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SYMMETRIC SPACES DERIVED FROM ALGEBRAS

BY KENJI ATSUYAMA

§ 1. Introduction.

The real projective plane is simply realized as the set of all lines through
the origin in the 3-dimensional Euclidean space. And also it can be realized as
the set of all subalgebras which are isomorphic to the field of complex numbers
in the quaternion field. However there is a slight difference between two realiza-
tions, that is, in the former case the lines appear to have no algebraic structure
but in the latter case the subalgebras do have it, by which the same symmetric
space can be obtained. Then, since it seems to us that the similar realization to
the latter is suitable for the explicit construction of symmetric spaces from various
algebras, we will ask whether symmetric spaces in the sense of 0. Loos [3] can
be constructed by the set of all subalgebras with suitable conditions in a given
algebra. In this paper we shall give an affirmative answer to this problem.

§ 2. Preliminaries.

Let K be the field of real numbers (or the field of complex numbers) and Kn

be the n-dimensional vector space over K. We assume that Kn has a non-trivial
product μ, i.e., a if-bilinear mapping μ: KnxKn-^Kn such that ΛΆ^{0} where
we put x-y—μ(x, y) and A=(Kn, μ). A is a non-associative algebra. Then the
general linear group GL(n, K) of Kn is a Lie group and the automorphism group
Aut(A) of A, the group of all elements a of GL{n, K) which satisfy μ(ax, ay)
—aμ(x, y) for any x, y^A, is also a Lie group because Aut(A) is a closed sub-
group in GL(n, K). Moreover we assume that A has a non-degenerate symmetric
bilinear mapping (dinner product) g: A X A->K which is invariant under Aut(Λ).
Throughout this paper the product μ and the inner product g will be fixed.

A subspace V of the algebra A is regular if A is a direct sum of V and Vs-
(A=VφVλ) as a vector space where V1 is a subspace of all elements x of A
which are orthogonal to V relative to g, i.e., g(x, V)={0}. Since the inner prod-
uct g is symmetric and non-degenerate, for a regular subspace V, we can obtain
a basis {et} in A satisfying the conditions (*): ^ E
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and g(elf ej)=O or non-zero according as I^FJ or ι—j where r is the dimension
of V (dim V) and n=dim A

A symmetric subalgebra V is a regular subspace of A such that F F c F ,
V'VxdVx, V^VdV1 and Vx VxdV. By the assumption of AΆ*{Q}, the
dimension of a symmetric subalgebra is always positive. These symmetric sub-
algebras play an important role in the explicit construction of symmetric spaces
from various algebras.

§ 3. Reflection map Sv.

We define a reflection map Sv in the algebra A across a regular subspace V
by Sv(x1

Jτx2)=Xi—X2 for any x^V and x2^Vx and also define a reflection map
Sa in A across a non-isotropic vector a, i.e., g(a, CL)5FO, by Sa(x)= — x+2g(x, a)/
g{a, a)a for any I G A Then the determinant detS α is equal to (—I)71"1 where
n=dim A If g(x, α)=0, Sa(x)=-x.

Let ε be —1 or 1 according as dim V is even or odd. For a regular sub-
space V of A, making use of a basis {βj of A with the property (*) in Section
2, we can obtain Sv=εΠSei where Π is the composition of r reflection maps.

PROPOSITION 3.1. Let V be a regular subspace of A, then the reflection map
Sv is an (involutive) automorphism of A if and only if V is a symmetric sub-
algebra.

Proof. Sufficiency: From d e t S ^ O , Sv<^GL(n, K). Since, for x, y^V and
z, W<ΞV\ it holds that Sv(x-y)=x-y=Sv(x)-Sv(y)y Sv(x-z)= — x-z=Sv(x)'Sv(z)f

Sv(z x)=—Z'X=Sv(z)-Sv(x) and Sv(z-w)=z-w=Sv(z) Sv(w), Sv is an automor-
phism of A.

Necessity: Notice that V={X(ΞA\SV(X) = X) and Vλ={z(ΞA\Sv(z) = —z}.
Since we have Sv(x y)=Sv(x)-Sv(y)=x y, Sv(x'z)=Sv(x)'Sv(z)= — X'Z, Sv(z-x)
=Sv(z)-Sv(x)=— Z'X and Sv(z-w)=Sv(z)-Sv(w)=z-w for any x, y^V and z, w
e VL, V is a symmetric subalgebra.

LEMMA 3.2. For a regular subspace V of A, aSva~1=Sav holds for any α e
Aut (A).

Proof. For a non-isotropic vector a of A, we have aSaa~1(x) =
a(—a~1x-\-2g(a~1x, a)/g(a, a)a)= — x-\-2g{x} aa)/g(aa, aa)aa=Saa{x) for any α ε
Aut (A) and x^A, i.e., α S α α " 1 = S α α holds. From this fact and Sv=εIΊSe., we
can prove the Lemma.

The following Proposition is a direct consequence of Lemma 3.2.

PROPOSITION 3.3. Let V be a symmetric subalgebra of A. Then the group
generated by the set ©F of all Sav for any αeAutG4) is a normal subgroup of
Aut {A). If Aut (A) is simple (in the sense of abstract group) and V^A, <5V gen-
erates Aut 04).
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PROPOSITION 3.4. // a is an involutive automorphism of A, there exists uni-
quely a symmetric subalgebra V such that a=Sv.

Proof Since the involutive automorphism a can be represented as an nXn
matrix with coefficients in K, there is an nXn non-singular matrix P, i.e., P e
GL(n, K), such that a=PDP~x where D is a diagonal matrix whose diagonal
components are ±1. Let W±1 be ±l-eigenspaces for this diagonal matrix D,
then we have A=W1®W-1 (direct sum as a vector space). And, put PW1=V1

and PW-!=V-lf we also have A=V1Q)V-1 such that V1={x^A\a(x)=x} and
V-!= {x e AI a(x)= — x}. Since the involutive automorphism a can be characterized
by these vector spaces, it suffices to prove that Vx is a symmetric subalgebra
such that a=SVl. If Fx—{0}, it holds that y-z—a(y)'a(z)=a(yz)— — yz for
any y, ze V-i (=^4), i.e., ΛΆ={0}. However this contradicts the assumption of
AΆ^{0} and so the case of Fi={0} does not occur. If F_i={0} we can take
A for V such that a=Sv. Hence we only consider a case of F±i^{0}.

First we show V-λ=V\. Since the inner product g is invariant under the
automorphism group Aut 04), we have g(x, y)=g(ax, ay)=g(x, —y)——g(x, y),
i.e., g(x, y)=0 for any χe=Vlf y^V-,. This implies V^dVi. From A=V1®V.1

and the fact that dim VL — n — dim V holds in general under the assumption of
the existence of a non-degenerate symmetric inner product, we have V-ι—V\.
This means that VΊ is a regular subspace of A. Next, from the fact that a(x y)
= a(x) a(y)=x y, a(x z)=a(x) a(z)= — x z, a(z x)=a(z)-a(x)=—z- x and a(z w)
=a{z)-a{w)—Z'W for any x, J/GFJ and z, w^V\, we can see that VΊ is a sym-
metric subalgebra of A such that a—SVl.

Two involutive automorphisms α, β are conjugate if there exists a γ^Aut(A)
such that a=τβγ~1. Two symmetric subalgebras V, W are conjugate if there
exists a γ^Aut(A) such that V—yW. Since SV=SW is equivalent to V—W, by
Propositions 3.1, 3.4 and Lemma 3.2, we have

PROPOSITION 3.5. The conjugate classes of involutive automorphisms of Aut(A)
are in one-to-one correspondence with the conjugate classes of symmetric subalgebras
of A.

§ 4. Main result.

Let V be a symmetric subalgebra of A. We define a multiplication o on &v

by aoβ=aβa where the set <δF is the conjugate class of Sv in Aut(A). Then
we can easily obtain that 1) aoa—ay ao(aoβ)=β and ao(βoγ)=(aoβ)o(aoγ) for
any a, β, ^ ^ F Under the transformation map ψ : Aut (A)XAut (A) —> Aut 04):
(u, v^uvu'1, if we fix v=Sv, the set Θ7 becomes an orbit on which an analytic
structure can be uniquely introduced such that 2) <5V is diffeomorphic to Aut (A)/H
where H is the isotropic subgroup of v=Sv relative to ψ (@F=Aut (A)/H), 3) Έ>v

is a submanifold of Aut 04) (if Ant {A) is compact, it is a regular submanifold),
4) the multiplication o on ©F is analytic, 5) Aut (A) is the Lie transformation
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group on <δΓ, 6) for every we Aut 04), the map τ(u): © F -+Θ F : SaV—>SuaV is a
diffeomorphism and it is also a homomorphism relative to the multiplication o on
<&v (cf. S. Helgason, p. 113 [2]) and at last 7) the following Lemma holds.

LEMMA 4.1. For any a<B&v, there exists a neighborhood U of a in &v such
that aoβ^β, β(ΞU implies a=β.

Proof. From the property 6) above, it is sufficient to prove only in the case
of a=Sv. Suppose this Lemma is not true, then we have a countable sequence
{βι\ in © r such that aoβt=βι with βi^a for every l^N and lim βι=a. Since
we can find a local section h: Uc<&v->Aut (A) such that h(ά)=l and πh is the
identity map on the neighborhood U of a where 1 is the identity element of
Aut(^4) and π is the projection map from Aut 04) onto <&v (Aut (A)/H= <2y), we
also have a sequence {γt} in Aut (A) such that βι=Tιaγj1 with γt^l for any /GΛ T

and lim 7*1=1. By Proposition 3.4, moreover, we can take a set {WΊ} of symmetric
subalgebras such that SWι=βι for every /eiV. Then it holds Wι=γtV and aWΊ
= Wι because SZ=SW is equivalent to Z=W and aoβL=βt.

Now we take a basis {et} of A for the symmetric subalgebra V with the
property (*) in Section 2. Put ΔιΛ—yιei—eXy then lim Λ , t = 0 because lim7Ί=l.
Notice that {ϊιem}, l ^ m ^ r and r=dim V, is a basis for Wt. Next, making use
of Sv=εΠSem, we have S F ( n O + r ^ m = 5 F ( e m + J i , m ) + n e m = 2 g m + 2 2 T ^ ( ^ , m , ek)/
g(βk> ek)ek (put this element as 2wι,m). Since S^VFO^^, Wι,m&Wι holds. Put
β ι , t r M , ; > eι)/g(el) et) and Ci=/+(α ί t t < 7 ) for l^f, ^ r , we obtain limCi=/ by
lim Jj.j—0 where / is the rXr unit matrix. Hence there exists a positive integer
/o such that detCj^O for /^/0. Put Cι=(clftj) and Cτ1=(dlllj) for /^/0. Then,
from Σcι.ikdι,kJ=δij and 2 rc ί,*mβΛ = M;i,m, we get e ι=2'rf
i.e., V=PF/ because dim F=dim W .̂ However this contradicts

The properties of 1), 4) and Lemma 4.1 assert that the orbit <&v is a sym-
metric space in the sense of 0. Loos [3]. In conclusion we have a following
main result.

THEOREM 4.2. Let A be a non-associative algebra over the field of real num-
bers {or complex numbers) having a non-trivial product and a non-degenerate
symmetric inner product which is invariant under Aut (A). Let V be a proper
symmetric subalgebra of A (V*FA), if we put &v= {Sav\a^ Aut (A)}, then we have

1) (&v is a symmetric space,
2) <2y is a submanifold of Aut 04). // Aut 04) is compact, <2y is a regular

submanifold,
3) // Aut (A) is a simple group, <δF generates Aut (̂ 4),
4) Every element of €y is a non-trivial involutive automorphism,
5) Aut (A) is the Lie transformation group on <&v,
6) For every we Aut (A), the map τ(u) of ©7 : SaV-^SUav is a diffeomorphism

and moreover it is a homomorphism relative to the multiplication o on ^>v,
7) // we define a new multiplication uov — uv~1u in Aut 04), Aut (A) also
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becomes a symmetric space. Then the embedding of 2) above from <5F into Aut (A)
is a homomorphism of symmetric spaces {see 0. Loos [3] and K. Λtsuyama [1]).

§ 5. Examples.

5.1. Let Q be the quaternion field with a basis {ej (0^z^3) such that e0 is
the unit element (=1), e1e2=eSf e2e3~±e1} eΆe1=e2, eieJ= — eJeι for i^j^l and e2

=—1, eτ

2=—l (or 1) for ι=2, 3 : in case of ez

2= — 1 for every i ^ l , Q is called
non-split and in the other case of e?——\, e2

2=l and es

2=l, Q is called split.
Then Aut (Q) is the special orthogomal linear group SO(3) or SO(2, 1) respectively
and it is a simple group. The non-degenerate symmetric inner product g is given
by g(x, x)=xx and it is invariant under Aut(Q). In case of non-split type
there exists only one conjugate class <δF of which the symmetric subalgebra V
is generated by e0, eu i. e., isomorphic to the field of complex numbers. Then
the real projective plane can be obtained by <&V=SO(3)/SO(2)-S° where is the
semidirect product and S° is the group of ± 1 . In case of split type there are
two conjugate classes <&z> &w of which Z is generated by e0, eλ and W by e0, e2.
Then<Sz=SO(2, l)/SO(2) S°is a real hyperbolic plane and &W=SO(2,1)/SO(1,1) S°
is a real parabolic plane. We can also assert that the automorphisms of the
quaternion field are the reflection maps across symmetric subalgebras which are
isomorphic to the field of complex numbers.

5.2. Let @ be the Cayley algebra with a basis {βj (0^i^7) such that the
subalgebra generated by {ej (0^z^3) is isomorphic to the quaternion field Q of
non-split type (again denote this subalgebra by Q), ex

2——\ (or 1) for 4^z^7.
We call © non-split or split respectively. Then Aut ((5) is the exceptional simple
Lie group of type G2. The non-degenerate symmetric inner product g is given
by g(x, x)=xx and it is invariant under Aut (©). If © is non-split there is
one class <&Q diffeomorphic to Aut (@)/5O(4)=6?2/SO(4). If © is split there are
two classes <37, € v of which V is isomorphic to the non-split quaternion field
and W to the split quaternion field. Then we have two symmetric spaces: <5V=
Aut (®)/SO(4)=G2*/SO{A) is a hyperbolic space and <5W=G2*/SO(2, 1)Ή* is a
parabolic space where * means the non-compact type of the corresponding group
and 77* is the group generated by elements q of the split quaternion field with
g(Q> #)=1. ®Q is an elliptic projective space. We can also assert that the auto-
morphisms of the Cayley algebra are reflection maps across symmetric subalgebras
which are isomorphic to the quaternion field and their forms are εSeQSaSbSab
where e0, a, b and ab are orthogonal each other.

5.3 Let 3 be the exceptional Jordan algebra with the Jordan product Xo Y—
l/2{XY-\-YX) for X, 7 e 3 . It is generated by 3x3 Hermitian matrices with
coefficients in the Cayley algebra (?. Then Aut (3) is the exceptional simple Lie
group of type FA. The non-degenerate symmetric inner product g is given by
g(X, X)=Tr(LXoX) for Z e 3 where Tr is the trace form and LxY=XoY for
F < Ξ 3 and it is invariant under Aut (3). If © is non-split there are two conjugate
classes <Ey, &w of which V is generated by all matrices with coefficients in the
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quaternion field of non-split type and the other W by all matrices X=X(atj) with
α u = 0 , atl=0 for z=2, 3. Then we have ©,p=Aut (3)/Spin (9)=F4/Spin (9) and
<&V=FJT where T=Sp(S)Ή/S° with # being the group of all elements q of
the non-split quaternion field such that g(q, q)=l. Since, for every element of
<&w, there corresponds uniquely one element of 3, the Cayley plane F4/Spin(9)
can be realized in 3 as the set of all matrices X=X(aιj) with XoX= X and
Σaa=l. If © is split we obtain three conjugate classes €>κ, <&Wf ̂ >z where V is
composed of all matrices X=X(atj) with α u = 0 , α^^O for z=2, 3 and W (or Z)
of all matrices with coefficients in the non-split (or split) quaternion algebra:
<δΓ=Aut (3)/Sρin*(9)=F4*/Sρin*(9) and the latter two symmetric spaces corre-
spond to FJT, i. e., <&w=F4ι*/T is a hyperbolic space and © Z = F 4 * / T * is a para-
bolic space where T*=S£*(3) #*/S° (see I. Yokota [6]).

5.4. For simple Lie algebras we can take the Killing form as a non-degener-
ate symmetric inner product. Especially it may be suitable to use the algebras
obtained by the Tits' second construction for the realization of symmetric spaces
from exceptional Lie algebras (see Tits [5]).

5.5. For algebras of nXn matrices there are two standard forms of sym-
metric subalgebras: the one is composed of matrices X=X(atj) with aιj=Q, axj—0
for l^i^p, p+l^j^n and fixed p and the other of matrices with coefficients
in the real part relative to the construction of complex numbers, quaternion num-
bers and Cayley numbers by the Cayley-Dickson process (cf. R. D. Schafer, p. 45
[4]).
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