AN EXTREMAL PROBLEM ON THE CLASSICAL CARTAN DOMAINS

By Yoshinisa Kubota

1. This paper is concerned with the following extremal problem: Let D be a bounded domain in the $2 n$-dimensional Euclidean space \boldsymbol{C}^{n} of n complex variables $z=\left(z_{1}, \cdots, z_{n}\right)$. Denote by $\mathscr{F}(D)$ the family of holomorphic mappings from D into the unit hyperball B_{n} in \boldsymbol{C}^{n}. It is required to find the precise value

$$
M\left(z_{0}, D\right)=\sup _{f \in \mathscr{Y}(D)}\left|\operatorname{det}\left(\frac{\partial f}{\partial z}\right)_{z=z_{0}}\right| \quad\left(z_{0} \in D\right),
$$

where $\left(\frac{\partial f}{\partial z}\right)$ denotes the Jacobian matrix of f :

$$
\left(\frac{\partial f}{\partial z}\right)=\left(\begin{array}{l}
\frac{\partial f_{1}}{\partial z_{1}} \cdots \frac{\partial f_{1}}{\partial z_{n}} \\
\cdots \cdots \cdots \cdots \\
\frac{\partial f_{n}}{\partial z_{1}} \cdots \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right), \quad f=\left(f_{1}, \cdots, f_{n}\right)
$$

If $w=h(z)$ is a biholomorphic mapping from D_{1} onto D_{2} and $w_{0}=h\left(z_{0}\right)$, then

$$
M\left(z_{0}, D_{1}\right)=M\left(w_{0}, D_{2}\right)\left|\operatorname{det}\left(\frac{\partial h}{\partial z}\right)_{z=z_{0}}\right|
$$

namely, the quantity $M(z, D)$ is a relative invariant. Hence for a bounded homogeneous domain D it is sufficient to find the value $M\left(z_{0}, D\right)$ for a fixed point z_{0} in D.

The automorphism of B_{n} which transforms a point $a=\left(a_{1}, \cdots, a_{n}\right)$ into the origin is given in the form

$$
\varphi(z: a)=\mu(z-a)\left(I-\bar{a}^{\prime} z\right)^{-1} U^{-1}
$$

where $|\mu|^{2}=\left(1-a \bar{a}^{\prime}\right)^{-1}$ and $U^{\prime} \bar{U}=\left(I-a^{\prime} \bar{a}\right)^{-1}$. Here I is the identity matrix and \bar{A} denotes the conjugate matrix of A and A^{\prime} the transposed matrix of A. Since

$$
\left|\operatorname{det}\left(\frac{\partial \varphi}{\partial z}\right)_{z=a}\right|=\left(1-a \bar{a}^{\prime}\right)^{-(n+1) 2} \geqq 1,
$$

as far as $M\left(z_{0}, D\right)$ is concerned, we can replace $\mathscr{F}(D)$ by the subfamily $\mathscr{I}_{2_{0}}(D)$ of
mappings which transform the point z_{0} into the origin.
Carathéodory [2] proved that for the polydisc $P_{n}=\left\{\left(z_{1}, \cdots, z_{n}\right):\left|z_{j}\right|<1, \jmath=\right.$ $1, \cdots, n\}$

$$
M\left(0, P_{n}\right)=n^{-n / 2} .
$$

We shall find the value $M(0, D)$ for the classical Cartan domains.
By a classical Cartan domain we understand a domain of one of the following four types:

$$
\begin{aligned}
& R_{\mathrm{I}}(r, s)=\left\{Z=\left(z_{j k}\right): I-Z \bar{Z}^{\prime}>0, \text { where } Z \text { is an } r \times s \text { matrix }\right\}, \quad(r \leqq s), \\
& R_{\mathrm{II}}(p)=\left\{Z=\left(z_{j k}\right): I-Z \bar{Z}^{\prime}>0, \text { where } Z\right. \text { is a symmetric } \\
& \text { matrix of order } p\}, \\
& R_{\mathrm{III}}(q)=\left\{Z=\left(z_{j k}\right): I-Z \bar{Z}^{\prime}>0, \text { where } Z\right. \text { is a skew-symmetric } \\
& \text { matrix of order } q\}, \\
& R_{\mathrm{IV}}(n)=\left\{z=\left(z_{1}, \cdots, z_{n}\right): 1+\left|z z^{\prime}\right|^{2}-2 z \bar{z}^{\prime}>0,1-\left|z z^{\prime}\right|>0\right\} .
\end{aligned}
$$

Obviously,

$$
\begin{array}{ll}
R_{\mathrm{I}}(r, s) \subset \boldsymbol{C}^{r s}, & R_{\mathrm{II}}(p) \subset \boldsymbol{C}^{p(p+1) / 2}, \\
R_{\mathrm{III}}(q) \subset \boldsymbol{C}^{q(q-1) / 2}, & R_{\mathrm{IV}}(n) \subset \boldsymbol{C}^{n}
\end{array}
$$

Instead of $R_{\mathrm{II}}(p)$ we consider the following modified domain:

$$
\begin{aligned}
\hat{R}_{\mathrm{II}}(p)=\left\{Z=\left(z_{j k}\right): z_{j k}=\sqrt{2} x_{j k}\right. & (\jmath \neq k), z_{\jmath j}=x_{\jmath \jmath} \\
& \text { where } \left.X=\left(x_{j k}\right) \in R_{\mathrm{II}}(p)\right\} .
\end{aligned}
$$

We shall prove the following theorem:

Theorem

$$
\begin{gather*}
M\left(0, R_{\mathrm{I}}(r, s)\right)=r^{-r s / 2}, \tag{1.1}\\
M\left(0, \hat{R}_{\mathrm{II}}(p)\right)=2^{-p(p-1) / 4} M\left(0, R_{\mathrm{II}}(p)\right)=p^{-p(p+1) / 4}, \tag{1.2}\\
M\left(0, R_{\mathrm{III}}(q)\right)=\left[\frac{q}{2}\right]^{-q(q-1) / 4}, \tag{1.3}
\end{gather*}
$$

where $\left[\frac{q}{2}\right]$ denotes the integral part of the number $\frac{q}{2}$.

$$
\begin{equation*}
M\left(0, R_{\mathrm{IV}}(n)\right)=1 \tag{1.4}
\end{equation*}
$$

Now, we consider the modified domains:

$$
\begin{equation*}
R_{\mathrm{I}}^{0}(r, s)=\left\{Z: \sqrt{r} Z \in R_{\mathrm{I}}(r, s)\right\} \tag{1.5}
\end{equation*}
$$

$$
\begin{align*}
& R_{\mathrm{II}}^{\mathrm{o}}(p)=\left\{Z: \sqrt{p} Z \in \hat{R}_{\mathrm{II}}(p)\right\}, \tag{1.6}\\
& R_{\mathrm{III}}^{\mathrm{o}}(q)=\left\{Z: \sqrt{\left[\frac{q}{2}\right]} Z \in R_{\mathrm{III}}(q)\right\}, \tag{1.7}\\
& R_{\mathrm{IV}}^{0}(n)=R_{\mathrm{IV}}(n) . \tag{1.8}
\end{align*}
$$

E. Cartan [3] proved that, if $n \neq 16,27$, every irreducible bounded symmetric domain D in \boldsymbol{C}^{n} is biholomorphically equivalent to a domain of one of the classical Cartan domains. Hence there exists a biholomorphic mapping f from D onto a domain of one of the domains (1.5) $\sim(1.8)$ such that $f(0)=0$, here we may assume that D contains the origin. Since these four domains are contained in the unit hyperball (see Lemma in §2) and since

$$
M\left(0, R_{v}^{0}\right)=1 \quad(\nu=\text { I, II, III, IV }),
$$

it follows that f is an extremal mapping, i. e.,

$$
\left|\operatorname{det}\left(\frac{\partial f}{\partial z}\right)_{z=0}\right|=M(0, D)
$$

2. Let D be a bounded domain in \boldsymbol{C}^{n}. We denote by $\rho\left(z_{0}, D\right)$ the greatest lower bound of the radii of hyperballs $\left\{z=\left(z_{1}, \cdots, z_{n}\right):\left|z_{1}-z_{1}^{0}\right|^{2}+\cdots+\left|z_{n}-z_{n}^{0}\right|^{2}\right.$ $\left.<\rho^{2}\right\}, z_{0}=\left(z_{1}^{0}, \cdots, z_{n}^{0}\right)$, containing D. By appealing to methods of Hua (see [4]) we are able to compute the value of $\rho(0, D)$ for the classical Cartan domains.

Lemma

$$
\begin{align*}
& \rho\left(0, R_{\mathrm{I}}(r, s)\right)=\sqrt{r}, \tag{2.1}\\
& \rho\left(0, \hat{R}_{\mathrm{II}}(p)\right)=\rho\left(0, R_{\mathrm{II}}(p)\right)=\sqrt{p}, \tag{2.2}\\
& \rho\left(0, R_{\mathrm{II}}(q)\right)=\sqrt{\left[\frac{q}{2}\right]}, \tag{2.3}\\
& \rho\left(0, R_{\mathrm{IV}}(n)\right)=1 . \tag{2.4}
\end{align*}
$$

Proof. Let $Z \in R_{\mathrm{I}}(r, s)$. According to a result of Hua (see [4]) there exist two unitary matrices U and V of orders r and s, respectively, such that

$$
W=U Z V=\left(\begin{array}{ccccccc}
\zeta_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \zeta_{2} & \cdots & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \zeta_{r} & 0 & \cdots & 0
\end{array}\right)
$$

and $W \in R_{\mathrm{I}}(r, s)$. Since $W \in R_{\mathrm{I}}(r, s)$, it follows that $\left|\zeta_{j}\right|<1 \quad(\jmath=1, \cdots, r)$. We arrange the elements of the matrices Z and W in the form of vectors in $\boldsymbol{C}^{r s}$

$$
\begin{aligned}
& z=\left(z_{11}, \cdots, z_{1 s}, \cdots, z_{r 1}, \cdots, z_{r s}\right), \\
& w=\left(w_{11}, \cdots, w_{1 s}, \cdots, w_{r 1}, \cdots, w_{r s}\right) .
\end{aligned}
$$

Then by the relation $W=U Z V$ we have

$$
w=z U^{\prime} \times V
$$

where $U^{\prime} \times V$ is the Kronecker product of matrices U^{\prime} and V. Since $U^{\prime} \times V$ is also a unitary matrix of order $r s$, we have

$$
\|z\|^{2}=\|w\|^{2}=\left|\zeta_{1}\right|^{2}+\cdots+\left|\zeta_{r}\right|^{2}<r
$$

where $\|z\|^{2}=\left|z_{11}\right|^{2}+\cdots+\left|z_{1 s}\right|^{2}+\cdots+\left|z_{r 1}\right|^{2}+\cdots+\left|z_{r s}\right|^{2}$. Hence

$$
\rho\left(0, R_{\mathrm{I}}(r, s)\right) \leqq \sqrt{r} .
$$

On the other hand, for arbitrary complex numbers $\zeta_{1}, \cdots, \zeta_{r}$ such that $\left|\zeta_{j}\right|<1$ ($j=1, \cdots, r$), the point

$$
Z=\left(z_{j_{k}}\right), \quad z_{j_{k}}=\left\{\begin{array}{cc}
\zeta, & (\jmath=k) \\
0 & (j \neq k)
\end{array}\right.
$$

belongs to $R_{\mathrm{I}}(r, s)$ and, therefore, (2.1) follows.
Let $Z \in \hat{R}_{\mathrm{II}}(p)$ and set

$$
X=\left(x_{j k}\right), \quad x_{j k}=\left\{\begin{array}{ll}
z_{\jmath \jmath} & (\jmath=k) \\
\frac{1}{\sqrt{2}} z_{j k} & (\jmath \neq k)
\end{array} .\right.
$$

Then $X \in R_{\text {II }}(p)$. Again, by [4], there exists a unitary matrix U of order p such that

$$
Y=U X U^{\prime}=\left(\begin{array}{cccc}
\zeta_{1} & 0 & \cdots & 0 \\
0 & \zeta_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots \\
0 & 0 & \cdots & \zeta_{p}
\end{array}\right)
$$

and $Y \in R_{\mathrm{II}}(p)$. Obviously, $\left|\zeta_{j}\right|<1(\jmath=1, \cdots, p)$. We arrange the elements of the matrix Z in the form of a vector in $\boldsymbol{C}^{p(p+1) / 2}$

$$
z=\left(z_{11}, \cdots, z_{1 p}, z_{22}, \cdots, z_{2 p}, \cdots, z_{p p}\right) .
$$

On the other hand we arrange the elements of the matrices X and Y in the form of vectors in $C^{p^{2}}$

$$
\begin{aligned}
& x=\left(x_{11}, \cdots, x_{1 p}, \cdots, x_{p 1}, \cdots, x_{p p}\right), \\
& y=\left(y_{11}, \cdots, y_{1 p}, \cdots, y_{p 1}, \cdots, y_{p p}\right) .
\end{aligned}
$$

By the relation $Y=U X U^{\prime}$ we have $y=x U^{\prime} \times U^{\prime}$. Since $U^{\prime} \times U^{\prime}$ is a unitary matrix of order p^{2}, we have

$$
\|z\|^{2}=\|x\|^{2}=\|y\|^{2}=\left|\zeta_{1}\right|^{2}+\cdots+\left|\zeta_{p}\right|^{2}<p .
$$

Further, if ξ_{1}, \cdots, ξ_{p} are complex numbers such that $\left|\xi_{j}\right|<1(j=1, \cdots, p)$, then the point

$$
Z=\left(z_{j k}\right), \quad z_{j k}=\left\{\begin{array}{cc}
\xi_{,} & (\jmath=k) \\
0 & (j \neq k)
\end{array}\right.
$$

belongs to $\hat{R}_{\mathrm{II}}(p)$. Thus it follows that

$$
\rho\left(0, \hat{R}_{\mathrm{II}}(p)\right)=\sqrt{p}
$$

Similarly we have

$$
\rho\left(0, R_{\mathrm{II}}(p)\right)=\sqrt{p} .
$$

For each $Z \in R_{\mathrm{III}}(q)$ there exists a unitary matrix U of order q such that
or

$$
W=U Z U^{\prime}=\left(\begin{array}{rr}
0 & \zeta_{1} \\
-\zeta_{1} & 0
\end{array}\right)+\cdots+\left(\begin{array}{rr}
0 & \zeta_{m} \\
-\zeta_{m} & 0
\end{array}\right) \quad(q=2 m)
$$

$$
W=U Z U^{\prime}=\left(\begin{array}{rr}
0 & \zeta_{1} \\
-\zeta_{1} & 0
\end{array}\right) \dot{+}+\left(\begin{array}{rr}
0 & \zeta_{m} \\
-\zeta_{m} & 0
\end{array}\right) \dot{+0} \quad(q=2 m+1),
$$

and $W \in R_{\mathrm{III}}(q)$ (see [4]). Hence we obtain (2.3).
The last equality (2.4) is obvious.
3. We turn now to the proof of the theorem. We first prove (1.1). For $Z=\left(z_{j k}\right) \in R_{\mathrm{I}}(r, s)$ we arrange the elements of Z in the form

$$
z=\left(z_{11}, \cdots, z_{1 s}, \cdots, z_{r 1}, \cdots, z_{r s}\right)
$$

Let f be a mapping belonging to the family $\mathscr{T}_{0}\left(R_{\mathbf{I}}(r, s)\right)$. We set

$$
\begin{aligned}
& f=\left(f_{11}, \cdots, f_{1 s}, \cdots, f_{r 1}, \cdots, f_{r s}\right) \\
& f_{j k}(z)=a_{11}^{(j k)} z_{11}+\cdots+a_{1 s}^{(j k)} z_{1 s}+\cdots+a_{r 1}^{(j k)} z_{r 1}+\cdots+a_{r s}^{(j k)} z_{r s}+\text { (higher powers). }
\end{aligned}
$$

Then

$$
\left(\frac{\partial f}{\partial z}\right)_{z=0}=\left(\begin{array}{l}
a_{11}^{(11)} \cdots a_{1 s}^{(11)} \cdots a_{11}^{(11)} \cdots a_{r s}^{(11)} \\
\cdots \cdots \cdots \cdots \cdots \\
a_{11}^{(r s)} \cdots a_{1 s}^{(r s)} \cdots a_{r 1}^{(r s)} \cdots a_{r s}^{(r s)}
\end{array}\right) .
$$

There exists a unitary matrix U of order $r s$ such that

$$
U\left(\frac{\partial f}{\partial z}\right)_{z=0}=\left(\begin{array}{cccc}
c_{11}^{(11)} & c_{12}^{(11)} & \cdots c_{r s}^{(11)} \\
0 & c_{12}^{(12)} & \cdots c_{r s}^{(12)} \\
\cdots & \ldots \ldots \ldots \\
0 & 0 & \cdots & c_{r s}^{(r s)}
\end{array}\right) .
$$

We consider the mapping $g=\varphi \circ f$, where φ is the automorphism of $B_{r s}$ defined by the linear transformation $w=z U^{\prime}$. The mapping g belongs to $\mathscr{I}_{0}\left(R_{\mathbf{I}}(r, s)\right)$ and

$$
\begin{equation*}
\left|\operatorname{det}\left(\frac{\partial f}{\partial z}\right)_{z=0}\right|=\left|\operatorname{det}\left(\frac{\partial g}{\partial z}\right)_{z=0}\right|=\left|c_{11}^{(11)} c_{12}^{(12)} \ldots c_{r s}^{(r s)}\right| \tag{3.1}
\end{equation*}
$$

Let σ be a one-to-one mapping from $\{1, \cdots, r\}$ into $\{1, \cdots, s\}$. We take a unitary matrix $V=\left(v_{\alpha \beta}\right)$ of order $r s$ such that $v_{1 \beta}=e^{2 \theta} / \sqrt{r}$ for $\beta=(\jmath-1) s+\sigma(j)$ $(j=1, \cdots, r)$ and $v_{1 \beta}=0$ for the other β^{\prime} s, where $\theta_{1}, \cdots, \theta_{r}$ are arbitrary real numbers. We denote by ϕ the automorphism of $B_{r s}$ defined by $w=z V^{\prime}$. The mapping

$$
h=\phi \circ g=\left(h_{11}, \cdots, h_{1 s}, \cdots, h_{r 1}, \cdots, h_{r s}\right)
$$

belongs to $\mathscr{F}_{0}\left(R_{\mathrm{I}}(r, s)\right)$. We have the expansion

$$
\begin{align*}
& h_{11}(z)=b_{11} z_{11}+\cdots+b_{1 s} z_{1 s}+\cdots+b_{r 1} z_{r 1}+\cdots+b_{r s} z_{r s}+\text { (higher powers) } \\
& b_{\rho \sigma(j)}=\frac{1}{\sqrt{r}}\left\{e^{\left.i \theta_{1} C_{j \sigma(j)}^{(11(1))}+e^{2 \theta} c_{\rho \sigma(j)}^{(2 \sigma(2))}+\cdots+e^{2 \theta} c_{j \sigma(j)}^{(j \sigma(j))}\right\} \quad(\jmath=1, \cdots, r) .} .\right. \tag{3.2}
\end{align*}
$$

Let $\alpha_{1}, \cdots, \alpha_{r}$ be arbitrary complex numbers such that $\left|\alpha_{j}\right|=1(\jmath=1, \cdots, r)$. If $|\zeta|<1$, then the point

$$
Z=\left(z_{j k}\right), \quad z_{j k}=\left\{\begin{array}{cc}
\alpha_{j} \zeta & (k=\sigma(j)) \\
0 & (k \neq \sigma(j))
\end{array}\right.
$$

belongs to $R_{\mathrm{I}}(r, s)$. Hence the function

$$
\tilde{h}(\zeta)=h_{11}(z)=\left\{b_{1 \sigma(1)} \alpha_{1}+\cdots+b_{r \sigma(r)} \alpha_{r}\right\} \zeta+\text { (higher powers) }
$$

is holomorphic in $|\zeta|<1$ and satisfies the conditions $|\tilde{h}(\zeta)|<1, \tilde{h}(0)=0$. Therefore, by Schwarz lemma,

$$
\begin{equation*}
\left|b_{1 \sigma(1)} \alpha_{1}+\cdots+b_{r \sigma(r)} \alpha_{r}\right| \leqq 1 . \tag{3.3}
\end{equation*}
$$

Since θ, and α_{ρ} are arbitrary, we have, by (3.2) and (3.3),

$$
\left|c_{1 \sigma(1)}^{(11 \sigma(1))}\right|+\left|c_{2 \sigma(2)}^{(2 \sigma(2))}\right|+\cdots+\left|c_{r \sigma(r)}^{(r \sigma(r))}\right| \leqq \sqrt{r} .
$$

Therefore we obtain

$$
\begin{equation*}
\left|c_{11}^{(11)}\right|+\cdots+\left|c_{1 s}^{(1 s)}\right|+\cdots+\left|c_{r 1}^{(r 1)}\right|+\cdots+\left|c_{r s}^{(r s)}\right| \leqq \sqrt{r} s \tag{3.4}
\end{equation*}
$$

Now, from (3.1) and (3.4) we have

$$
\left|\operatorname{det}\left(\frac{\partial f}{\partial z}\right)_{z=0}\right| \leqq r^{-r s / 2} .
$$

On the other hand, it follows from the Lemma that the mapping

$$
w_{j_{k}}=\frac{1}{\sqrt{r}} z_{j k} \quad(j=1, \cdots, r ; k=1, \cdots, s)
$$

belongs to $\mathscr{F}_{0}\left(R_{\mathrm{I}}(r, s)\right)$. Therefore, (1.1) follows.
4. Next we prove (1.2). For $Z=\left(z_{j k}\right) \in \hat{R}_{\mathrm{II}}(p)$ we arrange the elements of Z in the form of a vector in $C^{p(p+1) / 2}$

$$
z=\left(z_{11}, \cdots, z_{1 p}, z_{22}, \cdots, z_{2 p}, \cdots, z_{p p}\right) .
$$

Let f be a mapping in $\mathscr{F}_{0}\left(\hat{R}_{\mathrm{II}}(p)\right)$. We set

$$
\begin{aligned}
& f=\left(f_{11}, \cdots, f_{1 p}, f_{22}, \cdots, f_{2 p}, \cdots, f_{p p}\right) \\
& f_{j k}(z)=a_{11}^{(j k)} z_{11}+\cdots+a_{1 p}^{(j k)} z_{1 p}+a_{22}^{(j k)} z_{22}+\cdots+a_{2 p}^{(j k)} z_{2 p}+\cdots+a_{p p}^{(j k)} z_{p p}
\end{aligned}
$$

+(higher powers).

We may assume that $\left(\frac{\partial f}{\partial z}\right)_{z=0}$ is a triangular matrix of order $p(p+1) / 2$:

$$
\left(\frac{\partial f}{\partial z}\right)_{z=0}=\left(\begin{array}{cccc}
a_{11}^{(11)} & a_{12}^{(11)} & \cdots & a_{p p}^{(11)} \\
0 & a_{12}^{(12)} & \cdots & a_{p p}^{(12)} \\
\cdots \cdots \cdots & \ldots \ldots \\
0 & 0 & \cdots & a_{p p}^{(p p)}
\end{array}\right) .
$$

Hence

$$
\begin{equation*}
\left|\operatorname{det}\left(\frac{\partial f}{\partial z}\right)_{z=0}\right|=\left|a_{11}^{(11)} \cdots a_{1 p}^{(1 p)} a_{22}^{(22)} \cdots a_{2 p}^{(2 p)} \cdots a_{p p}^{(p p)}\right| . \tag{4.1}
\end{equation*}
$$

We consider a modified mapping F which maps $\hat{R}_{\mathrm{II}}(p)$ into $B_{p^{2}}$:

$$
\begin{aligned}
& F=\left(F_{11}, \cdots, F_{1 p}, \cdots, F_{p 1}, \cdots, F_{p p}\right), \\
& F_{j k}=F_{k j}=\frac{1}{\sqrt{2}} f_{j k}(\jmath<k), \quad F_{j j}=f_{\jmath j} .
\end{aligned}
$$

We first consider the case that p is even, i. e., $p=2 m$. Denote by \boldsymbol{S}_{m} the set of all one-to-one mappings σ from $\{1, \cdots, p\}$ onto itself such that

$$
\sigma(j) \neq j, \quad \sigma \circ \sigma(j)=j \quad(j=1, \cdots, p) .
$$

Let $\sigma \in \boldsymbol{S}_{m}$ and let j_{1}, \cdots, j_{m} be the natural numbers such that

$$
1=j_{1}<j_{2}<\cdots<j_{m}<p, \quad j_{v}<\sigma\left(j_{v}\right) \quad(v=1, \cdots, m) .
$$

We take a unitary matrix $V=\left(v_{\alpha \beta}\right)$ of order p^{2} such that $v_{1 \beta}=e^{i \theta_{\rho}} / \sqrt{p}$ for $\beta=(j-1) p+\sigma(j)(j=1, \cdots, p)$ and $v_{1 \beta}=0$ for the other β 's, and denote by ϕ the automorphism of $B_{p^{2}}$ given by V. The mapping

$$
G=\phi \cdot F=\left(G_{11}, \cdots, G_{1 p}, \cdots, G_{p 1}, \cdots, G_{p p}\right)
$$

maps $\hat{R}_{\text {II }}(p)$ into $B_{p^{2}}$. Since
we have the expansion

$$
\begin{align*}
& G_{11}(z)=b_{11} z_{11}+\cdots+b_{1 p} z_{1 p}+b_{22} z_{22}+\cdots+b_{2 p} z_{2 p}+\cdots+b_{p p} z_{p p} \\
& + \text { (higher powers), } \tag{4.2}
\end{align*}
$$

$$
\begin{aligned}
& (\nu=1, \cdots, m) \text {. }
\end{aligned}
$$

Let $\alpha_{1}, \cdots, \alpha_{m}$ be arbitrary complex numbers such that $\left|\alpha_{v}\right|=1(v=1, \cdots, m)$. If $|\zeta|<1$, the point $Z=\left(z_{j_{k}}\right)$ such that $z_{\nu_{v} \sigma\left(\rho_{v}\right)}=z_{\sigma\left(\rho_{v}\right)_{v}}=\sqrt{2} \alpha_{v} \zeta$ for $v=1, \cdots, m$ and $z_{j k}=0$ for the other j, k belongs to $\hat{R}_{\text {II }}(p)$. Hence the function

$$
\tilde{G}(\zeta)=G_{11}(z)=\sqrt{2}\left(b_{\rho_{1} \sigma\left(\rho_{1}\right)} \alpha_{1}+\cdots+b_{\rho_{m} \sigma\left(\rho_{m}\right)} \alpha_{m}\right) \zeta+\text { (higher powers) }
$$

is holomorphic in $|\zeta|<1$ and satisfies the conditions $|\tilde{G}(\zeta)|<1, \tilde{G}(0)=0$. Thus we have

$$
\begin{equation*}
\sqrt{2}\left|b_{\rho_{1} \sigma\left(\jmath_{1}\right)} \alpha_{1}+\cdots+b_{\jmath_{m} \sigma\left(\jmath_{m}\right)} \alpha_{m}\right| \leqq 1 \tag{4.3}
\end{equation*}
$$

Since θ_{ρ} and α_{v} are arbitrary, we have, by (4.2) and (4.3),

$$
\begin{equation*}
2\left(\left|a_{j_{1} \sigma\left(j_{1}\right)}^{\left(j_{1} \sigma\left(j_{1}\right)\right)}\right|+\cdots+\left|a_{j_{m} \sigma\left(j_{m}\right)}^{\left(j_{m} \sigma\left(j_{m}\right)\right)}\right|\right) \leqq \sqrt{p} . \tag{4.4}
\end{equation*}
$$

Further we take a unitary matrix $V_{0}=\left(v_{\alpha \beta}^{0}\right)$ of order p^{2} such that $v_{1 \beta}^{0}=$ $e^{i \theta} \jmath / \sqrt{p}$ for $\beta=(j-1) p+j(\jmath=1, \cdots, p)$ and $v_{1 \beta}^{0}=0$ for the other β^{\prime} s, and we consider the point

$$
Z=\left(z_{j k}\right), \quad z_{j k}=\left\{\begin{array}{cc}
\alpha_{\zeta} \zeta & (\jmath=k) \\
0 & (\jmath \neq k)
\end{array},\right.
$$

where $\left|\alpha_{j}\right|=1(j=1, \cdots, p),|\zeta|<1$. Then we have the inequality

$$
\begin{equation*}
\left|a_{11}^{(11)}\right|+\left|a_{22}^{(22)}\right|+\cdots+\left|a_{p p}^{(p p)}\right| \leqq \sqrt{p} . \tag{4.5}
\end{equation*}
$$

Now, the number of the elements of \boldsymbol{S}_{m} is $(2 m)!/ 2^{m} m!$, and for each fixed pair $j, k(j<k)$ there are $(2 m-2)!/ 2^{m-1}(m-1)!$ mappings $\sigma \in \boldsymbol{S}_{m}$ such that $\sigma(j)=k$. Therefore from the inequalities (4.4) and (4.5) we have

$$
\begin{aligned}
& \frac{(2 m-2)!}{2^{m-2}(m-1)!}\left(\left|a_{11}^{(11)}\right|+\cdots+\left|a_{1 p}^{(1 p)}\right|+\left|a_{22}^{(22)}\right|+\cdots+\left|a_{2 p}^{(2 p)}\right|+\cdots+\left|a_{p p}^{(p p)}\right|\right) \\
& \leqq \frac{(2 m)!}{2^{m} m!} \sqrt{p}+\frac{(2 m-2)!}{2^{m-2}(m-1)!} \sqrt{p}=\frac{(2 m-2)!2 m(2 m+1)}{2^{m} m!} \sqrt{p}
\end{aligned}
$$

and so

$$
\begin{equation*}
\left|a_{11}^{(11)}\right|+\cdots+\left|a_{1 p}^{(1 p)}\right|+\left|a_{22}^{(22)}\right|+\cdots+\left|a_{2 p}^{(2 p)}\right|+\cdots+\left|a_{p p}^{(p p)}\right| \leqq \frac{p(p+1)}{2 \sqrt{p}} \tag{4.6}
\end{equation*}
$$

By (4.1) and (4.6) we obtain

$$
\left|\operatorname{det}\left(\frac{\partial f}{\partial z}\right)_{z=0}\right| \leqq p^{-p(p+1) / 4} .
$$

Next we consider the case that p is odd, i. e., $p=2 m+1$. Denote by \boldsymbol{T}_{m} the set of all one-to-one mappings τ from $\{1, \cdots, p\}$ onto itself such that $\tau\left(j_{0}\right)=\jmath_{0}$ for a certain \jmath_{0} and $\tau(j) \neq j, \tau \circ \tau(j)=j$ for all other \jmath. Let $\tau \in \boldsymbol{T}_{m}$ and let \jmath_{0}, \jmath_{1}, \cdots, j_{m} be the natural numbers such that

$$
1 \leqq j_{1}<j_{2}<\cdots<j_{m}<p, \quad \jmath_{v}<\tau\left(\jmath_{v}\right) \quad(v=1, \cdots, m), \quad \tau\left(\jmath_{0}\right)=\jmath_{0} .
$$

We take a unitary matrix $V=\left(v_{\alpha \beta}\right)$ of order p^{2} such that $v_{1 \beta}=e^{2 \theta_{j}} / \sqrt{p}$ for $\beta=(j-1) p+\tau(j)(j=1, \cdots, p)$ and $v_{1 \beta}=0$ for the other β^{\prime} s, and denote by ϕ the automorphism of $B_{p^{2}}$ given by V. Considering the mapping $\phi \circ F$ and the points $Z=\left(z_{j k}\right)$ such that $z_{j_{0} J_{0}}=\alpha_{0} \zeta, z_{\jmath_{v}\left(\jmath_{v}\right)}=z_{\tau\left(\rho_{v}\right) \jmath_{v}}=\sqrt{2} \alpha_{v} \zeta(\nu=1, \cdots, m)$ and $z_{j k}=0$ for the other \jmath, k, where $\left|\alpha_{v}\right|=1(\nu=0,1, \cdots, m)$ and $|\zeta|<1$, we obtain the inequality

$$
\begin{equation*}
\left.\left.\left|a_{j_{0,0}}^{\left(j_{0} j_{0}\right)}\right|+2\left(\left|a_{j_{1 \tau} \tau\left(j_{1}\right)}^{\left(j_{\tau} \tau\left(j_{1}\right)\right)}\right|+\cdots+\mid a_{j_{m} \tau\left(j_{m}\right)}^{\left(j_{m} \tau\right.} j_{m}\right)\right) \mid\right) \leqq \sqrt{p} . \tag{4.7}
\end{equation*}
$$

Furthermore we have

$$
\begin{equation*}
\left|a_{11}^{(11)}\right|+\left|a_{22}^{(22)}\right|+\cdots\left|a_{p p}^{(p p)}\right| \leqq \sqrt{p} . \tag{4.8}
\end{equation*}
$$

The number of the elements of \boldsymbol{T}_{m} is $(2 m+1)!/ 2^{m} m$! and for each fixed pair $j, k(\jmath<k)$ there are $(2 m-1)!/ 2^{m-1}(m-1)!$ mappings $\tau \in \boldsymbol{T}_{m}$ such that $\tau(j)=k$, and further, for each fixed j there are ($2 m$) $!/ 2^{m} m$! mappings $\tau \in \boldsymbol{T}_{m}$ such that $\tau(j)=j$. Hence, using the inequalities (4.7) and (4.8) we obtain

$$
\begin{aligned}
& \frac{(2 m-1)!}{2^{m-2}(m-1)!}\left(\left|a_{11}^{(11)}\right|+\cdots+\left|a_{1 p}^{(1 p)}\right|+\left|a_{22}^{(22)}\right|+\cdots+\left|a_{2 p}^{(2 p)}\right|+\cdots+\left|a_{p p}^{(p p)}\right|\right) \\
& \leqq \frac{(2 m+1)!}{2^{m} m!} \sqrt{p}+\left(\frac{(2 m-1)!}{2^{m-2}(m-1)!}-\frac{(2 m)!}{2^{m} m!}\right) \sqrt{\bar{p}}=\frac{(2 m+2)(2 m)!}{2^{m} m!} \sqrt{p}
\end{aligned}
$$

i. e.,

$$
\left|a_{11}^{(11)}\right|+\cdots+\left|a_{1 p}^{(1 p)}\right|+\left|a_{22}^{(22)}\right|+\cdots+\left|a_{2 p}^{(2 p)}\right|+\cdots+\left|a_{p p}^{(p p)}\right| \leqq \frac{p(p+1)}{2 \sqrt{p}} .
$$

Therefore we have

$$
\left|\operatorname{det}\left(\frac{\partial f}{\partial z}\right)_{z=0}\right| \leqq p^{-p(p+1) / 4} .
$$

Since the mapping

$$
w_{j k}=\frac{1}{\sqrt{p}} z_{j k} \quad(\jmath=1, \cdots, p ; j \leqq k \leqq p)
$$

belongs to $\mathscr{I}_{0}\left(\hat{R}_{\mathrm{II}}(p)\right)$, we obtain

$$
M\left(0, \hat{R}_{\mathrm{II}}(p)\right)=p^{-p(p+1) / 4} .
$$

By an analogous argument we can prove (1.3).
5. Finally we prove (1.4). Let f be a mapping in $\mathscr{F}_{0}\left(R_{\mathrm{IV}}(n)\right)$. We set

$$
\begin{aligned}
& f=\left(f_{1}, \cdots, f_{n}\right) \\
& f_{j}(z)=a_{j 1} z_{1}+\cdots+a_{j n} z_{n}+(\text { higher powers }) .
\end{aligned}
$$

We may assume that $\left(\frac{\partial f}{\partial z}\right)_{z=0}$ is a triangular matrix of order n :

$$
\left(\frac{\partial f}{\partial z}\right)_{z=0}=\left(\begin{array}{cccc}
a_{11} & a_{12} \cdots a_{1 n} \\
0 & a_{22} \cdots & a_{2 n} \\
\cdots & \cdots \cdots \cdots & \cdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) .
$$

Hence

$$
\left|\operatorname{det}\left(\frac{\partial f}{\partial z}\right)_{z=0}\right|=\left|a_{11} a_{22} \cdots a_{n n}\right|
$$

Let k be a natural number such that $1 \leqq k \leqq n$. If $|\zeta|<1$, then the point $z=\left(z_{1}, \cdots, z_{n}\right)$ such that $z_{k}=\zeta$ and $z_{j}=0$ for $j \neq k$ belongs to $R_{\mathrm{IV}}(n)$. Hence the function

$$
\tilde{f}(\zeta)=f_{k}(z)=a_{k k} \zeta+\text { (higher powers) }
$$

is holomorphic in $|\zeta|<1$ and satisfies the conditions $|\tilde{f}(\zeta)|<1, \tilde{f}(0)=0$. Hence we have

$$
\left|a_{k k}\right| \leqq 1
$$

and (1.4) follows. This concludes the proof of the Theorem.

References

[1] Ahlfors, L. V., and A. Beurling, Conformal invariants and function-theoretic null-sets. Acta Math. 83 (1950), 101-129.
[2] Caratheodory, C., Über die Abbildungen, die durch Systeme von analytischen Funktionen von mehreren Veränderlichen erzeugt werden. Math. Z. 34 (1932), 758-792.
[3] Cartan, E., Sur les domaines bornés, homogènes de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg. 11 (1935), 116-162.
[4] Hua, L. K., On the theory of automorphic functions of a matrix variable, I, Geometrical basis. Amer. J. Math. 66 (1944), 470-488.
[5] Hua, L. K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Amer. Math. Soc., Providence, Rhode Island, 1963.

