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OPERATIONAL CALCULUS OF TWO VARIABLES
By TAKASHI OGATA

1. Introduction.

J. Mikusifski [2] has introduced a simple and complete operational calculus
to obtain the solutions of linear ordinary differential equations with constant
coefficients. The significance of operational calculus is that operators are re-
garded as convolution quotient, that is, functions and differential operator are
elements of the same set. Moreover, he has discussed the linear partial differ-
ential equations of two variables with constant coefficients. In [2], the solutions
were obtained by the traditional method of testing solutions by substituting the
exponential functions, not by the systematic one as operational calculus. The
difficulty of his method is that no prospective insight for obtaining the particular
solutions has been given. In this paper, we discuss the linear partial differential
equations of two variables with constant coefficients by the same systematic
method as Mikusihski’s operational calculus by imposing some restrictions on
the constant part on the right hand side (cf. (2.7)).

We believe that the results obtained by such a way give a new develop-
ment to the theory of Mikusifiski’s operational calculus.

In the last section, we show some well-known examples.

2. Operational calculus.

Let 2 be an algebrically closed field of characteristic 0 and le@[[l]] bf:
the module of the formal power series of a variable 1 with coefficients in .

Henceforth, we denote each element of A by P(R), or simply P={ ip,]”} (in-

stead of usual notation E%pyl”) where pueé v=0,1, 2, ).

DEFINITION 2.1. Multiplication in A is defined by
|

@D ro={5( 3 (;{r"‘i—ﬁ prag)aeni}

where P={3 p,#} and Q={3 q.2"}.
v=0 ©=0
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PROPOSITION 2.2. By usual addition and above multiplication A forms an
integral domain without unit element.

Proof. We show that 4 has no zero devisor. If P#0 and Q+0, there exist
vo=min{y; p,#0} and ge=min{g; ¢,#0}. Then coefficient of 20*#*! in PQ is
(o lpte N/ wotpo+1) Npy,gp, Which is nonzero. The other parts are shown by the
same way as Mikusinski [2].

By Proposition 2.2, we can construct the quotient field Q(A) of the ring A.
An element of Q(A) is called operator. For the special operators in Q(A), we
have integral operator L={1}, E-operator (each element of £) which corresponds
to numerical operator and differential operator S=1/L as the same as Mikusifski’s
cases.

DEFINITION 2.3. The mapping 0; of A into itself is defined by
ax {P0+P12+P212+1)313+ } = {P1+2P22+3P372+ } .

Moreover, for any positive integer n, 03P is defined inductively by 0%P=
0,(0371P).

In this section, we denote 0; by 0 for brevity. By Definition 2.3 we have,
for any P= {é, DA%,
L(P)=P—L-P(0).
where P(0)=p, is E-operator. Hence, we have
2.2) SP=0P+P(0).

By the induction, we can get the following general formula.

ProrosiTION 2.4. For n=1,2,3, -,
2.3) S?P=0"P+ (0" 1P)(0)+S- (0™ 2P)(0)+ --- +S*1-P(0)

For any pek, we define the element {e??} of A by

e ={1pay B O

Then, by (2.2), we have S{e?*} =p{e?*} +1. Hence,
1
(S—p)

= {e?%},

(2.4

Generally, we have
LEMMA 25.

1 f—y Zn—l f— e
(25) 75:;;)7{—{'(”—:1)' e“} f07’ 7’1—1, 2, 3, .
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Proof. We show by the induction.

o ool T e

=0 nly! (n—1)!

e“}z—jl—-kp{-%e“}. This shows that

Hence, S{ i

1 A"
[ — DA
(S—pym*t {n! ¢ }
Let’s consider the following fractional expression in Q(A).

GnS™+4maS™ 4 - g
2. = :
(2.6) RS = St a5 it T pe

where p,, q,El?(z':l, o, n; j=1, -, m) and p,#0, which is called a rational
operator. In the same way as Mikusifiski [2], we get the following.

PROPOSITION 2.6. Suppose m<n, then R(S)e.

Now, the operational calculus provides us with convenient method of solv-
ing the linear differential equations with constant coefficients. Consider the
following formal linear differential equation of the n-th degree.

@.7) 520" X4 pro10 X+ o + 50X+ pX=P,

where p;ek (=0, 1, ---, n), p»#0 and P
We seek a solution X in A satisfying the following initial conditions

2.8 XO)=r,, @X)O)=ry, -, @ X)O)=rn-s, (r:€k).

By virtue of the general formula (2.3), equation (2.7) may be written in the
form,

(29) (Pn5"+pn-15""+ +I‘90)X:(]n—1sn—l+ +(]0+P,

where
G =Dv+170F Drre? 1t o FPaVnoua @=0,1, -, n—1).

Hence, we immediately find that

qn_lsn_l qo P
2.10 X= . + o

Applying decomposition into simple fractions, we obtain the solution in A
by Proposition 2.6.
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3. The field of Puiseux series.

Let % be a field of characteristic 0. In this section, we consider the follow-
ing power series of fractional power of a variable u with coefficients in k.

3.1 p=au" o u"r o um+ -, where a;=k% and a;#0.

A power series of the form (3.1) satisfying the following conditions (C1)
and (C2) is called a Puiseux seres.

(C1) Each 7, are rational numbers such that »;<r,4..
(C2) For each r, we denote r,=n,/m, such that integers n,, m;(>0) are
relatively prime. Then there exists positive integer m such that m;<m for all 7.

Let e=e(p) be the least common multiple [m,, ms, ms, -] of my, my, mg, ---.
From (C2), ¢ is finite. Hence, (3.1) is expressed as the following form.

(3.2) (U iy (w )t e

where each er, are integers. In the case of need, we denote Puiseux series by
the following form,

(3.3) LI Bl

where ¢>0, n,>0 and »n are integers.

Let k{u} be the set of all Puiseux series. Then k{u} forms a field with
respect to usual addition and multiplication. It is known that % {u} is algebrically
closed if % is an algebrically closed field of characteristic 0 (cf. [1]). Hence,
C{l} is algebrically closed where C is the complex number field and / a variable.
Put s=I/"! and let C(/) or C(s) be the rational function field of variable / or s,
respectively. We have obviously C(s)=C()cC{l}.

DEFINITION 3.1. For any p(#0)eC{/} such that p:zf’:1 alr (a,#0), we
define v(p)=r; and v(0)=co.

Then v(p) is a valuation on C{/}.
For p,eC{l} (i=1, 2, --+), suppose that

(3.4) {e(p.); =1, 2, -~} is bounded,
3.5) v(p) <v(Prt1) for each ¢,

then we define i}l p. as the following. We denote p,= i a,,l" (a,,#0) for each
1= J=1

i. From (3.5), r;;<r,, for any 7 and ;. Arranging {r.;} (/, 7=1, 2, ---), we have
the sequence {r,} such that r»,,=r;<r,<---. Because {r,;} (=12, ) is a



270 TAKASHI OGATA
subsequence of {r,}, each p, is written by X j3;;{"7, where
=1

B = when »,=r,, for some %,
B.,=0  when r;#7,, for all k.

For each r,, denoting »,=n,/m, such that integers n,, m;(>0) are relatively
prime and e=[m,, m,, ---1, we have e=[e(p,), e(ps), =-]. So, from (3.4), e is
finite. Because each er, are integers and er,,;<er,,, the number of negative ones
in {r;} is finite. On the other hand, for any » of {r,}, we set ,={{eN; r=r,
for some j}. Then there exists £ such that ev(p,.,)<er=<ey(p,) from (3.5).

Hence, the number of I, is less than & and a,= i Bi,= X Bi, is finite sum. So,
- - 1=1 iEI,«]
we define > p,= > «a,/™7. From the above argument, we have
1=1 =1
LemMmA 3.2. For p, =1, 2, ---) which satisfy the conditions (3.4), (3.5), as

above, we have f} p.eC{l}.
1=1
Applying Lemma 3.2, we show two examples.

ExampLE 1. For p=C{/} such that y(p)>0, we have
v(pH=1v(p) (7=0,1, 2, ),
which shows that {p?} satisfies the condition (3.5) and we get easily that e(p®)

2) be the formal binomial coefficient, that is, for some

real number 2 and some positive integer k,

(}i): 2(2—1)(2—213!-'£—7;kj717)7 and (é)zl'

=e(p) for any 7. Let (

(3.6)
© }\ A
By Lemma 3.2, kZ()(k)p eC{l}. So, we define

3.7) atpi=5 (7).

k=0

By the properties of binomial coefficient, we get, for any real numbers 4, ¢
and an integer =,

3.3 A+ A =1+p) e,
3.9) (@+p)Hmr=1+p)*.

ExaMpPLE 2. Let p, g=C{l} such that v(g)>0 and p= i}zxil’i, qg= iﬁiluz
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(B,#0). Here, we put g;= g:z (Bs/ 8%, then v(g)>0 and ¢=B./*(1+gy).
From example 1, (1+¢,)" is defined and we get

aig"t=a, B Ti(14-¢,)",
which is an element of C{/}. Because of e(aig")<e(p)e(q) and v(a;q")=r;v(q)

if a;#0, iaiqrieC {I} follows from Lemma 3.2. Hence, we define p(g)=C{/} by

(3.10) pg)= i g

DEFINITION 3.3. The mapping 0, of C{/} into itself is defined by 0.(p)=
sp—p(0) for any p= i}lailﬁ’eC{l}, where s=0", and p(0)=a,, or 0 if there

exists r,, such that »,;=1 or not, respectively. Moreover, 07(p) is defined induc-
tively by 07(p)=0,(07 "X (p)) for n=2, 3, ---.

From Definition 3.3, we have the following formula by the induction.
ProposiTiON 3.4. For n=1,2,3, -,
B.11) r(p)=5"p—s""+p(0)—s""2-(0,;p)(0)— -+ —(@7*p)(0).

4. The “function elements” of C{/}.

Let a(f) be a complex-valued function such that a(#)=0 for <0 and X the
set of all such functions which satisfy the following conditions.

(4.1) a(t) has at most a finite number of points of discontinuity
in every interval.

(4.2) The integral S;la(r)la’r has a finite value for every ¢>0.

The equality of two elements a(?), b(t) of KX is defined by the following
a)y=b(®) if and only if S:(l(‘[)dz'ZS:b(‘r)dT for every ¢>0

which is equivalent to that a(f) and b(t) have the same values at every point
where both are continuous.

It is known that the convolution of elements of X is also element of X (cf.
[2], p. 346). Hence, KX forms a ring with usual addition and multiplication by
the convolution.

Now, we shall regard some elements of C{/} as ones of . For any
p=n§noan(ll/3)”60{l}, we define a formal power series p, with complex vari-

able z by
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4.3) D= 2 apz™.
nz-ng
The radius of convergence of p, is denoted by #(p,). For any natural num-
ber m, pi™ is defined by
(4.4) PiM= 3 azz™.

nz-"ng
Let ¢ be the subset of C{/} given by the following
F={peC{l}; (1) »(p)>0 and (2) r(p,)>0},
Then we have

PROPOSITION 4.1. & s a subring of C{i}.

Proof. Let f, geF and a=C. According to the properties of valuation,
we have v(af)>0, v(f+g)>0 and »(fg)>0. On the other hand, for suitable
natural numbers m,, m,, M3, N5, n, and n;, we have

(f+g)imo=fm>4gim> and (fg)P=frgi",

which shows that »((f+g),)>0 and »((fg),)>0.
Moreover, ¢ has the following property.

PROPOSITION 4.2. For any f, g€, f(g)eT.

Proof. According to example 2 of section 3, v(f(g))=v(f)v(g)>0 and (f(g)).
=f,(g.). Hence, we have r((f(g)).)>0.
Let I'(2) be the Euler’s gamma function, that is, for a positive real number 2,

4.5) F(Z):g:tl"e“dt .

PROPOSITION 4.3. Suppose that a series Zw)lanz" (a,eC) has a positive con-
=
vergent radius v, then, for every B>0, the power series Zlant"ﬁ'l/f’(nﬁ) 7S uni-

formly convergent in any closed wnterval [t,, to] where 0<t;<t,. So, this is an
element of k.

Proof. We consider a natural number n such that n3>2, so, for any posi-
tive number a>0,
s a+1 a+l
F(nﬂ) :Sotnﬁ-le-bdt>S tﬂﬁ-le-tdt>g anﬁ—le—a-ldt

:anﬂ—le—a—l

For any t,>0, take a such that f,=a(r/2)"/#, then for any t such that 0<¢
<t=<t,, we have
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(EI<anP iy [2) B 018
Hence, we have
[t/ T (n )| <e**'(r/2)"(r/2) "1#
From which, the Proposition is proved.

Now, we shall define a mapping 7 from F to X as the following. For a
positive real number 2, {t*~!/I'(1)} €KX, so we define, at first,

(4.6) i(H={*"1/ IR}
By the property of the convolution, we have
4.7 iR =i+,

for any positive real numbers 2, #. Especially, we have (((*)"=:i({**) for any
natural number n.
From (4.7), for f€& such that f= ’;)lak(l‘/e)erk, we have

(4.8) @)= {3 at > T )

which is a element of X by Proposition 4.3. For other positive rational integer
¢’ such that each e¢’r, are integers, we have f,(G({Y¢))=f,(([*?), which shows
that (4.8) is independent to ¢. So, we define i(f) for any f€F by

4.9) i(N)=1.G0) .
Then we easily have the following proposition.

PROPOSITION 4.4. For f, g€F and a<C, we have

(1) iH)=i(g) if and only :f f=g,
(2) ilaf)=ai(f),

(3) i(f+g)=i(f)+i(g),

(4) i(f@)=i(fi(g).

According to Proposition 4.4, the mapping : is an injective ring homomor-
phism. By the Definition 3.3, we get the following identities for f€g.

(4.10) iUf)= {S:i( Nz}
@.11) i@ f)= {“5;‘ iNF i N>,

PROPOSITION 4.5. For any f€F and a=C, we have
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(4.12) iU/ A=al))={i(f)e*}.
Proof. For f=[" (r>0), we get

fu/a—ay=r/1—ay=3 (7" )—ar i,

which is an element of ¢. Hence,

i —at)={ = (7, W=ttt/ Tk +r)
= {7/ T 3 @)/ 1y = {7/ T()e.
So, for any f= élakl’kesf, we get

iU A—al)= {3 ants /T e} = (i()e™).
Applying Proposition 4.5, we show two examples.

EXAMPLE 1.
i(1/(s—a)m)= {i(I™e*"} = {(t"*/I'(n))e*"}

EXAMPLE 2.
i(1/V/5F =iV i1 +ad)
= {(1/T(1/2)t D eat)
— (/Do)

5. Logarithmic roots.

Let £ and » be any positive rational numbers such that 2>7 and n the
integer such that —nr>0 and k—(n+1)r<0. We consider a following element
w of C{l}.

6.1 0= Bos + Bt 1+ oo+ Bt

where feg, ;=C (=0, 1, -, n), Bo+0 and s=[".

For such an element w of C{l}, we have v(w)=—Fk. Hence, [**'wed.
Especially, any f€& has no s-terms of positive power. In this case, we define
k=—y(f)<0.

Let x(4, t) be a function of two variables 4, ¢ defined in interval 0<4, t<oo.
Suppose,
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(1) for every t>0, x(4, t) is differentiable with respect to 2,
(2) for every 4A>0, x(2, t) and 0x/04 (4, t) are elements of X.

For such a function x(4, {) and any f &, we define
(5.2) (N {x(, O} ={S:z'(f)(l‘—r)x(2, f)dr} for every 21>0.

DEFINITION 5.1. Let @ be an element of C{/} given by (5.1) and .=—v(w).
Then w is called a logarithmic root if the equation

63 i 2, o) =iwnmia) (x, )

has a solution {x(4, t)} #0 in the interval 0=4, t<co,
Remark that, if k=—v(w)<0, (5.3) is equivalent to

[%% @, o}=itw) (=@, 0},

because of Proposition 4.4. For example, let w=/, then x(4, t)= io(tl)"/(n % is
n=

the solution of {0x/04 (A, t)} =i()){x(4, )} satisfying x(0, t)=1.
The next proposition is easily proved (cf. [2], p. 191).

PROPOSITION 5.2. If w is logarithmic, then for given cEF (¢#0), there exists
the unique solution satisfying the equation (5.3) and the condition {x(0, t)} =i(c).

LEMMA 5.3. If w,, w,=C{l} are logarithmic, then wi+w, s also logarithmic
and we have

(6.4 {Xwropd, O} ={x4,, D} {x,,(, D)}
and  {xcwy+op(0, O} ={x4,(0, D} {x4,(0, O},

where Xop X, GNd X +op are the solution of (5.3) corresponding to logarithmic
roots w;, w; and w;+w., respectively.

Proof. Let us consider the equation
o 0 o
5.5 S G O =i o)) (2, )
where k'=|v(w)|+|v(w.)|. Then {x,,Q4, )} {x,,Q4, t)} is the solution of (5.5)

satisfying {x(0, O} = {x,,(0, D)} {x,,0, H)}. So, by Proposition 5.2, we have Lemma
5.3.

From Proposition 5.2 and Lemma 5.3, we denote the solution of (5.3) satis-
fying the condition {x(0, t)} =i(¢c) for c=F as {X(, ¢; w, ¢)}. Hence, (5.4) is
rewritten as the following form,
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{XQ@, t; o1 Fw, O} ={XQA, t; oy, c)}{XQ, t; @3, c2)}
where ¢, ¢; and ¢, S such that c=c;c,.
LEMMA 54. For weC{l} given by (5.1),

(1) if k<0, then w is longarithmic,

(2) if k>0, then w is logarithmic 1f and only if Bos* s so.

Proof. (1) is obvious because of we ¥, and (2) follows from Lemma 5.3.
The following lemma and examples are quoted from Mikusifski’s results.

So, we omit to give a full account.

LEMMA 55. If k<1, or k=1 and B, 1s real, then Bos* s logarithmic (cf.
[2], p. 399~p. 416)

EXAMPLE 1. - B
{XQ, t; —+/s, "9} = {(1/+/xt) exp (—2°/(4D))} .

EXAMPLE 2.
{X@, t; —s, Hy=h*i(f)  for any feT,

where h?* is called translation operator which is given by

0 for 0=t<2
h‘{z'(f)(t>}={ ,
1(HE—A) for 0=ZA<t.

6. Application to the partial differential equations.

Let £ be C{/} in section 2 and C{/}, the set of all logarithmic roots. Be-
cause differential operator S is transcendental over C{/}, we can consider the
rational function field C{/}(S), which has the unique partially fractional decom-
position. From Lemma 2.5, we get ¢/(S—w)*={c(A*}/(n—1)Ne“?} €4, where
weC{l} and ce%. Let J, be the subset of A given by the following.

» Cun .
Jo—{%} nZ=)l S—w) (finite sum), weC{l},, cw,neg}.

Then J, is a 9-module. For any weC{l}, and cEZF, we can get the uni-
que function {X(Z, t; w, ¢)} of two variables, which is the solution of (5.3)
satisfying {x(0, 1)} =i(¢). For each {ce“?}, we define a function j(ce®?) of two
variables 4, ¢t as the following.

jlce®H={XQ, t; w, O)}.

Now, the mapping 9; and 0, operate in A as the following (cf. Def. 2.3 and
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Def. 3.3). For any P:@O pAIEA (peC{l}),
aX(P): {p1+2p21+3p322+ }’

0U(P)={0(po)+0:(p1)A+0u(p) A+ -}

By the definition of j(ce®?), we have
6.1 i(l"“)"aa/2 Jlce* ) =i(l**w)j(ce®?)
and j(ce**)0, t)=i(c),

where k=|v(w)|. By differentiating partially (6.1) with respect to 2, we get

6.2 v jleemh) =it i) e
and
(6.3) (z’(l’*“)% j(cew))m, H=i(* wc) .

Because of the uniqueness of solution, (6.2) and (6.3) show thataix j(cwe®?)
=/(cwe®?). On the other hand, we have

7@ a(ce®?))=j(cwe®?) .
Hence, we have

J . .
(6.4) —5-J(ce?)=7(@(ce”?)) .
04
Here, we assume u(c)>1 because of v(/c)>1. By differentiating partially

(6.1) with respect to ¢ and the property of the convolution, the left hand side
of (6.1) becomes

e @ 3 . 3 .y
gt—(za“l)ﬁ;(cew*)):{5;z<zk+l>}{~5i]<cew*>}:z<zk>52-;<ce“> ~~~~~~ (1)
e @D
or =i g Glee)y e @)
On the other hand, the right hand side becomes
NN e
o () jeer)=(2 iU a))jcerh=illta)jlee™) o ®
or ———z'(l’z”a))%j(ce“) e 4)

Combining (1) and (3), or (2) and (4), we get that j(cse®?) or 7?; j(ce®?) is
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the solution of the equation (5.3) satisfying {x(0, 1)} =i(sc) or {d/oti(c)}, respec-
tively. By (4.11), we have i(sc)={0/0t i(c)}, which shows that

i . WA\ — w2l
(6.5) o j(ce?y=7j(cse®?).
On the other hand, 7(0,(ce“?))=/(sce**). Hence, we have
(6.6) %j(ce“):j(at(ce‘“)) .

For {(cA™1/(n—1)De®*} € Ao, we define j((cA*"1/(n—1)1)e“?) as the following

f(——~(7‘£ 1) !»e‘”>:{(711;;—>'r]'(ce‘“)} :

and for any P={X) nZw Co n/(S—w)"} €4, we define j(P) as the following
w n=1

IP)=2 11(7;f;1>! e").

n=

Then we put B,={j(P); any P=J,}, which is some set of functions of
two variables A, ¢. Then, by virtue of (6.4) and (6.6), we get

00 R

I e et}

Hence, the following diagrams are commutative.

Ao By Ao By
Y A
Ao - By Ay ——— By
J J

Now, we consider the linear partial differential equation of two variables
A, t with constant coefficients. Any such equation can be written in the form,

m n ot vy
(6.10) ;;7 )E)a#y-fa;ﬁaftf;(l, D=, 1) (awmel)

We assume that there exists Y e, such that j(Y)={p(%, t)}. Then, we
consider the following operational equation in .

Ms
Ms

(6.11) .85 X=Y .

I
o

v=0

I

7
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From Proposition (3.4), we have
6.12) ay<a/;X>=svaaX—§sv-k-lafaaX(z, 0,

where we assume that 0504X(4, 0)€ 4, are determined by the equation
ak+;lx
otkoA

which are called initial conditions of (6.10).
Hence, (6.11) becomes

J@AXG, ) ={ 55273, O (k=0, 1, -, »=1),

6.13) A0 X+ A m-107 ' X+ - +a X=F,

where a,=auns"+ - +au (=0, 1, ---, m) and

y—

P=Y+ 3 3 8 w050t XQ2, 0 .
A=0 5=

k=

Applying the operational calculus (cf. section 2) with respect to A to (6.13),
we have the following.

(6.14) (@ S™+ A1 S™ 1+ - Fa) X=bp- 1 S™ 14 -+ +by+F,
where b,_y, -+, by are determined by the values of
ox o™ ix
X(O, t)y Tﬁ‘((), t); Y Wl‘(o; t);

which are called boundary conditions.
Since k=C/{/} is algebrically closed, we can decompose

amSm+ +a():am]~7i[1(s—_wl) (CUZEC{Z})

Hence, by simple-fraction-decomposition method, we can get the solution of
(6.11) in A (cf. section 2).

If @ is not logarithmic, choosing suitable boundary conditions, we can neglect
these parts. Thus we can get the solution X, in A, Because of the commuta-
tive diagrams (6.9), we get the solution 7(X,) of (6.10).

7. Examples.
1. Solve the following differential equation (7.1) with the conditions (7.2).

0*x  0%x

T g =0 (0=2 1<),

(7.1)

(7.2) x(4, 0)=2%, —%1:7 (2, 0)=32—22,
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43 add —
x(0, =13, 2 0, H=0
By virtue of (6.9), (7.1) is equivalent to
(7.3) 2 X—0tX=0.

Here, from Proposition (3.4) and condition (7.2), we have
(7.4 0:X=s*X—s-x(4, 0)——36%(2, 0)=s2X—sA2—322+21.

Hence, (7.3) becomes

(7.5) 05 X—s* X=—s2—32+22.

Next, applying the operational calculus with respect to 2, (7.5) is written as

(7.6) S*X—s2X=6/S— <235t6) +%‘
From which, we have

_ 6S  (2s+6) 2
(77) X— Sz_sz Sa(sz_sz) + 52(52_32)

_ 2 QP 2R QL6
= Sts S s? s

Because 1/(S-+s)=e"** is translation operator (cf. section 5, example 2), we
obtain
3% A2 =22t 12413 0=t<24

x(A, 1) :{
322t +-t8 0=sa<t.

This is the only solution which satisfies (7.1) and (7.2) in the interval 0=2, t<oo. .

2. Solve the following differential equation (7.8) with the conditions (7.9).

0%x  0%x
(7.8) et =1
(7.9 x(4, 0)=0, x4, 0)=2%"%.

By the same way as example 1, we have the following operational equation.

2

2 2Y — -
(7.10) S?X+s*X=c,S+c,+IL + S’

where ¢; and ¢, are undetermined constants. From which, we get
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_ oS4 | (—2s°46) 1 4 1
(7.11) X— (Sz—l-Sz) (S+1)3 (S+1) + (SZ+1)2 (S"‘l)z
13
2 Lt

TeD (St

Here, +is are not logarithmic. Choosing suitable boundary conditions, we
can get ¢;=c,=0. Hence, (7.11) becomes

-2 8 71 41
=l o ) G T e S

2 1 e

T Sey

From which, we have
x(2, )= —(sin (O~ cos (1) + 2((5 5 sin(1— 51 .08 @) e~
+2(sin (0~ cos(D)2e~ +2sin () 5o+ -

2
=[(2—#?) sin (t)—2 cos (t)+2A(sin (t)—t cos (1)) + A% sin (#)]e~* + % .
which is the solution of (7.8) satisfying (7.9).

3. Solve the following differential equation (7.12) with the conditions (7.13).

4 3 a
(7.12) %ﬁ—z aazzat + a;g —x—de? (0=, t<oo)
(7-13) xll(]; 0):e,l ’ xllt(/zy 0)—2x21(2, O):/z)

x(0, t)y=1+42¢, %20, )=2t .

By the same way as example 1 and 2, we have the following operational equa-
tion.

(7.14) (s— 1§t x—X=(s—DHU+2ms+2m+ S0+ o
From which, we have
X (s—D(I+2[%)S+20?) (s—41) n 1
- (s—1)2S2—1 ((s—1)2S2—1)(S—1) = S(s—1)2S2—1)

i(s—1) Us—DF a2 1

TAS—1/G—1)  2S+1/G—1) " (S=1) S
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where +1/(s—1)=={e'} are logarithmic. By the some routine calculations, we
have the solution of (7.12) satisfying (7.13).

o v+l ¢ -2
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