be a finite algebraic number field of class number one,
G any finite abelian group, and m a positive integer such that ex(G)\m and
m\\G\°°. Then there exist infinitely many cyclic extensions F of k of degree m
such that

where CF is the ideal class group of F on which G{F/k) acts in usual way and
σ is one of the generators of cyclic group G(F/k).

To prove this theorem, we use the following lemma proved in [7]. For a
rational prime number / and a positive integer n, we put

)=β(Q, ei' , ei"-n)

where ίδ is the number of /-power roots of unity in k, ζ is a primitive lδ+n-th
root of unity, and {ε1} ••• , εr} is the fundamental units of k. Then we have

LEMMA 9. Let k be a finite algebraic number field. For a rational prime
number I such that l\hh, a positive integer n, and a finite prime p of k, the
following*three conditions are equivalent;

1) Let S be the ray class field modulo p of k. Then there exists an inter-
mediate field L of S/k such that (L: k)=ln.

2) ln divides φ(p)/(Uk: Uk(p)).
3) p K I and p splits completely in k(l, n).

When these three equivalent conditions are fulfilled, L is a cyclic extension of k
and p is totally ramified in L. Therefore the intermediate field of 1) is unique.

Proof of Theorem 8. Suppose first that G is /-primary for a rational prime
number /. Then we have

G = GλX ••• xGt, m=let+i

where G3 is cyclic group of order le3 and K e ^ , ••• , ^et^et+1. By Lemma 9,
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there exist distinct finite primes pu ••• , pt+1 of k such that leJ divides
φ(pj)/{Uk: Uk(pj)). Let S3 be the ray class field modulo p3 of k, L3 the inter-
mediate field of Sj/k such that (L3: k)—le3, and σ3 a generator of cyclic group

ί + l

G(Lj/k). Put K— Π L3 composite field, then we have

G{K/k)=G(LJk)x ••• xG(Lt+1/k).

Let H be the subgroup of G(K/k) generated by {σ3σ\ll^: (l^j^t)}, and F the
fixed field of H (the construction of F is due to [7]). Then G(F/k)=G(K/k)/H
is a cyclic group of order m whose generator is σt+iH, and σ3 generates the
inertia group of p3 in K/k, for l ^ ^ ί + 1 . Therefore K is unramified over F,
and hence KdF*. Since hk = l, we have (/ί: ^ ) ^ ( F * : ^) by the genus number
formula, and hence K—F^. Then we have

For general G, we have

where G3 is the /^-primary part of G for a rational prime number /;, and q3 is
a power of l3. Then there exists a cyclic extension F3 of ^ of degree q3 such
that

G(Ff/F3) = G3.

s s

Let F = Π F3 composite field. Then, by Lemma 6, we have F * = Π Ff composite

field. By the genus number formula, {(Ff: &): ( l ^ ^s)} are mutually prime,
therefore we have

G(F*/F) = G(F*/F1)x ••• xG(Ff/Fs) = G1x ••• xGs=G.

The infinity of F is follows from the way of construction of F and from
Lemma 9. The fact that the Artin mapping gives the isomorphism CF/Cι

F'
σ

= G(F*/F) is proved in [8].
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