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ON ALMOST CONTACT METRIC COMPOUND STRUCTURE
By YOSHIHIRO TASHIRO AND IN-BAE Kim

Introduction. K. Yano and U.-H. Ki [8] have recently introduced the notion
of (f, g, u, v, w, 4, p, v)-structure in an odd-dimensional manifold M, which is
an abstraction of the induced structure in a submanifold of codimension 3 in an
almost Hermitian manifold, and studied conditions for such a structure to define
an almost contact structure in M and properties of pseudo-umbilical submanifold
of codimension 3 satisfying the conditions in a Euclidean space of even-dimen-
sion.

In the present paper, we shall introduce in §1 the notion of metric com-
pound structure in a manifold M of dimension m, which is a generalization of
(f, g, u, v, w, 4, i, v) and naturally induced in M if M is a submanifold in an
almost Hermitian manifold M of dimension n. In § 2, we shall seek for condi-
tions in order that a metric compound structure defines an almost contact metric
structure in M. After the definition of normality in § 3, we shall consider in
§ 4 submanifolds having a normal contact metric compound structure in a Kaeh-
lerian manifold. In §5, we shall disscuss properties and give geometrical charac-
terization of pseudo-umbilical submanifolds in a Euclidean space. In §6, we
shall show that a metric compound structure possessing another property gives
an almost contact metric structure.

Throughout this paper, we put /=n—m and indices run the following ranges
respectively :

KBy Ay fty 0, oo =1, 2, e ,n;
h,i, 7, ky -+ =1,2, -+, m ;
b, q, 7, s, = m+1, m+2, - n;
A, B,C, D, =12, m mtl, e .

§1. Metric compound structure

Let M be an n-dimensional almost Hermitian manifold and (G, ﬁ) the almost
Hermitian structure, where G is the almost Hermitian metric and F the almost
complex structure of M. We denote by G,, and F,* components of G and F
with respect to a local coordinate system (x*). If I=(§,%) indicates the identity
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tensor, then the structure satisfy the equations

(1.1) Fr=—1I; FAFr=—5,r
and
(1.2) ‘FGF=G; FAF,G=G,,.

If we put the covariant components of F as
(1.3) Fx=GF; F,,=F G,.,
then F,, 1 is skew-symmetric in 2 and p.
Let M be an m-dimensional Riemannian manifold and suppose now that it
is immersed isometrically in M by the parametric equations

(1.4) x*=x"y")

by use of a local coordinate system (y") of M.
We put

(1.5) B,f=0;x"

and denote by C,*/ mutually orthogonal unit normal vector fields of M. Then
the n vectors B,* and C, span the tangent space T(M) of M at every point of
M and the matrix

B=(Bg")=(B.", C")

is regular. The metric tensor g of M is related with G of M by
(1.6) 25=G:B;#*B.* .
Denoting the contravariant components of g by g'*, we put
th:g“’G“Bf,
Ci=G1Cl.
Then the inverse matrix B~! of B is given by

B,
B"Z(BAz)Z( )

pA
Now we put
h

~ ~ [ —v,"
1.7) F=B-'FB; (FgY=(Bg*F ;*B4)= .
Ups Sap

Then the components of four kinds of F' are given by

flh:Bliﬁl’:Bhli) vqh:_cqiﬁ‘leh“
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V=B AFCpe,  fer=CAFCyppy.
Since Fr=(F «2) is skew-symmetric, we have the relations
(1.8) Vpe=Vp"Zin
and see that
(1.9) [n=B,*BSF;,
is skew-symmetric in z and ;, and
(1.10) far=CHCF,,

is also skew-symmetric in p and ¢. Thus the sets f=(f,"), v=(v") and f*=
(fqp) compose a (1, 1)-tensor, m vector fields and [({—1)/2 scalar fields on M

respectively.
The transforms of the tangent vectors B,” and the normal vectors C,* to

M by F are expressed in the form

1.11) FirBA=F"By +v,,Cp"
and
(1.12) ﬁlxcqx:_vqhBhK+fqpcpx’

where and in the sequel summation convention is also applied to repeated lower
indices p, ¢, 7, --- on their own range m-+1, m+2, ---, n. Since the matrix (1.7)

satisfies the equation
Fr=—],

the quantities f, v and f* are in the relation

(1.13) [ =—0," v,
(1.14) [/ vm=—vg fep=/paVas »
(1.15) vt =—frv”
(1.16) frofar=—0rpF 0 V0 -

The relation (1.6) is equivalent to

(1.17) F A g et v =g, .

Now removing the almost Hermitian ambient manifold M, we consider an
m-dimensional Riemannian manifold M admitting a metric tensor g, a (1, 1)-tensor
field f, m vector fields v, and /(/—1)/2 scalar fields f,, such that they satisfy
the relations (1.13), (1.14), (1.15), (1.16) and (1.17), and call the totality (f, g, v, f*)
of these quantities a metric compound structure on M.

If we put
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flh —ypt g 0

(1.18) F:( *) and 6=’ ,
Up fap 0 Oqp

then the set (ﬁ , G) defines an almost Hermitian structure in the product space
MxR*" of the manifold M with an /-dimensional Euclidean space R’

§2. Almost contact metric compound structure

We shall suppose that the tensor field f together with the metric tensor g,
a contravariant vector fleld £=(£") and a covariant vector field »=(»,) compose
an almost contact metric structure on M. Then we have

@2.1) [ =—0,"+7,E",
(2.2) f6=0,  f.*1.=0,
(2.3) gg,=1

and

24) [t g ety m=gyi.

In this case we know that the dimension m of M is odd and the rank of f=
(f,%) is equal to m—1.
Comparing (1.17) with (2.4), we have

(2.5) VgiVqr =937 «

This equation shows that the product of the matrix (v,) with the transpose is
of rank 1 and consequently that the matrix (v,,) by itself is of rank 1. There-
fore we may put

(2.6) Ve =Yg,
where v, are proportional factors. Since v,v,'=7.'=1, We have
@.7) Yeve=1

and the equations (1.15) and (1.16) are reduced to

(2.8) SfapYp=0
and
(2.9) Srafap=—0rptvr¥p

respectively. The equations (2.7), (2.8) and (2.9) mean that the set (f*, g*, v)
forms an almost contact metric structure on R’ at every point of M, where
g*+=(04p), and we see that the dimension / of R’ is odd.
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Conversely, starting from the almost contact metric structure (f*, g*, v) on
R' at every point of M, we can prove that the metric compound structure
(f, g, v, f*+) introduces an almost contact metric structure (f, g, §, ») on M.
Thus we have

THEOREM 1. Let (f, g, v, f*) be a metric compound structure on M. In
order that f and g constitute an almost contact metric structure (f, g, &, n) on
M, it is necessary and sufficient that f*+ and g* constitute an almost contact metric
structure (f*, g*, v) on R' at every point of M.

A metric compound structure satisfying the condition in the above theorem
is called an almost contact metric compound structure on M. In the following
we shall confine ourselves to such structures. From the above discussions we
can state the following

THEOREM 2. In order that a metric compound structure (f, g, v, f*) is almost
contact, it is nmecessary and sufficient that the matrix (vy®) is of rank 1, that is,
the [ vector fields v, are all parallel to each other.

§3. The Nijenhuis tensor

Denoting 9,=0/0y’ and regarding 0, as null operators, we define the Nijenhuis
tensor of the metric compound structure (1.18) in MX R! by

Sont=FF@pF 5 — 05 F s*)— F5P(0pF cA—0cF ) .

Using (1.18), we can write down Sgz* as the followings;

Syt=f, 0. fi"—0: ") =/ Ou £, =0, /1) F 0,505  —vis0 05",

Si1p=f1"00pi— 0 p1)— [0V p;—0,0p1)—V;501 fspFv:0; fs ,
@.D 10" =—f11000g" + v 00 f,"—0, fi" )+ fosOs0s™

S100=11"01 fept 04010 p5—00p)+ fas0, fsp »

Srt=v,0v" —vlo, v,

Srep=—0"01fapF0"01 frp -

If the metric compound structure (f, g, v, f*) gives an almost contact metric
structures (f, g, &, ») on M and (f*, g*, v) on R!, then the above expressions
are reduced to

Sjthle(azf:h—aifth)“le(azf;h—a;fzh>+77jai5h—ﬁiajéh »
Sjip’:[f;l(az’f)i_ai'f)z)—le(amr‘aﬂ)t)]vp
+(fjl77i_leﬂj)alvp""(ﬂjaivs—7]1'8]”8>fsp )
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(3.2) Sy =640 f,*—0,1")—£,'0:E™ 1 (1" 0uvqt fos0,v5)E™
S1ap=(8'0u7;—E'0,11)vvp+(1,6'01vp— 0 p)vo+f,'01 fapt fes0: fsp »
Sr"=(v,£'0,v,— v E0v,)E"
Srap=—:£'01fop+ve"01 frp

because vv,=1 and y,0;v,=0.
On the other hand, the Nijenhuis tensors of the almost contact metric struc-
ture (f, g, &, n) are given by ([4])

Ny*=f, 0 fi" =0, L") = [0 £, =0, [i")+1,0.6" —9:0,6"
Nji=F,40:m:—0:m:)— f."(0m;—0,m1)
N,*=E£"0.f,"—0, /")~ f,'0:8"

N,=¢&',9;—E;m, .

Comparing (3.2) with (3.3), we have the equations

(3.3)

N,"=S;", Nji=S;ipvp,
(3.4) i
N,"=S, v, N,=S,qp¥e¥p -

Therefore we obtain, from (3.4), the following

THEOREM 3. Let (f, g, v, f*) be an almost contact metric compound structure
on M. In order for the almost contact metric structure (f, g, & n) on M to be
normal, it is necessary and sufficient that S,;"=0.

§4. Submanifolds of codimension [ of an almost Hermitian manifold

In this section we assume that M is an m-dimensional submanifold of codi-
mension [ of an almost Hermitian manifold M and C,=(C,?) are mutually
orthogonal unit vector normal to M in M, that is,

“.1) CuiC BA=0,  GuCCrt=gumw=04,

and that the induced metric compound structure (f, g, v, f*) on M from the
almost Hermitian structure (G, F) on M defines an almost contact structure.
The vector field N* defined by

(4.2) N#=y,C,?

is unit normal to M in M because G,i:N#*N*=1. The transforms of the tangent
vectors B,? and the normal vectors C,* by F is given by

(4.3) E,AB;#=f"By*4-7;N?
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and
4.4) ﬁuxcqﬂz—'”q"::hBhl"*”fqzucpx

respectively.
It is well-known that the submanifold M of an almost Hermitian manifold
satisfying (4.3) is semi-invariant with respect to N* and we call N* the dis-

tinguished normal to M [6].
From (4.2) and (4.4) we have

(45) FANe=—¢g"B,7,

and hence the transform of the distinguished normal N* by the almost complex
structure £ of M is tangent to M.

Conversely suppose that the submanifold M of codimension / of the almost
Hermitian manifold M is semi-invariant with respect to a unit normal N4 whose
transform by Fis tangent to M, then we have (4.3) and (4.5) for a vector &"
and a 1-form n,=g;;&" of M. Applying F to (4.3) and (4.5), we obtain

thfhlz—“aJl“”UJSl’ 77in]:0:
f]lé]:() ’ 7]1;51:1 ’
We also have, from (1.2), (1.6) and (4.3),

f;kfx"gknzg;i—mm .

Therefore we see that the set (f, g, §, ») defines an almost contact metric struc-
ture. As we have seen in §2, the induced set (f*, g*, v) also defines an almost
contact metric structure., Then we have

THEOREM 4. In order for an induced metric compound structure (f, g,v,f*)
on a submanifold M of codimensional [ of an almost Hermitian manifold M to
be an almost contact, it is necessary and sufficient that the submanifold M 1s senma-
invariant with respect to a unit normal vector field whose transform by F s
tangent to the submanifold.

Now denoting by V, the operator of van der Waerden-Bortolotti covariant
differentiation with respect to g;;, we have the Gauss equation for M in M

(4.6) VB =h,i,Cp*,

where h,;, is the second fundamental tensor with respect to the normal C,%.
The mean curvature vector is defined by

4.7) HA=(1/m)g?"V,;B, =(1/m)h,*,Cp* ,

where h,',=g""h;;,. The Weingarten equation is given by
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4.8) vycp1:*h1p1311+lqucqz ’

where /,,, is the third fundamental tensor. Differentiating (4.1) covariantly and
making use of (4.6) and (4.8), we have

(49> h;qlglzzhjiq ,
(4.10) Lov=—lypq -

We put hjivp=h,,"ginvp=nhj; and call h; the intrinsic second fundamental
tensor of M. Differentiating N* covariantly and using (4.8), we find

(4.11) VN =—h, B +(Twp+ il 100)Co .

Now we assume that the ambient manifold M is Kaehlerian. Differentiating
(4.3) covariantly and taking account of (4.4), (4.6), (4.8) and (4.11), we have

hJiq(—Vthth +fqpcpl):(vjfzh)3hz +fzhhjhpcpz
+(vj777,)N1 +77i['thBhl +(VJUP+UQZMP)C1;1] ’

from which follow the equations

(4.12) Vifut=—h;&*nh,",

(4.13) (Vi vot0iVwp)=hjig fop—f Pjip— N iVelsap -
Transvecting (4.13) with v, and &, we obtain

(4.14) Vipi=—hafat,

(4.15) Vivp=E"Rj10fsp—Valsgo -

Also, differentiating (4.4) covariantly and taking account of (4.3), (4.4), (4.6) and
(4.8), we have

- h]qz(fthh.l +7]ivpcp1)+qur(-VrEhth +f'rpcp2)
- ”‘(vj(uqeh))an —vqslhjlpcpz +(vijp)cpl +fq1‘(—hJThBh2 +l,1rpcpl) ’
from which follow the equations
(416) (vqu)€h+vq(vjfh):h]quth"’_lyqrvr‘sh— h]rhfqr 5
(4.17) ijqp:”qflhjlp’_”pElhjlq+qurfrp_lJprfrq .

Suppose that the almost contact metric structure (f, g, &, ») on M is normal,
that is,

f]l(vlfzh—szlh)_"ftl(vlfjh—vjflh)_i‘Vjvigh"nlvjéh:() .

Then, substituting (4.12) and (4.14) into this equation, we have the equation
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(f]lhzh“h;lfth)m:(lehzh—hzlfth)m
and, transvecting this equation with &,
(4.18) [t —h ==&ty
Transvecting (4.18) with f,’ and with f,* successively, we have the equations

_hkh+77k€lhlh:fkjhjlflh
and

(4.19) fklhll"‘hklfll:ﬂlh]lfkjgl_'y]kglhlhfhl .

Comparing (4.19) with (4.18), we find 7,h,'f,€"=0 or equivalently &*h,'f,’=0.
Moreover, substituting this equation into (4.18), we have

(4.20) [t =htr
Thus we have

THEOREM 5. Suppose that the submanifold M of codimension | of a Kae-
hlerian manifold M admits an almost contact metric compound structure (f, g, v, f*).
Then, in order for the almost contact metric structure (f, g, & ) on M to be
normal, it is necessary and sufficient that the intrinsic second fundamental tensor
h and f commute.

Suppose that the almost contact metric structure (f, g, &, ) on M is normal
contact, that is, it satisfies (4.20) and

(4.21) V=, =2f i .
Then, substituting (4.14) into the equation (4.21), we have
—hufitthaf,' =2,
from which follows the equation
Ry f R =21
Substituting (4.20) into this equation, we have
4.22) Rt ="

and, transvecting with &7,

E]h]lflh:() .
Transvecting this equation with f,*, we obtain §’h,'=aé&*, where we have put
(4.23) a=EEh;, .

Transvecting (4.22) with f,*, we have
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h]l(_élz_{_ﬁléi):_a]z_{_njéz
or equivalently

(4.24) hp=gn+(a—1n,n..

In this case we say that the submanifold M is p-umbilical with respect to the

distinguished normal N?.

Conversely if the submanifold M is n-umbilical, we can easily obtain the
equations (4.20) and (4.21) by the transvection of (4.24) with f.

In particular, if the distinguished normal N* to M is concurrent, that is,
V,N*=—tB,* for some function z, then we have form (4.11)

0, =nh",  Vwptvel,=0.
Since the first of these equations is expressed as

(4.25) hyi=1g;,

then, from (4.23), we find a=7. Substituting (4.25) and a=r7 into (4.24), we have

(T—l)<g]1—7]]7]1):0 »

which implies z=1. Consequently we have h;=g;. Thus we have

THEOREM 6. Suppose that the submanifold M of codimension [ of a Kae-
hlerian mamifold M admits an almost contact metvic compound structure (f, g, v, f*).
In order for the almost contact metric structure (f, g, &, ) on M to be normal
contact, that 1s, Sasakian, it 1s necessary and sufficient that M is n-umbilical with
respect to the distinguished normal N*. In addition, if the distinguished normal
N? to M s concurrent, then M 1s umbilical with respect to N*.

§$5. Submanifolds of codimension / of an even-dimensional
Euclidean space

In this section we assume that M is a submanifold of codimension / of an
even-dimensional Euclidean space E"™ and an almost contact metric compound
structure (f, g, v, f*) is induced on M. Then the Gauss, Codazzi and Ricci

equations are given by

(5.1) Kijin=hinphjip—hnphep,
(5.2) Vihjie—Vhkg=—ligphrnptIlraphsin,
(5.3) Vilsap—Vilkap=h, shvip— R ' h 1ol karlyrp—Lsgrl rp

respectively, where K,;"=g" K,;,; is the curvature tensor of M.
Now we shall prove
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THEOREM 7. Let M be a submanifold of dimension m>3 n an even-dimen-
stonal Euclidean space E™ and assume that the induced metric compound structure
(f, g, v, f*) is almost contact. Then, in order for the submanifold M to be um-
bilical with respect to the distinguwished normal N* and N* parallel to the mean
curvature vector of M in E™, it 1s necessary and suffictent that the distinguished
normal N* s concurrent. In this case the mean curvature of M 1is constant.

Proof. 1f the submanifold M is umbilical with respect to the distinguished
normal N* and N* is parallel to the mean curvature vector H* of M, we have

(5.4) hyi=pgy:,
(5.5) hitp=hy,=mpy,

for a certain scalar function p. By means of (5.4) the equations of (4.14) and
(4.12) have the following expressions

(5.6) Vom=pfs,
5.7 VS 5= 00,8 ki— N1 ks)
respectively.
Substituting (4.15) and (5.6) into (4.13), we have
(5.8) of it 108 hygfap=Nhjiafep—Fi sip s

and, transvecting this equation with gy,
E8 hjigfop=N1"efep=0.
This equation implies ‘
E&h 1= Ay,,
where A=£&6*h;;=p and consequently
(5.9) EIE N 1= pvy -

If we transvect (5.2) with v, and make use of (4.15), we have
(5.10) Vihjo—=h 00=EN g0y p far—E M jigh kipfon
or, by means of (5.4),

(5.11) (V:0)g5i—(V;0)8 1 =E"R righ jipfop—E hjigh kupfap -

Differentiating (5.6) covariantly and using (5.7), we have

VeV =(Ve0)f st 0°(0,8 1i—7:8 w2 »
from which, using the Ricci identity,

~ K" = 0)f 5i— (N, 0)f 0i+ 0%0,8 1i— 0 kG 10) -
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From this, by the Bianchi identity, we obtain

(5.12) (Ve0)f5i (V00 frr+(Vop)f ;=0

Transvecting (5.12) with f7%, we get
(m—3)Vp+26"N,0)9:=0.

Moreover the transvection of (5.12) with &'f* yields £'V,p=0. Therefore we
see that p is constant for m>3.
From (5.11) and the above result we have

Ehrighsinfer=EN e kpfap »
and, transvecting with &’ and using (5.9),
(5.13) E'h i hjinfep=0.
Transvecting (5.8) with £6*h,,, and using (5.13), we have
[o'€R 15 hn =0,
and, transvecting with f,,* and using (5.9),
(5.14) §'hiypE hip= 0" 71 .

Let H be the matrix (6'h,,,). Then (5.14) means that ‘HH=p*(,7,), where ‘H
is the transpose of H. Since the rank of matrix (%;%,) is 1, then the rank of
H is also 1. Therefore we may put

(5.15) E i p=p7p .

Comparing the transvection of (5.15) with &' and (5.9), we see that v,=Ay,
where A=£'y]. Hence we have

(5.16) Eh1p pg=0
or equivalently, from (4.15),
(5.17) Vvt vpl;04=0.

Finally we see, from (5.6) and (5.17), that the distinguished normal N? is con-

current.

Conversely if the distinguished normal N? is concurrent, that is, V;N*=
—zB,* for a certain function 7, then we have h;;=rg;;, which shows that M
is umbilical with respect to N?, and (5.17). Substituting (4.14) and the above
equations into (4.13), we have

lehjlp:hﬁqfqp_ffjivp s

and, transvecting with g,
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hitefer=0,
which implies
hite=h'v;=mry,.

Therefore the distinguished normal N* is parallel to the mean curvature vec-
tor H?,

In this case we easily see that the mean curvature of M is constant. This
completes the proof.

Now we assume that the mean curvature vector H* is parallel to the dis-
tinguished normal N* of M, that is, H*=pN?* for a certain function p. Then
we have (5.5).

If the submanifold M is pseudo-umbilical, we have

(5.18) Gauh,"H*=p%g,;

because |p| is the length of H?. From (5.5) and (5.18) we find that h;;=|p|g;:,
which means that M is umbilical with respect to the distinguished normal N?.

Conversely if the submanifold M is umbilical with respect to N*, we have
(5.18) from (5.4) and (5.5). Thus we have

THEOREM 8. Let M be a submanifold of codimension [ with the induced
almost contact metric compound structure (f, g, v, f*) of an even-dimensional
Euclidean space E™ and the mean curvature vector H* of M parallel to the dis-
tinguished normal N* of M in E™. Then, in order for the submanifold M to be
pseudo-umbilical, it is necessary and sufficient that M 1s umbilical with respect to
the distinguished normal N?*.

It is well-known that pseudo-umbilical submanifolds in a Euclidean space
with the mean curvature vector parallel in the normal bundle are minimal sub-
manifolds of a hypersphere [7]. From Theorem 7, we see that the mean cur-
vature vector is parallel in the normal bundle. Therefore it follows from Theo-
rems 7 and 8 that the submanifold M of dimension m>3 is contained as a
minimal submanifold in a hypersphere in E”.

On the other hand, we see that the direct sum of the tangent space of M
and the distinguished normal N? is invariant because of (4.3) and (4.5). There-
fore M is an intersection of a complex cone with generator N* on M and an
(n—1)-dimensional sphere.

Thus we have the following

THEOREM 9. Let M be a submanifold of codimension | with the induced almost
contact metric compound structure (f, g, v, f*) of an even-dimensional Euclidean
space E™. If the submanifold M satisfies one of the followings;

(1) M of dimension m>3 is umbilical with respect to the distinguished normal
N?*, and N* parallel to the mean curvature vector,

(2) M of dimension m>3 1s pseudo-umbilical submanifold and the distinguished
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normal N* parallel to the mean curvature vector,
(3) The distinguished normal N* 1s concurrent,
then M 1s the intersection of a complex cone with generator N* and an

(n—1)-dimensional sphere.

We now assume that the metric compound structure (f, g, v, f*) induced
on a submanifold M of codimension / of an even-dimensional Euclidean space
E™ defines a normal almost contact metric structure (f, g, &, ») on M and the
distinguished normal N# is parallel in the normal bundle of M. Then we have

the equation (4.20), that is,

(5.19) hufit4hof,t=0.

Transvecting (5.19) with f,* and taking the skew-symmetric part, we have
hu&'pr=hué'n,,

which means that we may put

(5.20) huét=am,,

where a=&&"h;;. Differentiating (5.20) covariantly and substituting (4.14) into
this equation, we have

(Veh ) 4R (= ha /iD= a)n,+al—huf,")
and, taking the skew-symmetric part and using (5.19), the equation
(5.21) (thjl_vjh kl)El+2hjlhlszL:(vka)ﬁJ_(v;a)vk+2ahjlfkl .

On the other hand, since N? is parallel in the normal bundle of M, we have
(5.17) or equivalently (5.16). From (5.10) and (5.16) we find

(522) thji—th 1”:0 .
Substituting (5.22) into (5.21), we have
(5.23) 20, hin f it =V ), — (V@) +2ah ;. 4

and transvecting (5.23) with & and using (5.20),
(5.24) Via=An;,
where A=%£V,«. Thus (5.23) implies
hithyf=ahfit.
If we transvect this equation with f,* and make use of (5.20), we obtain
(5.25) hithp=ah,, .

Differentiating (5.24) covariantly and substituting (4.14) into this equation, we
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have
(va)ﬁj"‘(vJA)ﬁ k‘l‘ZAthfkl:O ,

and, transvecting with & and using (5.19),
va:(slvl/Dﬁh .

The two equations above show that Ah, f,'=0. Transvecting this equation
with f,* and using (5.20), we have

(526) A(hji——a‘lh'/ﬁ):() .

Now suppose that M is locally irreducible. Then we have A=0 from (5.26).
In fact, if A=<0, we have hj;=ay;y,. Substituting this equation into (4.14), we
find V,7,=0, which means that &" is parallel vector field. This contradicts to
the local irreducibility of M. Therefore we see that « is constant from (5.24).
Moreover this constant is nonzero. In fact, if =0, we have hj;=0 from (5.25)
and finally we also have V,7,=0.

Differentiating (5.25) covariantly, we have

(Vehs)h 4 h,H N ch)=aV g hy; .

From this equation, taking the skew-symmetric part with respect to z and £k
and using (5.22), we have
(vkhjl)hzl“_(vihjl)h klzo .

Since the sum of this equation and one with exchanged ; and £ is
(5.27) 2V hj)ht=aVhy;

by means of (5.22), then we have, transvecting (5.27) with h,* and using (5.25)
and a+0,

(5.28) (Veh,)h'=0.
Therefore, from (5.27) and (5.28), we have
(5.29) Vihji=0.

By the irreducibility of M, it follows from (5.29) that hj is proportional to g,
and from (5.25) that the proportional factor is equal to a, that is,

(5.30) hji:ag,-i .

Consequently we see, from (5.17) and (5.30), that the distinguished normal N?
is concurrent.
Thus, from Theorem 9, we have

THEOREM 10. Let M be a locally irreducible submanifold of codimension [
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with an induced metric compound structure (f, g, v, f*) of a Euclidean space E™
such that the distinguished normal N* is parallel in the normal bundle. If the
metric compound structure (f, g, v, f*) defines a normal almost contact metric
structure (f, g, &, 5) on M, then M 1s the intersection of a complex cone with
generator N* and an (n—1)-dimensional sphere.

§6. Metric compound structure (f, g, v, f*) in which f+=0

Let the set (f, g, v, /*) be a metric compound structure on M and assume
that the tensor field f* on R! vanishes identically. Then, from (1.14), (1.15)
and (1.16), we have

(6.1) Fve=0,  vf,*=0,
(6.2) V' Vpi=0gp -

We assume that M is odd-dimensional and put [=2a+1.
We choose one of the [ vector fields v,, as 7,, for example,

(6.3) N1=V2a+1,2
and put &*=g'y»,. Then, by means of (6.2), we have
(6.4) gy,=1.

Now we put
(6.5) ¢ =f—( > Vpilp"— Zi‘: Vpivp")
p=1 =1
where p=a+p. Then, using (6.1) and (6.2), we have
2a
B, =1, — Elvmvphszfwh—vmvph"l’ 771‘5h ,

which implies, from (1.13),

(6.6) ¢J1¢lh:—5.}h+ ﬁ]éh .
From (6.3) and (6.5) we also have
6.7) 0,6'=¢,'7,=0.

Using (6.1) and (6.2), we also have

G, gin=1 g etV Vpi— N0 s
which implies, from (1.17),

6.8) G, G =g 0N
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Thus we have the following

THEOREM 11. Let (f, g, v, f*) be a metric compound structure on an odd-
dimensional manifold M. If the tensor f*+ on R' vawmshes i1dentically, then the
manifold M admits an almost contact metric structure (¢, g, &, 1), where 3 1s
one of [ vector fields v and ¢ s gwen by (6.5).
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