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ON THE EXISTENCE OF LONG PERIODIC ORBITS NEAR
THE LIAPUNOV’S PERIODIC FAMILY IN
GENERAL REASONANCE CASES

By HipEkazu ITO

1. Introduction.

In this note, we are concerned with the existence of periodic solutions for
a Hamiltonian system with n degrees of freedom
dxy 0H dys oH
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We assume that the Hamiltonian function H(x, y)=H(xy, =, Xn, Y1, ***, Yn) IS
smooth near the origin and vanishes with its first-order derivatives at the origin,
which implies the origin is an equilibrium point. Here and in what follows,
“smooth” means always C*. It is to be noted that the Hamiltonian function
H(x, v) is an integral for the system (1.1), i.e. the function H(x, v) is constant
along a solution curve for (1.1).

Let S denote the Hessian matrix of H(x, y) at the origin and
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where [ is the nXxn identity matrix. Then JS is the coefficient matrix of the
linear terms of the vector field of (1.1) about the origin. As is well known [12],
the eigenvalues of JS occur in pairs =2, ---, +=2,. If 1, is purely imaginary
and none of the n—1 quotients A,/A,(k=2, ---, n) is an integer, a well-known
theorem by Liapunov guarantees the existence of a one-parameter family of
periodic solutions near the equilibrium (see [10] or section 16 of [12]). Recently
many researches have been devoted to the study of the existence of periodic
solutions in the cases when there exist integer-multiple eigenvalues of 2, among
Az, 5, An, 1,€., resonance cases. In our previous paper [7], we considered an
autonomous system possessing a nondegenerate integral under general resonance
cases and established an existence theorem for long periodic solutions near an
equilibrium. In this note, we restrict ourselves to the Hamiltonian system (1.1)
and consider the same general resonance situation as in [7]. We then assume
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that the eigenvalues =1, of JS satisfy the following conditions for an integer
r(=2):

[A.1] =+2,=w0.(k=1, ---, r) are r pairs of purely imaginary eigenvalues
all of which are integer multiples of 1,=i0, such that |o;|<|o,]
<+ <]o,| and

E ]kG'kiO
k=1
for all integer valued vectors (Js, -+, j,) with 1=335.1]7:] =4

[A.2] no *+24.(k=1, -+, s) is an integer multiple of A;, where s=n—r7.

Under the assumptions [A.1] and [A.2], the Liapunov’s theorem guarantees the
existence of a one-parameter family of periodic solutions near the equilibrium
whose primitive (minimal) periods are close to 2x/|o,|. The previous paper
dealt with the existence of long periodic solutions near the equilibrium, and we
know a sufficient condition for the existence of periodic solutions near the
origin with primitive periods near 2z/|c;| under [A.1] and [A.2], which are
“long” periodic solutions in contrast with the periodic solutions given by the
Liapunov’s theorem. The aim of this note is to establish the existence of periodic
orbits whose primitive periods are close to 2z/|o,| near the above Liapunov’s
periodic family. Our sufficient condition for the existence of the long periodic
orbits will be stated in terms of the coefficients of the second and fourth order
terms of a normal form of the Hamiltonian function. It is stated in the next
section and the proof is given in section 3. K.R. Meyer and J.I. Palmore [8]
have obtained the similar result for Hamiltonian systems with two degrees of
freedom. To establish the existence of periodic orbits as that of fixed points
for some mapping (Poincaré mapping), they obtained an area-preserving mapping.
On the other hand, we shall obtain an exact-canonical mapping in place of an
area-preserving one. To prove the existence of fixed points for it, we use the
argument due to G.D. Birkhoff ([3], [4]) and Poincaré (see [1] Appendix 9).
Furthermore, a generalization of the theorem is given in section 4, where we
also discuss the connection between the results in this paper and our previous
one [7].

As for the existence of periodic orbits near a given periodic motion, G.D.
Birkhoff [3] studied a fixed point theorem, which is a generalization of Poincaré’s
geometric theorem (see [2]), and G.D. Birkhoff and D.C. Lewis [4] applied it
for establishing the existence of periodic motions of Hamiltonian systems near
a given periodic motion. This is called the Birkhoff-Lewis fixed point theorem.
It was improved by T.C. Harris [6], and its most generalized form is found in
J. Moser [9]. These are interpreted as fixed point theorems for a local sym-
plectic diffeomorphism near a fixed point, and their application to the Poincaré
mapping around a given periodic motion guarantees the existence of infinitely
many periodic orbits with sufficiently long periods. The basic idea for proving
the existence of fixed (periodic) points is due to G.D. Birkhoff, whose argument
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is originally due to Poincaré’s one (see [1] Appendix). It is the reduction of
the desired fixed points to critical points for a certain function. Our way of
research depends on the similar argument, and we consider the Poincaré map-
pings around the periodic orbits given by the Liapunov’s theorem. But we
specialize the discussion to the resonance situation defined by [A.1] and [A.2],
and establish the existence of long periodic orbits in the above sense, not
“gsufficiently long” periodic orbits. In the proof, a stretching transformation will
play an important role.

I would like to express my sincere gratitude to Professor T. Nishimoto and
Professor Y. Hirasawa for their constant encouragement and valuable advices.
I would like to thank Dr. H. Yamada for several helpful discussions and valuable
comments.

2. Statement.

In order to formulate our result, we have to prepare a normal form of the
Hamiltonian function. This is presented by (2.1) in the following lemma,
which <-, > denotes the usual scalar product.

LEMMA 1. Consider the Hamiltoman system (1.1) near the origin. Let S be
the Hessian matrix of H(x, y) at the origin. Assume that the eigenvalues of JS
satisfy [A.1] and [A.2]. Then there exists a real analytic canomical transforma-
tion of variables

(X) y) - (u) E) v, 77):(”1: vy, Uy EI) ) ES; Vi, = Upy N1y *" 778)

such that the Hamiltoman function H=H(x, y) becomes

r 1 ¢« 1 ui+vi
@10 H= Elak‘[k‘f‘?kz qklfkfl+§‘<BC» O+Ku, v, & 1), ThE Ty

,1=1

where (qr) 15 a real rXr symmetric matrix and B 1s a real 2sX2s symmetric
matrix, and K(u, v, &, ) 18 a smooth function near the origin such that

K(u, v, &, n)=0w|+I{)7).

Here w(resp.l) s a column vector combined with u and v(resp.& and 73), and
&%(resp. 7% is a column vector with entries &i(resp. ni; k=1, -, s).

The transformation is said to be canonical (or symplectic) if it preserves
the 2-form X P ,dx,Ady: which implies the above transformation satisfies

©2.2) kZ:)Idxk/\dyk:kZZ)Iduk/\dvm'—gldEk/\dm.

The system (1.1) is transformed into the Hamiltonian system defined by the
Hamiltonian function (2.1), which can be written in the vector form
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dw_, oH 4l _, oH
N T Y

0 I,
L={ ] (v=r,s),
-1, 0

(2.3)

with

where 0H/0w and 0H/0{ are the vectors of first-order derivatives of H(w, &)
given by (2.1), and [, is the yXy identity matrix.

The normal form (2.1) is used already by S.M. Graff [5] in a similar situa-
tion to [A.1] and [A.2]. The proof of this lemma is done by defining the
desired canonical transformation by a generating function, which is determined
by comparison of coefficients. However this can be done by following the
argument in the Appendix of [5], and so we omit the proof of the lemma.

To state our result, we introduce an (r-+1)X(r-+1) matrix

o1
(gry) |}
2.4) P= i‘a, .
01 O'TiO
Further let us introduce » X7 matrices
(%)
qll “ee 0'1 e qlT
(2'5) k= (21" 02" (Jor (k:]-) "',7’),

Gri o Cro Gor
whose determinant is equal to the cofactor of the element p,.; ,=0c, in the
matix P. Then our result is stated as follows:

THEOREM A. Consider the Hamiltonian system (1.1) near the origin. Let the
argenvalues of JS satisfy [A.l] and [A.2]. Assume in the normal form (2.1) that

(2.6) (a:1PD-1QxI <0 (k=1, -+, 1),

where |-| denotes the determinant of the matrix. Then, on each energy surface
H=o0,¢* with sufficiently small ¢>0, there exist at least r periodic orbits for (1.1)
with promitive periods near 2z/|o.| in a O(e)-neighborhood of the periodic orbit
belonging to the Liapunov’s periodic family whose primitive period 1s close to
2r/la,l.

3. Proof.

We will give the proof of the theorem in several steps.
1) The stretching transformation
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By Lemma 1, we may begin with the Hamiltonian system (2.3) with (2.1).
If we introduce a stretching transformation

3.1 w—>cw, {—>&C,
with a small positive parameter ¢, then the Hamiltonian function (2.1) becomes

H(sw, e®0)=¢*Hw, {, &),
(3.2) R . &
H<w; C, 5): kgllfﬂ'k‘f‘ Z (]kLTkTL"‘ <BC C>+O(€3)

,1=1
and the Hamiltonian system (2. 3) is transformed into

dw dac
]T aw ’ dt - ]s ac

The 2-form (2.2) is taken into

3.3)

3.4) ezélduk/\dvk—l—e“é)ld&/\dﬂk.

We will observe the Liapunov’s periodic family under this stretching transforma-
tion.

LEMMA 2. Consider the system (2.3) with (2.1) near the origin. Assume that
the eigenvalues of the coefficient matrix of the linear terms of the vector field of
2.3) satisfy [A.1] and [A.2]. Then there exists a family of periodic solutions
depending on a small parameter ¢>0, with e=0 corresponding to the origin, and
whose primitive period 1s 2r/|o,|+0(e?). Each periodic orbit belonging to this
periodic family intersects transversally a submanifold Y of codimension 1 defined
by

3.5 2:v=0, u,>0,
and 1its intersection with 3 1s given by

{ur:’\/>2‘5; UT:()I
up=0(, v,=0(* (k=1, -, r—1), (=0(".

(3.6)

Remarks. (i) The periodic family whose existence is guaranteed in this
lemma is just the Liapunov’s periodic family.

(ii) In (3.6), the relation u,=+/2 ¢ is obtained by adjusting the u, such that
t,=¢ in X, and then it is possible to choose the parameter ¢ so that u,=0(¢)
in general in place of u,=+/2¢.

(iii) By (3.6), the energy surface where exists each periodic orbit belonging
to this Liapunov’s periodic family is given by the form

3.7 H=0,e2+0(").
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This shows that the energy surface H=o.h, with sufficiently small A>0, con-
tains exactly one periodic orbit belonging to the Liapunov’s periodic family.

(iv) The parameter ¢ can be considered as the stretching parameter in (3.1).
Then, after introducing the stretching transformation (3.1), we have

{uTZ«/Y, v,=0

(3.8)
up=0(e), vy=0() (k=1 -, r=1, {=0().

Proof. This lemma is interpreted as the Liapunov’s theorem for the system
(2.3) with the Hamiltonian function of the special form (2.1), and then it is the
special relation (3.6) that we wish to show. The proof is done by using the
argument introduced by D.S. Schmidt [10].

Instead of (2.3), we consider the one-parameter system

dw oH dg o0H
7—(.[1—'[“//5[1-)"8“1/;: dt -‘(]s_f—,u]s) ac s

where p is a real parameter. Since H(w, {) is an integral for (2.3), there exist
no periodic solution with g0 for (3.9) such that the gradient vector of H(w, {)
does not vanish identically along it. For this, see [10] (or refer to Lemma 4
in [7]).
Introducing a stretching transformation (3.1) together with a stretching of
the parameter p, p—ep, the transformed system reads
dw, dz

_ 2 d< |
dt —L(/,!, e)wr+0(5 ), dt AfZTO(e) s

IS I
w,= , Uy &)= tep ;
vy —o, O 0 o,

and z is the column vector obtained by excluding u, and v, from (u, v, §, ),
and M is the (2n—2)X(2n—2) constant matrix whose eigenvalues are not in-
teger multiples of z0,. In our search for periodic solutions with period 7' near
2z/|o,|, we are led to the periodicity condition

wAT)—w,(0)={exp(LT)—I} w,(0)+0(*)=0,

2(T)—2z(0)={exp(MT)—1} z2(0)-+O(e)=0.

(3.9

where

Without loss of generality, we may assume ¢,>0 in the following. By setting
T=2ro7*(1+¢0) with a new parameter 0 and restricting ourselves to the initial
condition u,(0)=+/2, v-(0)=0, this periodicity condition leads to the following
so called “bifurcation equations”

R=2L{wT<T>—wT<0>}=w2‘[ “ ]+0<e>=o,
we __5

I=[exp{@2r/0)M}—112(0)+0()=0.
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This can be considered as the implicit system for g, d, z(0). For ¢=0 this
system has a unique solution y=7J=0 and z(0)=0. Since the determinant of the
Jacobian matrix a(I3, I3)/0(y, 8, z(0)) does not vanish at this point, the bifurca-
tion equations can be solved for g, d, z(0) as functions of sufficiently small e.

Thus we have determined the initial values u,(0), v,(0) and z(0) depending
on the parameter e, which gives a family of periodic solutions for (3.10), i.e,
for (3.9). Obviously each periodic orbit belonging to this family intersects 2>
transversally at a point satisfying (3.6), and its primitive period is 2x/c,+O(e?).
Indeed, we have evidently 0H/ou,#0 at the intersection point of each periodic
orbit with 3. This also implies that =0 along these periodic solutions. There-
fore this defines our desired periodic family. Q.E.D.

ii) The Poincaré mappings associated to the Liapunov’s periodic family.

We will investigate the Poincaré mapping in the coordinates after introduc-
ing the stretching transformation (3.1). We note that each periodic orbit given
in Lemma 2 lies on a energy surface (3.7), which corresponds to ﬁ:a,—}—O(ez):h
with ¢ fixed. We now define a (2n—2)-dimensional manifold 3. by >.=>N
{FI:h}. The points in Y. are parametrized by the 2n—2 variables u,, -+, sy,
vy, =+, vy and {, with »,=0 and u, being determined implicitly from the rela-
tion H=h=0,-+0(s%. Then, in the coordinates after introducing the stretching
transformation (3.1), we can define the Poincaré mapping ¢. near each periodic
orbit given in Lemma 2 by following the solution of (3.3) from a point in 3.
with increasing ¢ to its next intersection with >..

In order to obtain this mapping, we first note that the system (3.3) can bs
written in the form

d - )
;tk :(Uk‘l‘ezl;f]kz‘l'z)?)k‘l”o(&“),
dU 7 (/3:1, '“?7/)
(3.11) (=i Saue Juat 06,
d
4= =ctrow,  c=JB.

Since dz,/dt=0(e*, by integrating this system we have
Urt)=u,cos(P)+v,sin(t@,)+0("),
Vil)=—u;sin(t@)+v, cos (1@ ,)+0(e*),

,
@k=0k+€2l§(]uﬁ s

D)= {exp(tO}L+0(e),

where we used (u, v, {) and 7, in place of (x(0), v(0), £(0)) and 7,(0) respectively.
The time when this solution intersects >, first again is regarded as a function
of these initial values u, v, { and e. It is given by the form
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T=2% 10E)=2" tepr0@),  p=(—2n/0h S,
Furthermore, by the relation HA=h=0,+0(c?) we have
1 -1 1 r-1
(3.12) r,=—<h— > akrk)—I-O(ez):l—-—— > ot +0(eY),
oy k=1 O, k=1

which eliminates u, with v,=0 in 3. Therefore the Poincaré mapping ¢.: (4, v,{)
—u®, v®, {P)=w(T), (T), LT)) is given by the following form:

uP=u,cos ¥,+v,sin¥,+0(@?),
(3.13) v =—u,sin¥,+v,cos ¥,+0(?,

{D=exp{(2r/0)C}(+0(), C=JB,
where

2 r=1
v,— 0”; (0k+62ak+s2l=21‘8“fl>;

(3.14)
g g [ g
ak:ri—o_—err: ‘Bkl:<q1zl"7f'er>_7:(ri'— O'f ‘hr)-

Here the intersection of each periodic orbit given in Lemma 2 with >3, cor-
responds to the fixed point for this mapping. By the remark (iv) to Lemma 2,
the transformation which takes each fixed point into the origin is of the form

up —>up+0(), vi—>v,+0@) (=1, -, r—1), {—>L+0().

We can easily see that the Poincaré mapping ¢. does not change its form (3.13)
with (3.14) under this transformation. Hence the mapping (3.13) can be con-
sidered to be defined in a suitably large neighborhood of the origin with suffi-
ciently small ¢>0, and to have the origin as a fixed point for any ¢>0. In
what follows, we call this mapping ¢..

iii) Reduction to the (r—1)-dimensional tor:.

Now we will seek for periodic points for the mapping ¢.. If we consider
this mapping ¢. in the original coordinates, which is given by

(3.15) eupr —> euy¥, ev,—>evf? (k=1, -, r—1), ¥ —> LD,

then it is well known that this mapping (3.15) is exact-canonical. This implies
that for any closed curve 7 in 3>, the integral

(3.16) &) S advi—viduy o] S @dyi—yaden

is invariant under the mapping ¢..

We consider the p-th iterated ¢ of ¢., where p=|g,/0:|. Our aim is to
find fixed points for ¢{, and it will be accomplished in two steps. The first
step is to restrict ourselves to seeking fixed points for ¢{#> on an (r—1)-torus.
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To this end, we first introduce the new coordinates (z;, #;) in place of (u, vs)
by

uk:\/ZZ'_kCOSﬁk, vk:\/Z?kSinﬁk (k:]., "',7""1),

with {=(,, -+, &, 71, -+, ;) unchanged. Then the p-th iterated ¢{» of ¢. is
transformed into

TP =1,+0(e"),
(3.17) 0P =04+ p¥ i(z, 6, e)+0(?),
(P =exp{2n/c,)C}{+0C(e).

We will solve the 2n—r—1 relations 6{”=0 ,(mod 27 ; k=1, -+, r—1) and {?=(
for z;, -+, 7,-, and { as an implicit system. Noting that

(k=1 -+, r—1)

0P —0 =¢*

ZZE <01k+ :ziﬁszz)‘f‘ O(e%),

r

it suffices to solve the following 2n—»—1 equations:

(3.18) L=yt BParit0©=0  (k=1, =, r=1),
(3.19) I'=[exp{2r/0,)C} =11+ 0(e)=0.

For =0, (3.19) is satisfied with {=0 and (3.18) leads to the linear equations for

Ty, "t Toon,
(ty, =y TrD)(Br)="(ay, =+, ar-1).
If |B]#0, by the Cramér’s formula we have
—1 -
[Bril @

where [§,, denotes the cofactor of the elements §;; in the (r—1)X(r—1) matrix
(Bix). Here we obtain the identities

-

,glkal (=1, -, r—=1),

Tp—

Il
-

=1
(3.20) |P]:—03|,3k11 s 0r[Qk|:—03l§ﬂtkat
from equivalent relations
(k)
(k) (B ay 517: <
g 0 g 0y :
(Br) : 0 /321"'6¥2"' Bus 0
..........: .......... qzl... 0 ...qu ojz . : .
P~ -0 o, U~ B ar e B ,
0 Grio O gy op| |
g, 0 20 o,
o1 =0y 0 0 0

where 7=r—1. Hence, it follows from (3.20) together with (3.12) that
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| Q]
| P

under the assumption (2.6). Moreover, the Jacobian with respect to zj, -+, 7,-1
and ¢ does not vanish on the (»—1)-torus given by (3.21) and {=0 under the
assumption (2.6) with [A.2]. Therefore the implicit system of equations (3.18)
and (3.19) can be solved for z,>0 (k=1, ---, r—1) and { as functions of &, -,
6,_, and ¢ with e=0 corresponding to any point on this (*—1)-torus given by
(3.21) and {=0. For each ¢>0, this solution defines an (r—1)-torus A, in 3,
given by

(3~22) As: {Tk:l-k(aﬁ 5); k:]., Ty 7’—1, C:C(ay 5) (6:(01’ Tty 67‘—1))
,01517)50]“ ‘[2:1’ e 7__1, C(P):C} B

>0 k=1, -, 1)

(3.21) P——

Thus the existence of fixed points for ¢ in . is reduced to the existence of

points @ on A, where we have t{P=t,(k=1, ---, r—1). Finally we note that
the fixed points define our desired periodic orbits with primitive periods near
2m/| o] since there exist no fixed point for ¢{™ (m=1, ---, p—1) on the torus A..

iv) The existence of fixed points for ¢ on the torus A..

Finally we discuss the existence of fixed points for ¢{” on the (r—1)-torus
A., namely that of points & on A, such that 7{®=<¢, (k=1, ---, »—1). Since
not only the integral (3.16) but also the second integral of (3.16) is invariant
under the mapping ¢ restricted to 4., it follows that for any closed curve 7
on A,

r-1 71
S E (ukdvk—vkduk)-——ZS Efkdak
7 k=1 7 k=1
is invariant under the mapping ¢{. In other words, we have
=1
[ S cwaop—za0=0
=

for any closed curve 7 on 4.. Here, noting that d@{”=d@, on A. since 8P =
6, (=1, ---, r—1), we have

[ S @ —c0a0,=0
7 k=1
for any closed curve 7 on 4.. Hence the integral
0r-
FO=( "8 @ —0dbs, 0=, -, 0,2,

is independent of the choice of the path and therefore defines a smooth func-
tion on the torus with period 27 in 6., ---, 8,.,. Further this function F(f)=
F(0, ¢) satisfies

oF

oP = o (k=1 7).

00
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Thus the existence of our desired fixed points is reduced to the existence of
critical points of F(6) on the torus A.. As is well known, a smooth function
on an m-dimensional torus has at least 2™ critical points, counting multiplicities,
of which at least m+1 are geometrically distinct (see e.g. [11]). Therefore the
function F(#) has at least » geometrically distinct critical points on the torus
A.. Hence we have proved that there exist at least » geometrically distinct
fixed points on this torus, which provides our desired periodic orbits. The proof
of the theorem is now completed. Q.E.D.

4. Remarks.

In the preceding proof, it was essential to obtain a one-parameter family of
canonical mappings of the form (3.13) with (3.14) near the Liapunov’s periodic
family with primitive periods near 2z/|o,|. To this end, Lemma 2 is important.
However, if some eigenvalue A,=:i0, (=2, ---, r—1) other than A, satisfies the
non-resonance condition, i.e., none of the quotients 4,/4, (k=1, ---, #, k#7) is an
integer, the same assertion as in Lemma 2 holds for the Liapunov’s periodic
family corresponding to this eigenvalue 4,, Then we shall obtain a one-para-
meter family of Poincaré mappings of the same form as (3.13) with (3.14), and
each of them can be considered to be defined in a neighborhood of the origin,
which is a fixed point corresponding to the Liapunov’s periodic orbit with
primitive period near 27/|s,|. In the same way as in the preceding proof, we
can discuss the existence of fixed points for the p-th iterated @:» of these
mappings ¢. with p=o;/0,, which correspond to the periodic orbits whose
primitive periods are close to 2n/|c,|. Hence we shall have the same assertion
as in theorem A, in other words, we shall have another sufficient condition for
the existence of periodic orbits with primitive periods near 2z/|¢,| under [A.1]
and [A.2]. Indeed, we can have more general assertion as follows:

Let us impose the following conditions on the eigenvalues +2, (k=1, ---, n)
of JS;

[B.1] =+Ar==10, (=1, ---, ») are » pairs of eigenvalues all of which are
integer multiples of a purely imaginary number A,=10, (¢,>0) such that

(lai/aol, las/ael, =+, lor/ao])=1
and
E 7] kO'k:/:O
k=1
for all integer valued vectors (ji, -+, 7, with 1=>77_,]7,|=4. Here
(my, my, -+, m,) stands for the greatest common measure among the

7 positive integers m,=|c,/0,|(k=1, -+, 7).
[B.2] no #+A,. k=1, -+, s) is an integer multiple of 4,, where s=n—r.

Then we have the Lemma 1 under [B.1] and [B.2] instead of [A.1] and [A.2],
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and we can prove

THEOREM B. Consider the Hamiltoman system (1.1) near the ovigin. Let the
eigenvalues of JS satisfy [B.1] and [B.2], and suppose that 2,(1=j=r) satisfies
the non-resonance condition, 1.e., none of the quotients A,/A k=1, -, r. k#7) is
an integer. Assume in the normal form (2.1) that

(4.1) (0,1PD-1Qxl <0 (=1, -+, 7).

Then, on each energy surface H=o;e* with sufficiently small ¢>0, there exist at
least v periodic orbits for (1.1) with primitive periods near 2z/c, in a O(e)-
neighborhood of the periodic orbit belonging to the Liapunov’s periodic family
whose primitive period 1s close to 2z/|a,|.

The proof of this theorem is exactly the same as that of theorem A, and
then we omit the proof. We note here that theorem B includes theorem A as
a special case when A,=A4; and 4,=4,.

We finally remark the connection of the above result with that of [7].
The periodic orbits whose existence is guaranteed by theorems A and B are
near the equilibrium. We have already obtained a sufficient condition for the
existence of periodic orbits near the equilibrium whose primitive periods are
close to 27/|o,| under [A.1] and [A.2] (see (3.2) in [7]). It is given in terms
of the normal form (2.1) by

(42) qri—

TEgu#0  (h=2, -, 7).

g1

If none of the r—1 relations in (4.2) is satisfied, i.e., gp—0r/01-¢1=0 (k=
2, -+, r), then we have |Q,|=0 (=2, ---, ), that is, the condition (2.6) is not
satisfied. Therefore we see that the condition (2.6) includes (4.2) especially
when r=2. However, when r=3, the conditions (2.6) and (4.2) are independent.
In fact, for example, let us consider the case when n=r=3 in [A.1] and [A.2],
and take the Hamiltonian function H(u, v) of the normal form (2.1) such that

Q11:QZZZC]33:1; (]21:0'2/0'1, 5]31:P>0, 43220

together with ¢,>0, 0,<0 and o¢,>0. Here we note that ¢,,=gq;, and take
0>0 suitably small. Then we have |P|>0 and |Q.|<0 (k=1, 2, 3). There-
fore the condition (2.6) is satisfied, but (4.2) is not satisfied. Conversely, we can
also make examples where (4.2) is satisfied but (2.6) is not.
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