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ON THE INVARIANT SUBMANIFOLD OF A C/?-MANIFOLD

BY YOSHIYA TAKEMURA

§ 0. Introduction.

Differential geometry of Kaehler submanifolds has been studied from many
points of view (see K. Ogiue [4], B. Smyth [7] etc.). On the other hand, CR-
structures are recently developed by several authors (see Chern-Moser [1],
Tanaka [8], [9], Webster [10], [11], S. Ishihara [2], Sakamoto-Takemura [5],
[6] and so on). In [5], [6], the authors gave a change of canonical connections
associated with almost contact structures belonging to a Ci?-structure and also
derived the generalized Bochner curvature as a curvature invariant. The pur-
pose of the present paper is to study invariant submanifolds of a Ci?-manifold
and to prove some theorems similar to the Kaehler case.

In § 1 we shall recall definitions and results given in [5], [6]. § 2 well be
devoted to the study of an invariant submanifold of a Ci?-manifold. In § 3 we
shall obtain some theorems similar to the Kaehler case. The author wishs to
express his heartly thanks to Professors S. Ishihara and K. Sakamoto for their
constant encouragement and valuable suggestions.

§ 1. Preliminaries.

In this section, we shall recall definitions and some properties of Ci?-struc-
tures for later use. Let 3i be a connected orientable C°°-manifold of dimension
2 n + l ( n ^ l ) and (3>, /) a pair of a hyperdistribution 3) and a complex structure
/ on 3). The pair (3), J) is called a CR-structure if the following two conditions
hold:

(1.2) IJX, JY1-IX, Yl-Άix, JY1+IJX, Π)=o

for every X, Y<=Γ(3>) where Γ(3>) denotes the set of all vector fields contained
in 3). Let θ be a local 1-form annihilating the hyperdistribution 3). If the
restriction of the 2-form dθ to 3) is nondegenerate, then the Ci?-structure (3>, J)
is called to be nondegenerate. In the sequel (3), J) will be always a non-
degenerate Ci?-structure.
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Now let the manifold 31 admit a CivNstructure (3), J), then 3ί is call a CR-
manifold. An almost contact structure (φ, ξ, θ) is a triplet of (1, 1) tensor field
φ, a vector field ξ, and an 1-form θ defined on 3A. satisfying

(1.3) θ(ξ)=l, φξ=O, θ°φ=O,

r<mkφ=2n.

If the 1-form θ annihilates 3) and the restriction of φ to 3) coincides with /,
then we say that the almost contact structure (φ, ξ, θ) belongs to the Ci?-struc-
ture (3), / ) . Define a 2-form ω by

(1.4) ω=-2dθ.

Then ω satisfies

(1.5) ω{JX, JY)=ω(X, Y)

for every X, Y^Γ{3)) because of (1.1). Moreover define g; 3)X£)-^R by

(1.6) g{X,Y)=ω{JX,Y),

which is called Levi-metnc and satisfies the equations

(1.7) g(X,Y)=g(Y,X),

(1.8) g(JX,JY)=g(X,Y)

Given almost contact structure belonging to (3), J), we can always construct
from (3), J) an almost contact structure (φ, ξ, θ) belonging to (3), J) and satis-
fying the following condition

(1.9) K

(c. f. [5]). This condition is equivalent to

(1.10) Xξθ=0

or

(1.11) ω(X,ζ)=0,

where X denotes the Lie differentiation with respect to ξ. Such an almost con-
tact structure will be denoted by (φ, ξ, θ)* and we shall restrict our attention
to the family of almost contact structures with condition (1.9) which belong to
the Ci?-structure (3), / ) . We proved in [5]

LEMMA 1.1. // (φ, ξ, θ)* and (φf, ξ', θ')* belong to {3)y J), then they are
related by

(1.12) θ' = εe*rθ, ξ' = εe-2v(ζ-2Q), φ'=φ-
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where ε = ± l , μ is a C~-function, P^Γ{3>) is defined by g(P, X) = dμ(X) for
Γ(3)) and Q=JP.

Next we shall explain canonical connections associated to almost contact
structures with condition (1.9) and find a quantity invariant under their changes.
Before mentionning the existence of canonical connections, we prepare the nota-
tions. For (φ, ξ, θ)* belonging to (3), J), their always exists a linear connection
7 such that lφ—0, Vf=0, and Ίθ—O. Let D denote the induced connection on
the hyperdistribution 3). Then D satisfies DJ=0. Since the equation 7 0 = 0
implies that the parallel displacement with respect to 7 preserves 3), the torsion
tensor field T of 7 satisfies

(1.13) T(X, Y) = Tg>(X, Y)-ω{X, Y)ξ,

for every X, Y<BΓ(£)) where [_X, Y~]\ ® denotes the ^-component of [_X, 7 ] and
we note that T$(X, Y) is the ^-component of T(X, Y). Let F be a tensor field
of type (1, 1) defined by

(1.15) FX=T{ξ,X), XE:Γ{3)).

Tanaka [9] proved (cf. [5])

LEMMA 1.2. Let (φ, ξ, θ)* be an almost contact structure satisfying the con-
dition (1.9) and belonging to {3), J). Then there exists uniquely a linear connec-
tion 7 such that 7^=0, Vf=O, 70=0, Dg=0, T ^ = 0 , and F=-(l/2)φXξφ.

The linear connection stated in the above lemma is called a canonical con-
nection associated with (φ, ξ, θ)*. We proved in [5], [6]

LEMMA 1.3. Let (φ, ξ, θ)* and (φ', ξ', φ')* be two almost contact structures
which belong to the CR-structure (3), J). Let 7 and 7 r be canonical connections
associated with (φ, ξ, θ)* and (φf', ξ', φ')* respectively. Define the difference H
between 7 and 7 r by

(1.16) H(X, Y)=lχY-lχY X,

Then we have

(1.17) H(X, Y)=p(X)Y+ρ(Y)X-g(X, Y)P

+q(X)JY+q(Y)JX-g(JX, Y)Q ,

(1.18) H(ξ, X)=lJXP+lxQ-2q{X)P

+2p(X)Q+2g(P, P)JXy X,

where p — dμ and q——p°φ.
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Define Bo, B^Π®**®®) by

(1.19) B0(X, Y)Z=R(X, Y)Z+l(Y, Z)X-l(X, Z)Y+m(Y, Z)JX

-miX, Z)JY+g(Y, Z)LX-g(X, Z)LY+g(JY, Z)MX

-g(JX, Z)MY-2{m(X, Y)JZ+g(JX, Y)MZ) ,

(1.20) B1(X, Y)Z = j{R(JX, JY)Z-R{X, Y)Z) ,

where R is the curvature tensor field of the canonical connection associated
with (φ, ξ, θ)* and /, m, L, M are following:

(L21) /(Z> Y)— ά k
(1.22) m(X, Y ) - - ^

(1.23) k(X, Y)=jtmce(φR(X, φY)),

(1.24) g{LX, Y)=l(X, Y) g(MX, Y)=m{X, Y).

The function p appearing in (1.21) and (1.22) is the trace of
which is defined as follows.

(1.25) g(SX, Y)=s(X, r e t r a c e (V-*R(V, X)Y).

LEMMA 1.4. B^BQ

J

ΓB1 is invariant under the change (1.12), i.e., B-Br

holds.

Now we state a remark concerning to the normality of the almost contact
structure {φ, ξ, θ)* belonging to {3)t J). In the definition (1.20), Bx is also
written as follows ([β]).

(1.26) BX{X, Y)Z=-j{f(JY, Z)X-f{JX, Z)Y+f(Y, Z)-f{X, Z)JY

+g(Y, Z)FJX-g(X, Z)FJY+g(JY, Z)FX-g{JX, Z)FY),

where / is defined by g(FX, Y)=f(X, Y). We have already seen that the nor-
mality of the almost contact structure belonging to (£D, J) is equivalent to the
fact F = 0 ([5]). In this case Bx vanishes by (1.26), i.e., R(X,Y) is hybrid.
Conversely we assume BX(X, Y)Z=0 for arbitrary X, Y, Z<Ξ.Γ(2)). From (1.26),

trace {X->f(Jγ, Z)X-f{JX, Z)Y+f(Y, Z)JX-f(X, Z)JY

+g{Y, Z)FJX-g(X, Z)FJY+g(JY, Z)FX-g(JX,
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So we have

(1.27) 2(n-l)/F=-(traceF)/.

As / is skewsymmetric and / is symmetric with respect to g [5], we get
F=0 if n^=l. Thus we obtain

PROPOSITION 1.5. Let 31 be a CR-manifold of dimension 2n+l (n=^l). The
almost contact structure (φ, ξ, θ)* belonging to (3), J) is normal if and only if
the curvature tensor with respect to the cononical connection is hybrid.

And moreover from the fact that Bo is hybrid tensor and Bλ is pure tensor
i.e., that BQ(JX, JY)=B0(X, Y) and BX{JX, JY)=-Bλ(X, Y), we obtain

PROPOSITION 1.6. Let 3i be a CR-manifold of dimension 2n+l (n^l). //
the curvature invariant B defined in Lemma 1.4 vanishes, then the almost contact
structure (φ, ξ, θ)* belonging to (3), J) is normal.

§ 2. Invariant submanif olds of a Cft-manif old.

Let 3i be a connected orientable Ci?-manifold of dimension 2(n+p)+l, (®, ])
be a nondegenerate Ci?-structure on 3A with the condition (1.9), and (φ, f, θ) be
an almost contact structure belonging to (<Z5, /). Moreover we assume that the
Levi-metric g defined on 3) is positive definite.

Let SA. be a submanif old of 3A of codimention 2p, and we assume the vector
field I is tangent to 3ί. For arbitrary point x of 31, we put

(2.1) Wx = Tx3lΓΛ®x

and assume that the dimension of S)x is always 2n and that 0X is invariant by
/ Then we get a hyperdistribution 3) of 3i and moreover we put / to be the
restriction of / to 3). Then M is called an invariant submanif old of 3i.

Next we put φ(X)=φ(X), Θ{X)=Θ(X) for X^Γ(T3i) and put ξ=ξ on 3ί.
And let g be the restriction of g on £D, i. e., the induced metric on W. Then g
is the Levi-metric on <Z>; because g(X, Y)=g(X, Y)=-2dθ(X, Y)=-2dθ(X, Y)
for X, YζΞΓ($). Thus we obtain

LEMMA 2.1. The pair {2), J) is a nondegenerate CR-structure on 31 and the
Levi-metric induced on 3) is positive definite.

LEMMA 2.2. The triplet {φ, ξ, θ) is an almost contact structure belonging to
{£), J) and satisfies the condition (1.9).

Now we study the connection on 31 induced from the canonical connection
on M. Let 7 be the canonical connection on 31. And take the normal space
as the orthogonal complement of 3) with respect to the Levi-metric g. We write
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(2.2) 7 x 7 = V χ 7 + σ(X, Y) for X, Y^Γ(T3i)f

where 1XY is the tangential component of ΐXY, that is, 7 is the induced con-
nection on 3ί and σ is the second fundamental form of the submanifold 31.
We note that σ(X, Y) is contained in Γ(<£)) as f is tangent to 31. We study
the properties of 7 and σ.

First we obtain the next lemma concerning ζ, because 7χf=0 for X^Γ(T3ί).

LEMMA 2.3.

(2.3) 7 x f = 0 ,

(2.4) σ(X, ξ)=0 for X^Γ{T3i).

Secondly by comparing the following two identities:

(2.5) 7xφY"=7xφY'+σ(X, φY),

(2.6) fJxY=φ!xY+φσ(X, Y) for X, Y^Γ(T3i)

and taking account of ΐφ=0, we get

LEMMA 2.4.

(2.7) 7^=0,

(2.8) σ(X, φY) = φσ{X, Y) for X, Yi

Because of

θtfxY+σ(X, Y))

=1 χ{θ(Y))-θ{l XY)={1 XΘ)Y

for X, Y^Γ(T3ί), we get

(2.9) V#=0.

Moreover from the fact that the torsion tensor field T(X, Y) of the canonical
connection ΐ for X, Y(ΞΓ(£>) is

(2.10) T(X,Y) = -ω(X,Y)ξ (cf. [5]),

we see that 1XY-1YX~IX, Yl + σ(X, Y)-σ(Y, X) = -ω(X, Y)ξ. So we get

LEMMA 2.5.

(2.11) !xY-lYX-lXy F]U-0,

(2.12) σ(X, Y) = σ(Y, X) for X, F
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Next, concerning to the tensor field F and F defined as (1.15) on <3ί and JM,
we get FX=-(l/2)φ{lζ, φX~]-φlξ, * ] )eΓ(0) for X^Γ{W). So we obtain

LEMMA 2.6.

(2.13) FX=FX=-γ(φΓξφ)(X) for I E Γ ( ^ ) ,

(2.14) σ(ξ,X)=0 for X<EΞΓ{TM).

And from (2.3), (2.7), (2.9), (2.10) and (2.13), we get

PROPOSITION 2.7. The induced connection 7 on <M is the canonical connection
on M associated with (φ, ξ, θ)* and satisfies F——{l/2)φXξφ.

From (2.13) we also have

PROPOSITION 2.8. // the almost contact structure (φ, ξ, θ)* belonging to (3), J)
is normal, then the almost contact structure (φ, ζ, θ)* belonging to (<3), J) is also
normal.

Now we take orthonormal normal vector fields of the form {Nlf N2, ••• , Np,
JNlf ••• , JNp} in Q with respect to g. If we set

(2.15) g(AaX, Y) = g(σ(X, Y), Na) α = l , 2, - , p

for X, Y^Γ{W), then we easily see from (2.8) that

(2.16) AaJ=-JAa α = l , 2 , ••• , p

and Aa and JAa are symmetric with respect to g. In particular, trace Aa on S)
is zero, so considering with (2.13), we obtain

PROPOSITION 2.9. The submamfold Jά is a minimal submanifold.

To conclude of this section, we are going to give the equation of Gauss.
The computation of the curvature tensor on the distribution is quite similar to
the Kaehler case. However, in the process of the computation, we must notice

- 7 F Z , Z)+ω(X, Y)lξZ

, Z) for any X, Y,

After all we have

PROPOSITION 2.10. For X, Y, Z, W<ΞΓ(2)), the following equation of Gauss
holds:
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(2.17) g{R(X, Y)Z, W)-g{R(X, Y)Z, W)

=g(σ(X, Z), σ(Y, W))-g{σ{X, W), σ(Y, Z)),

where R and R are the curvature tensors with respect to the canonical connections
1 and 1.

§ 3. Some theorems for the invariant submanifold.

Now we state some theorems concerning to the invariant submanifolds of a
Cff-manifold. To begin with we recall a theorem for a Kaehler submanifold
proved by M. Kon ([3]).

THEOREM. Let fί be a Kaehler manifold of dimension 2mJ

Γ2p with vanish-
ing Bochner curvature tensor, and let Ul be a Kaehler submanifold of Jί of codi-
mension 2p. If £<(m+l)(m+2)(4m+2), then ϋ7 is totally geodesic in Jί if and
only if the Bochner curvature tensor of U2 vanishes.

Here as in §2, let J be a Ci?-manifold with dimension 2(m+p)+l and
with positive definite Levi-metric. And let JM be an invariant submanifold of
3tt of codimention 2p. Let B = BQ

J

rBι and B — BQ^-B1 are respectively the cur-
vature invariant of 3d and 3i with respect to their canonical connections. And
we assume that B=0. Then from Proposition 1.6 and (2.13) in Lemma 2.6, we
can prove the following theorem by the similar method to the previous theorem.

THEOREM 3.1. Let 3i be a CR-manifold of dimension 2(m+p)Jrl. Assume
that the curvature invariant B defined in Lemma 1.4 of 31 vanishes. And let
3L be an invariant submanifold of 3i of codimension 2p. If p<(mJrl)(mJr2)
•(4m+2), then 3ί is totally geodesic in 3i if and only if the curvature invariant
B of 31 vanishes.

Now we moreover assume that the restriction of the Ricci tensor of 3A to
Q is proportional to the Levi-metric g. Then 3A is said to be ^-Einstein. So
by the definition

(3.1) s(X, γϊ=-J^£(χ> r ) f o r x> Y^Γ(®).

In this case if the curvature invariant B of 3d vanishes, then the curvature
tensor with respect to the canonical connection is of the following form:

(3.2) R(X, Y)Z= j {g{Y, Z)X-g{Xy Z)Y

, Z)JX-g{JX, Z)JY+2g(X, JY)JZ)

for X, Y, ZΪΞΓ{2)),
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where

(3.3) c"fc
The curvature tensor R has the same form as the constant holomorphic sectional
curvature. Then the equation of Gauss (2.17) is written as

(3.4) g(R(X, Y)Z, W)=g(σ(X, W), σ(Y, Z))-g(σ(X, Z), σ(Y, W))

+ j {g{X, W)g(Y, Z)-g(X, Z)g{Y, W)

+g{JX, W)g(jY, Z)-g(jX, Z)g(jY, W)

+2g(X, JY)g{JZ, W)} for X, Y, Z,

Let s be the Ricci tensor and p be the scalar curvature on 3) defined in (1.25),
then we have

(3.5) s(X, Y)=(m+l)^g(X, Y)-2Σg(AaX, AaY) ,

(3.6) p=m(m+l)c-\\σ\\2,

where |M|2 is the length of the second fundamental form σ of the submanifold.
In particular if we define ^-holomorphic sectional curvature H determined by a
unit vector X^Γ(W) in the same way as the holomorphic sectional curvature in
a Kaehler manifold, we obtain the next theorem.

THEOREM 3.2. Let M be a CR-mamfold of dimension 2(m+p)+l with posi-
tive definite Levi-metric. Assume that the curvature invariant defined in Lemma
1.4 of 3ί vanishes. Moreover we assume that 3A is ^-Einstein in the sense of
(3.1). And let 3i be an invariant submanifold of 3i of codimension 2p. Then
in the notation above

. . (ra+l)c . . . , r M

(a) s ^ -g is negative semi-definite ,

(b) p^
(c) H^c,

If we say M is ^-locally symmetric if C7XR)(Y, Z)W=0, for X, Y, Z, W<EΞ
Γ{S)), then we can state the following theorem as in [7], when p = l.

THEOREM 3.3. Let M and 3A be as above and p — \. If 31 is ^-Einstein,
then it is 3)-locally symmetric.
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