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SYMMETRIC SPACES DERIVED FROM ALGEBRAS
By KENJI ATSUYAMA

§1. Introduction.

The real projective plane is simply realized as the set of all lines through
the origin in the 3-dimensional Euclidean space. And also it can be realized as
the set of all subalgebras which are isomorphic to the field of complex numbers
in the quaternion field. However there is a slight difference between two realiza-
tions, that is, in the former case the lines appear to have no algebraic structure
but in the latter case the subalgebras do have it, by which the same symmetric
space can be obtained. Then, since it seems to us that the similar realization to
the latter is suitable for the explicit construction of symmetric spaces from various
algebras, we will ask whether symmetric spaces in the sense of O. Loos [3] can
be constructed by the set of all subalgebras with suitable conditions in a given
algebra. In this paper we shall give an affirmative answer to this problem.

§2. Preliminaries.

Let K be the field of real numbers (or the field of complex numbers) and K™
be the n-dimensional vector space over K. We assume that K™ has a non-trivial
product g, i.e., a K-bilinear mapping p: K*X K"—K" such that A-A=3 {0} where
we put x-y=p(x, y) and A=(K", p). A is a non-associative algebra. Then the
general linear group GL(n, K) of K" is a Lie group and the automorphism group
Aut (A) of A, the group of all elements a of GL(n, K) which satisfy u(ax, ay)
=apu(x, y) for any x, y€ A, is also a Lie group because Aut(A) is a closed sub-
group in GL(n, K). Moreover we assume that A has a non-degenerate symmetric
bilinear mapping (=inner product) g: AX A—K which is invariant under Aut (A).
Throughout this paper the product g and the inner product g will be fixed.

A subspace V of the algebra A is regular if A is a direct sum of V and V*
(A=V@V*) as a vector space where V* is a subspace of all elements x of A
which are orthogonal to V relative to g, i.e., g(x, V)={0}. Since the inner prod-
uct g is symmetric and non-degenerate, for a regular subspace V, we can obtain
a basis {e;} in A satisfying the conditions (x): e, V 1=1=57), e;€ V* (r+1=15n)
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and g(e,, ¢;)=0 or non-zero according as i13; or 1=j; where 7 is the dimension
of V (dim V) and n=dim A.

A symmetric subalgebra V is a regular subspace of A such that V-VCV,
V-vicVs V- VOVt and V- VACV. By the assumption of A-A=x{0}, the
dimension of a symmetric subalgebra is always positive. These symmetric sub-
algebras play an important role in the explicit construction of symmetric spaces
from various algebras.

§ 3. Reflection map Sy.

We define a reflection map Sy in the algebra A across a regular subspace V
by Sy(x1+x2)=x,—x, for any x,€V and x,= V* and also define a reflection map
S. in A across a non-isotropic vector g, i.e., g(a, a)=0, by Su(x)=—x+2g(x, a)/
gla, a)a for any x=A. Then the determinant detS, is equal to (—1)*~! where
n=dim A. If g(x, a)=0, S,(x)=—x.

Let ¢ be —1 or 1 according as dim V is even or odd. For a regular sub-
space V of A, making use of a basis {e;} of A with the property () in Section
2, we can obtain Sy=¢llS,, where II is the composition of » reflection maps.

PROPOSITION 3.1. Let V be a regular subspace of A, then the reflection map
Sy 1s an (involutwe) automorphism of A 1f and only 1f V 1s a symmetric sub-
algebra.

Proof. Sufficiency: From det Sy=0, SyeGL (n, K). Since, for x, y&V and
z, we V*, it holds that Sy(x-y)=xy=Sy(x)-Sp(y), Sp(x-2)=—x 2=Sy(x)-Sy(2),
Sz x)=—z - x=Sy(2)-Sy(x) and Sy(z-w)=z - w=Sy(2)-Sy(w), Sy is an automor-
phism of A.

Necessity : Notice that V={x€A|Sy(x)=x} and Vi={ze A|Sy(z)=—2z}.
Since we have Sy(x-y)=Sp(x)-Sy(»)=xy, Syp(x-2)=Sp(x)-Sp(z2)=—x-2, Sy(z-x)
=Sy(2):- Sy(x)=—2z-x and Sy(z-w)=Sy(2)-Sy(w)=z-w for any x, yeV and z, w
eV*, V is a symmetric subalgebra.

LEMMA 3.2. For a regular subspace V of A, aSya™'=S,y holds for any ac
Aut (A).

Proof. For a non-isotropic vector a of A, we have aS,a '(x)=
a(—atx+2g(atx, a)/gla, a)a)=—x+2g(x, aa)/glaa, aa)aa=S,.(x) for any a =
Aut(A) and x€4, i.e., aS,a™'=S,, holds. From this fact and S,=ellS,, we
can prove the Lemma.

The following Proposition is a direct consequence of Lemma 3.2.

PROPOSITION 3.3. Let V be a symmetric subalgebra of A. Then the group
generated by the set Sy of all Say for any asAut(A) is a normal subgroup of
Aut (A). If Aut(A) is simple (in the sense of abstract group) and VXA, &, gen-
erates Aut (A).
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PROPOSITION 3.4. If « 15 an involutwe automorphism of A, there exisis uni-
quely a symmetric subalgebra V such that a=>Sy.

Proof. Since the involutive automorphism « can be represented as an nXn
matrix with coefficients in K, there is an n Xn non-singular matrix P, i.e., P
GL(n, K), such that a=PDP~* where D is a diagonal matrix whose diagonal
components are +1. Let W,., be =+l-eigenspaces for this diagonal matrix D,
then we have A=W, PW_, (direct sum as a vector space). And, put PW,=V,
and PW_,=V_,, we also have A=V,PHV_, such that V;={x=A|a(x)=x} and
V_i={x€Ala(x)=—x}. Since the involutive automorphism « can be characterized
by these vector spaces, it suffices to prove that V; is a symmetric subalgebra
such that a=Sy,. If V,={0}, it holds that y-z=a(y) - a(z)=a(y -z2)=—y-z for
any y, zeV_; (=A), i.e.,, A-A={0}. However this contradicts the assumption of
A-Ax{0} and so the case of V;={0} does not occur. If V_,={0} we can take
A for V such that a=S,. Hence we only consider a case of V., {0}.

First we show V_;=V{. Since the inner product g is invariant under the
automorphism group Aut(A), we have g(x, y)=glax, ay)=g(x, —y)=—g(x, ),
i.e., g(x, y)=0 for any xeV,;, yeV_;. Thisimplies V_,CV{. From A=V, HV_,
and the fact that dim V*=n—dim V holds in general under the assumption of
the existence of a non-degenerate symmetric inner product, we have V_,=V1i.
This means that V; is a regular subspace of A. Next, from the fact that a(x-y)
=alx)- a(y)=xy, a(x-z)=a(x) a(z)=—x2, a(z: x)=a(z)-a(x)=—z x and a(z-w)
=a(z)-a(w)=z-w for any x, yeV, and z, we Vi, we can see that V; is a sym-
metric subalgebra of A such that a=Sy,.

Two involutive automorphisms «, 8 are conjugate if there exists a y=Aut (A4)
such that a=rfBr-'. Two symmetric subalgebras V, W are conjugate if there
exists a y=Aut(A4) such that V=yW. Since S,=Sy is equivalent to V=W, by
Propositions 3.1, 3.4 and Lemma 3.2, we have

PROPOSITION 3.5. The conjugate classes of involutive automorphisms of Aut(A)
are n one-to-one correspondence with the conjugate classes of symmetric subalgebras
of A.

§4. Main result.

Let V be a symmetric subalgebra of A. We define a multiplication o on &,
by aopf=apa where the set &, is the conjugate class of S, in Aut(4). Then
we can easily obtain that 1) aca=a, ao(aopB)=p and ao(Bor)=(acB)o(acy) for
any «, 8, 7€6,. Under the transformation map ¢ : Aut(A)XAut(A) — Aut(A4):
(u, v)—uvu?, if we fix v=3S,, the set ©, becomes an orbit on which an analytic
structure can be uniquely introduced such that 2) &, is diffeomorphic to Aut (A)/H
where H is the isotropic subgroup of v=S, relative to ¢ (&,=Aut(A)/H), 3) &,
is a submanifold of Aut(A) (if Aut(A) is compact, it is a regular submanifold),
4) the multiplication o on &, is analytic, 5) Aut(A4) is the Lie transformation



SYMMETRIC SPACES DERIVED FROM ALGEBRAS 361

group on &y, 6) for every usAut (A), the map 7(u): &,—S,: Syy—Syuer IS a
diffeomorphism and it is also a homomorphism relative to the multiplication o on
©y (cf. S. Helgason, p. 113 [2]) and at last 7) the following Lemma holds.

LEMMA 4.1. For any as®y, there exists a neighborhood U of a n &y such
that aof=p, B€U implies a=p.

Proof. From the property 6) above, it is sufficient to prove only in the case
of a=Sy. Suppose this Lemma is not true, then we have a countable sequence
{8:} in &y such that aof,=p, with B, a«a for every /€N and lim 8,=«. Since
we can find a local section A: UC&y—Aut (A4) such that A(a)=1 and =/ is the
identity map on the neighborhood U of « where 1 is the identity element of
Aut (A) and # is the projection map from Aut(A) onto &S, (Aut(A)/H=S)), we
also have a sequence {7;} in Aut(A) such that f,=7,a77* with 7,%1 for any [EN
and lim7,=1. By Proposition 3.4, moreover, we can take a set {I¥;} of symmetric
subalgebras such that Sy,=p, for every /eN. Then it holds W,=7,V and aW,;
=W, because S;=Sy is equivalent to Z=W and aof,=8,.

Now we take a basis {e,} of A for the symmetric subalgebra V with the
property (x) in Section 2. Put 4, ;=7,e;—e,, then lim 4, ,=0 because lim7,=1.
Notice that {r;e,}, 1=m=r and r=dim V, is a basis for W,. Next, making use
of Sy=¢llS,,, we have Sy(7ien)+7ien=Sr(en+di n)+71en=2en+23g(d) n, es)/
gles, er)e, (put this element as 2w;, ). Since Sy(W,)=W,, w;, =W, holds. Put
a,.;=g,,,, e.)/gle,, e.) and C,=I4+(a,,,,) for 1=i, =<7, we obtain lim C,=I by
lim 4,, ;=0 where I is the X unit matrix. Hence there exists a positive integer
l, such that detC,=0 for =/, Put C;=(c;.;) and C;'=(d,,.;) for [=l,. Then,
from ZCl,ikdl,kaai] and Z’c,,kmekal,m, we get QZZZdl,kiwl,kEWz (lézér),
i.e., V=W, because dim V=dim W,. However this contradicts V=W,.

The properties of 1), 4) and Lemma 4.1 assert that the orbit &, is a sym-
metric space in the sense of O. Loos [3]. In conclusion we have a following
main result.

THEOREM 4.2. Let A be a non-associative algebra over the field of real num-
bers (or complex numbers) having a non-trivial product and a non-degenerate
symmetric nner product which 1s wnvariant under Aut(A). Let V be a proper
symmetric subalgebra of A (VxA), 1f we put Sy={Sqr|acsAut (A)}, then we have

1) ©y 1s a symmetric space,

2) Sy is a submanifold of Aut(A). If Aut(A) is compact, Sy 1s a regular
submanifold,

3) If Aut(A) s a simple group, S, generates Aut (A),

4) Every element of &y is a non-trivial involutive automorphism,

5) Aut(A) is the Lie transformation group on Sy,

6) For every usAut(A), the map t(u) of Sy : Say—Suar is a diffeomorphism
and moreover it is a homomorphism relative to the multiplication o on Sy,

7 If we define a new multiplication uov=uv-'u in Aut(A), Aut(A) also
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becomes a symmetric space. Then the embedding of 2) above from &, wnto Aut(A)
1S @ homomorphism of symmetric spaces (see O. Loos [3] and K. Atsuyama [1]).

§5. Examples.

5.1. Let @ be the quaternion field with a basis {e;} (0=:=3) such that ¢, is
the unit element (=1), e;e;=e;, e;e5=xe¢;, ¢;0,=¢,, ¢;6,=—e¢,e, for 13 j7=1 and e,*
=—1, ¢ =—1 (or 1) for 1=2, 3: in case of e¢,>)=—1 for every 1=1, @ is called
non-split and in the other case of e¢,>=—1, e¢,>=1 and e®=1, @ is called split.
Then Aut (Q) is the special orthogomal linear group SO(3) or SO(2, 1) respectively
and it is a simple group. The non-degenerate symmetric inner product g is given
by g(x, x)=x% and it is invariant under Aut(Q). In case of non-split type
there exists only one conjugate class &, of which the symmetric subalgebra V
is generated by e, e, i.e., isomorphic to the field of complex numbers. Then
the real projective plane can be obtained by &,=S0(3)/S0O(2)-S° where - is the
semidirect product and S° is the group of +1. In case of split type there are
two conjugate classes ©,, &y of which Z is generated by e, ¢, and W by e,, e,.
Then &,=S0(2, 1)/S0O(2)-S°is a real hyperbolic plane and ©,;,=S0(2,1)/S0(, 1)-S°
is a real parabolic plane. We can also assert that the automorphisms of the
quaternion field are the reflection maps across symmetric subalgebras which are
isomorphic to the field of complex numbers.

52. Let & be the Cayley algebra with a basis {e;} (0=:=7) such that the
subalgebra generated by {e;} (0=:=3) is isomorphic to the quaternion field @ of
non-split type (again denote this subalgebra by @), ¢, =—1 (or 1) for 4=:1=7.
We call € non-split or split respectively. Then Aut (€) is the exceptional simple
Lie group of type G,. The non-degenerate symmetric inner product g is given
by g(x, x)=xX% and it is invariant under Aut(€). If € is non-split there is
one class &, diffeomorphic to Aut(€)/SO(4)=G,/SO4). If € is split there are
two classes &, &, of which V is isomorphic to the non-split quaternion field
and W to the split quaternion field. Then we have two symmetric spaces: G,=
Aut (€)/SO4)=G,*/S0O(4) is a hyperbolic space and &, =G,*/S0O(2, 1)-H* is a
parabolic space where * means the non-compact type of the corresponding group
and H* is the group generated by elements ¢ of the split quaternion field with
glg, )=1. &, is an elliptic projective space. We can also assert that the auto-
morphisms of the Cayley algebra are reflection maps across symmetric subalgebras
which are isomorphic to the quaternion field and their forms are £S.,S,S:Saqs
where ¢,, a, b and ab are orthogonal each other.

53 Let I be the exceptional Jordan algebra with the Jordan product XoY=
1/2(XY+YX) for X, YeJ. It is generated by 3X3 Hermitian matrices with
coefficients in the Cayley algebra €. Then Aut(3) is the exceptional simple Lie
group of type F, The non-degenerate symmetric inner product g is given by
g(X, X)=Tr(Lyg.x) for X3 where Tr is the trace form and LyY=XoY for
Ye3 and it is invariant under Aut(3J). If € is non-split there are two conjugate
classes &y, ©y of which V is generated by all matrices with coefficients in the



SYMMETRIC SPACES DERIVED FROM ALGEBRAS 363

quaternion field of non-split type and the other W by all matrices X=X(a,;) with
a1,=0, ay=0 for 1=2,3. Then we have &y=Aut (J)/Spin (9)=F,/Spin (9) and
©,=F,/T where T=Sp (3)-H/S® with H being the group of all elements ¢ of
the non-split quaternion field such that g(q, g)=1. Since, for every element of
©y, there corresponds uniquely one element of J, the Cayley plane F,/Spin (9)
can be realized in J as the set of all matrices X=X(a,;) with XoX=X and
Jay=1. If € is split we obtain three conjugate classes &,, &y, &, where V is
composed of all matrices X=X(a,;) with a,,=0, a;;=0 for 1=2, 3 and W (or Z)
of all matrices with coefficients in the non-split (or split) quaternion algebra:
S,y=Aut (I)/Spin*(9)=F,*/Spin*(9) and the latter two symmetric spaces corre-
spond to F,/T, i.e., ©y=F/*/T is a hyperbolic space and &,=F, */T* is a para-
bolic space where T*=Sp*(3)- H*/S° (see 1. Yokota [6]).

5.4. For simple Lie algebras we can take the Killing form as a non-degener-
ate symmetric inner product. Especially it may be suitable to use the algebras
obtained by the Tits’ second construction for the realization of symmetric spaces
from exceptional Lie algebras (see Tits [5]).

5.5. For algebras of nXn matrices there are two standard forms of sym-
metric subalgebras: the one is composed of matrices X=X(a,;) with a,;=0, a,;=0
for 1=1=<p, p+1=;=n and fixed p and the other of matrices with coefficients
in the real part relative to the construction of complex numbers, quaternion num-
bers and Cayley numbers by the Cayley-Dickson process (cf. R.D. Schafer, p. 45
[4D.
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